Skip to main content

The Environment and the Tools in Rhizo- and Bioremediation of Contaminated Soil

  • Chapter
  • First Online:
  • 2366 Accesses

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

Several methods are available for determining microbial diversity in the soil environment, including different plating methods, light and fluorescence microscopy, and DNA and RNA analysis. Since culturable proportions of bacterial communities from the environment are negligible compared with the number of species that are present in the soil environment, culture techniques for environmental bacterial community diversity analysis are becoming less popular. Molecular techniques have been developed to identify and determine species diversity of microorganisms without isolation. Molecular techniques also provide a rapid means of determining the relative abundance of common species present in a given sample, which do not need to be culturable. Characterization of genes involved in the degradation of organic pollutants has also led to the application of molecular techniques in the microbial ecology of polluted areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a Moorland-Scots pine (Pinus sylvestris L.) gradient. New Phytol 158:569–578

    Article  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAH polluted soils. Chemosphere 57: 401–412

    Article  CAS  Google Scholar 

  • Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of the genera Chryseomonas, Flavimonas and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    CAS  Google Scholar 

  • Banks MK, Alleman J (2002) Microbial indicators of bioremediation potential and success. Hazardous substance research centres. Georgia Tech Research Corporation. http://www.hsrc.org/mw-microbial.html

  • Blackwood CB, Marsh T, Kim SH, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932

    Article  CAS  Google Scholar 

  • Bodelier PLE, Meima-Franke M, Zwart G, Laanbroek HJ (2005) New DGGE strategies for the analysis of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. Microb Ecol 52:163–174

    Article  CAS  Google Scholar 

  • Boon N, De Windt W, Verstraete W, Top EM (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. Microb Ecol 39:101–112

    CAS  Google Scholar 

  • Bundy JG, Paton GI, Campbell J (2002) Microbial communities in different soil types do not converge after diesel contamination. J Appl Microbiol 92:276–288

    Article  CAS  Google Scholar 

  • Chang Bioscience (2004) Primo Melt 3.4: PCR primer design for DGGE and TGGE. http://www.changbioscience.com/primo/primomel.html.

  • Coclin L, Manzano M, Cantoni C, Comi G (2001) Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl Environ Microbiol 67:5113–5121

    Article  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  CAS  Google Scholar 

  • Curtis TP, Craine NG (1998) The comparison of the diversity of activated sludge plants. Water Sci Technol 37:71–78

    CAS  Google Scholar 

  • Dauga C (2002) Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52:531–547

    CAS  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness, missing links. Environ Microbiol 3:649–657

    Article  CAS  Google Scholar 

  • England LS, Vincent ML, Trevors JT, Holmes SB (2004) Extraction, detection and persistence of extracellular DNA in forest litter microcosms. Mol Cell Probes 18:313–319

    Article  CAS  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined communities in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    CAS  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined communities inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  Google Scholar 

  • Foucher ALJL, Bongers T, Noble LR, Wilson MJ (2004) Assessment of nematode biodiversity using DGGE of 18S rDNA following extraction of nematodes from soil. Soil Biol Biochem 36:2027–2032

    Article  CAS  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterisation of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilisation. Appl Environ Microbiol 57:2351–2359

    CAS  Google Scholar 

  • Gelsomino A, Keijzer-Wolters AC, Cacco G, Van Elsas JD (1999) Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Meth 38:1–15

    Article  CAS  Google Scholar 

  • Gillan DC (2004) The effect of an acute copper exposure on the diversity of a microbial community in North Sea sediments as revealed by DGGE analysis — the importance of the protocol. Mar Pollut Bull 49:504–513

    Article  CAS  Google Scholar 

  • Helms C (1990) Method: denaturing gradient gel electrophoresis (DGGE). http://hdklab.wustl.edu/lab_manual/dgge/dgge1.html

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  Google Scholar 

  • Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26

    CAS  Google Scholar 

  • Jackson CR, Roden EE, Churchill PF (2000) Denaturing gradient gel electrophoresis can fail to separate 16S rDNA fragments with multiple base differences. Mol Biol Today 2:49–51

    Google Scholar 

  • Janse I, Meima M, Kardinaal WEA, Zwart G (2003) High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6634–6643

    Article  CAS  Google Scholar 

  • Kawai M, Matsutera E, Kanda H, Yamaguchi N, Tani K, Nasu M (2002) 16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 68:699–704

    Article  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Ann Rev Microbiol 56:211–236

    Article  CAS  Google Scholar 

  • Keyser M, Witthuhn RC, Lamprecht C, Coetzee MPA, Britz TJ (2006) PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol 29:77–84

    Article  CAS  Google Scholar 

  • Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58:169–188

    Article  CAS  Google Scholar 

  • Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukui M, Urushigawa Y, Stahl DA (2002) Parallel characterisation of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridisation, and DNA microarray technology. Appl Environ Microbiol 68:3215–3225

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Gerards S, Woldendorp JW (1997) Detection and characterization of fungal infections of Ammophila arenaria (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl Environ Microbiol 63:3858–3865

    CAS  Google Scholar 

  • Krieg NR, Holt JG, Murray RGE, Brenner DJ, Bryant MP, Moulder JW, Pfennig N, Sneath PHA, Staley JT (1984) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 964

    Google Scholar 

  • Lagacé L, Pitre M, Jacques M, Roy D (2004) Identification of the bacterial community of maple sap by using amplified ribosomal DNA (rDNA) restriction analysis and rDNA sequencing. Appl Environ Microbiol 70:2052–2060

    Article  CAS  Google Scholar 

  • Lee SD, Kim ES, Hah YC (2000) Phylogenetic analysis of the genera Pseudonocardia and Actinobispora based on 16S ribosomal DNA sequences. Microbiol Lett 182:125–129

    Article  CAS  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, Springael D (2005) Occurrence and community composition of fast-growing Mycobacterium in soils polluted with polycyclic aromatic hydrocarbons. Microb Ecol 51:375–388

    Article  CAS  Google Scholar 

  • MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    CAS  Google Scholar 

  • Marshall MN, Cocolin L, Mills DA, VanderGheynst JS (2003) Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J Appl Microbiol 95:934–948

    Article  CAS  Google Scholar 

  • Milcic-Terzic J, Lopez-Vidal Y, Vrvic MM, Saval S (2001) Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-polluted soil. Biores Technol 78:47–54

    Article  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial communities by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nakatsu CH, Torsvik V, Øvreå´ L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Am J Soil Sci 64:1382–1388

    CAS  Google Scholar 

  • Norland S (2004) Gel2K gel analysis software. University of Bergen, Norway. http://www.im.uib.no/∼nimsn/program

  • Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol 65:422–430

    Google Scholar 

  • O’ Callaghan M, Gerard EM, Heilig GHJ, Zhang H, Jackson TA, Glare TR (2003) Denaturing gradient gel electrophoresis — a tool for plant protection research. N Z Plant Prot 56:143–150

    Google Scholar 

  • Osborne CA, Galic M, Sangwan P, Panssen PH (2005) PCR-generated artefact from 16S rRNA gene-specific primers. Microb Lett 248:183–187

    Article  CAS  Google Scholar 

  • Øvereås L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315

    Article  Google Scholar 

  • Petersen DG, Dahllöf I (2005) Improvements for comparative analysis of changes in diversity of microbial communities using internal standards in PCR-DGGE. Microb Ecol 53:339–348

    Article  CAS  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, Van Elsas JD (1998) Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analysed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    CAS  Google Scholar 

  • Sanderson KE (1976) Genetic relatedness in the family Enterobacteriaceae. Annu Rev Microbiol 30:327–349

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  Google Scholar 

  • Sei K, Mori K, Kohno T, Maki H (2003) Development and application of PCR primers for monitoring alkane-degrading bacteria in a seawater microcosm during crude oil degradation process. J Chem Eng Jpn 36:1185–1193

    Article  CAS  Google Scholar 

  • Sekiguchi H, Watanabe M, Nakahara T, Xu B and Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142–5150

    Article  CAS  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM 1989 Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single base changes. Proc Natl Acad Sci USA 86:232–236

    Article  CAS  Google Scholar 

  • Smalla K, Wachtendorf U, Heuer H, Lui WT, Forney L (1998) Analysis of BIOLOG GN substrate utilisation patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  Google Scholar 

  • Stamper DM, Walch M, Jacobs RN (2003) Bacterial population changes in a membrane bioreactor for Graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. Appl Environ Microbiol 69:852–860

    Article  CAS  Google Scholar 

  • Stephen JR, Chang YJ, Gan YD, Peacock A, Pfiffner SM, Barcelona MJ, White DC, McNaughton SJ (1999) Microbial characterisation of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)- based approach. Environ Microbiol 1:231–241

    Article  CAS  Google Scholar 

  • Tamarin RH (1996) Principles of genetics, 5th edn. Brown Publishers, p 246

    Google Scholar 

  • Temmerman R, Scheirlinck I, Huys G, Swings J (2003) Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:220–226

    Article  CAS  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirs, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. Appl Environ Microbiol 49:401-417

    Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990a) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Øvereås L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  Google Scholar 

  • Torsvik V, Øvereås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  Google Scholar 

  • Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, Singer VL (1999) Characterisation of SYBR gold nucleic acid gel stain: a dye optimised for use with 300-nm ultraviolet transilluminators. Anal Biochem 268:278–288

    Article  CAS  Google Scholar 

  • Ueda T, Suga Y, Matsuguchi T (1995) Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur J Soil Sci 46:415–421

    Article  Google Scholar 

  • Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G, Rigaud A, Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. Microb Ecol 24:279–285

    Article  CAS  Google Scholar 

  • Van Hannen EJ, Mooij W, Van Agterveld MP, Gons HJ, Laanbroek HJ (1999) Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484

    CAS  Google Scholar 

  • Volossiouk T, Robb EJ, Nazar RN (1995) Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61:3972–3976

    CAS  Google Scholar 

  • Von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based analysis. Microbiol Rev 21:213–229

    CAS  Google Scholar 

  • Von Wintzingerode F., Böcker S., Schlötelburg C., Chiu N.H., Storm N., Jurinke C., Cantor CR, Göbel UB, Van den Boom D (2002) Base-specific fragmentation of amplified 16S rRNA genes analysed by mass spectrometry: a tool for rapid bacterial identification. Proc Natl Acad Sci USA 99:7039–7044

    Article  CAS  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  Google Scholar 

  • Warwick S, Bowen T, McVeigh H, Embley TM (1994) A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J System Bacteriol 44:293–299

    Article  CAS  Google Scholar 

  • Watve MG, Gangal RM (1996) Problems in measuring bacterial diversity, and a possible solution. Appl Environ Microbiol 62:4299–4301

    CAS  Google Scholar 

  • White DC, Flemming CA, Leung KT, MacNaughton SJ (1998) In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of population remediation in soils, the subsurface, the rhizosphere and in biofilms. J Microbiol Meth 32:93–105

    Article  CAS  Google Scholar 

  • Whyte LG, Goalen B, Hawari J, Labbé D, Greer CW, Nahir M (2001) Bioremediation treatability assessment of hydrocarbon-polluted soils from Eureka, Nunavut. Cold Regions Science and Technology 32:121–132

    Article  Google Scholar 

  • Widmer F, Seidler RJ, Gillevet PM, Watrud LS, Di Giovanni GD (1998) A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl Environ Microbiol 64:2545–2553

    CAS  Google Scholar 

  • Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a douglas firforest site in the Oregon Cascade mountain range. Appl Environ Microbiol 65:374–380

    CAS  Google Scholar 

  • Wikipedia (2007) The Free Encyclopedia, http://en.wikipedia.org/wiki/Catalase_test

  • Wu X, Lee WJ, Tseng C (2005) ESTmapper: Efficiently aligning DNA sequences to genomes. Proceedings of the Nineteenth IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEE Computer Society

    Google Scholar 

  • Zuccaro A, Schultz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Ficus serratus. Mycol Res 107:1451–1466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. J. Surridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Surridge, A.K.J., Wehner, F.C., Cloete, T.E. (2009). The Environment and the Tools in Rhizo- and Bioremediation of Contaminated Soil. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_17

Download citation

Publish with us

Policies and ethics