Skip to main content

Ionic Loops and Rebounds: Oxygen-Deprivation Signaling in Plants

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

In flooded soils, oxygen is a serious limiting factor for plant growth and survival. However, as evident from their evolutionary diversification and ecological success, plants have acquired the ability to sense and adapt to oxygen deficits. Here, I attempt a synthesis of recent developments in oxygen-signaling research, in particular, the role of transient ionic (calcium) and redox (reactive oxygen species) changes in the perception of oxygen deprivation by plant cells. An emerging theme from this analysis is that the oxygen-signaling network comprises both positive and negative feedback loops that augment or moderate these cellular perturbations encoding the stress. Further, plant tolerance to oxygen deprivation seems to depend on the ability of cells to regulate these signaling circuits and rapidly attain homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abercrombie J, Halfhill M, Ranjan P, Rao M, Saxton A, Yuan J, Stewart C (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee D-G, Lee S-H, Kang KY, Bahk JD, Choi MS, Lee I-J, Renaut J, Lee B-H (2007) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Planta 131:555–570

    Article  CAS  Google Scholar 

  • Arpagaus S, Rawyler AJ, Braendle RA (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot (Lond) 96:507–518

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–39

    Article  PubMed  CAS  Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    Article  PubMed  CAS  Google Scholar 

  • Berchner-Pfannschmidt U, Frede S, Wotzlaw C, Fandrey J (2008) Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur Respir J 32:210–217

    Article  PubMed  CAS  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    Article  PubMed  CAS  Google Scholar 

  • Branco-Price C, Chang R, Ferreira R, Bailey-Serres J (2006) Mitochondria-initiated signaling in Arabidopsis under low oxygen. Poster presented at Plant Biology 2006, American Society of Plant Biologists, Boston, 5–9 Aug 2006, abstract P36049

    Google Scholar 

  • Bucher M, Brandle R, Kuhlemeier C (1994) Ethanolic fermentation in transgenic tobacco expressing Zymomonas mobilis pyruvate decarboxylase. EMBO J 13:2755–2763

    PubMed  CAS  Google Scholar 

  • Carystinos GD, Heather MR, Monroy AF, Rajinder DS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  PubMed  CAS  Google Scholar 

  • Chang W, Small DA, Toghrol F, Bentley WE (2006) Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 188:1648–1659

    Article  PubMed  CAS  Google Scholar 

  • Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JKM (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  PubMed  CAS  Google Scholar 

  • Chung H-J, Ferl RJ (1999) Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol 121:429–436

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Dirmeier R, O'Brien KM, Engle M, Dodd A, Spears E, Poyton RO (2002) Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 277:34773–34784

    Article  PubMed  CAS  Google Scholar 

  • Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608

    Article  PubMed  CAS  Google Scholar 

  • Frade JM, Michaelidis TM (1997) Origin of eukaryotic programmed cell-death - a consequence of aerobic metabolism. BioEssays 19:827–832

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gilles-Gonzalez MA, Gonzalez G (2005) Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99:1–22

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK (1998) Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci U S A 95:15177–15182

    Article  PubMed  CAS  Google Scholar 

  • Gonzali S, Loreti E, Novi G, Poggi A, Alpi A, Perata P (2005) The use of microarrays to study the anaerobic response in Arabidopsis. Ann Bot 96:661–668

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena A, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterisation of programmed cell death in aerenchyma formation. Planta 212:205–214

    Article  PubMed  CAS  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Greenway H, Colmer TD, Millar AH (2005) Protein Synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth and energy utilization. Ann Bot 96:703–715

    Article  PubMed  CAS  Google Scholar 

  • Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K (2004) Cryptogein-induced initial events in tobacco BY-2 cells: pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant Cell Physiol 45:160–170

    Article  PubMed  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404

    Article  PubMed  CAS  Google Scholar 

  • Kuzmin EV, Karpova OV, Elthon TE, Newton KJ (2004) Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins. J Biol Chem 279:20672–20677

    Article  PubMed  CAS  Google Scholar 

  • Kwast KE, Hand SC (1996) Oxygen and pH regulation of protein synthesis in mitochondria from Artemia franciscana embryos. Biochem J 313:207–213

    PubMed  CAS  Google Scholar 

  • Kwast KE, Burke PV, Staahl BT, Poyton RO (1999) Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc Natl Acad Sci U S A 96:5446–5451

    Article  PubMed  CAS  Google Scholar 

  • Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Bergersen FJ, Day DA (1994) Oxygen affinity of terminal oxidases in soybean mitochondria. Plant Physiol Biochem 32:847–852

    CAS  Google Scholar 

  • Millar AH, Trend AE, Heazlewood JL (2004) Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes. J Biol Chem 279:39471–39478

    Article  PubMed  CAS  Google Scholar 

  • Moskvin OV, Kaplan S, Gilles-Gonzalez M-A, Gomelsky M (2007) Novel heme-based oxygen sensor with a revealing evolutionary history. J Biol Chem 282:28740–28748

    Article  PubMed  CAS  Google Scholar 

  • Mühlenbock P, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19:3819–3830

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Tsuji H, Li YH, Saisho D, Arimura S, Tsutsumi N, Hirai A (2000) Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol 124:587–598

    Article  PubMed  CAS  Google Scholar 

  • Nie X, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol 114:835–840

    PubMed  CAS  Google Scholar 

  • Nie X, Durnin DC, Igamberdiev AU, Hill RD (2006) Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta 223:542–549

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  PubMed  CAS  Google Scholar 

  • Okimoto R, Sachs MM, Porter EK, Freeling M (1980) Patterns of polypeptide synthesis in various maize organs under anaerobiosis. Planta 150:89–94

    Article  CAS  Google Scholar 

  • Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Papagiannis MD (1984) Life-related aspects of stellar evolution. Orig Life 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Paul A-L, Ferl RJ (1991) Adh1 and Adh2 regulation. Maydica 36:129–134

    Google Scholar 

  • Popov VN (2003) Possible role of free oxidation processes in the regulation of reactive oxygen species production in plant mitochondria. Biochem Soc Trans 31:1316–1317

    Article  PubMed  CAS  Google Scholar 

  • Porterfield DM, Kuang A, Smith PJS, Crispi ML, Musgrave ME (1999) Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development. Can J of Bot 77:1439–1446

    Article  CAS  Google Scholar 

  • Pouysségur J, Mechta-Grigoriou F (2006) Redox regulation of the hypoxia-inducible factor. Biol Chem 387:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial ROS: contribution to oxidative stress and inter-organellar signaling. Plant Physiol 141:357–366

    Article  PubMed  CAS  Google Scholar 

  • Ribas-Carbo M, Berry JA, Azcon-Bieto J, Siedow JN (1994) The reaction of the plant mitochondrial cyanide-resistant alternative oxidase with oxygen. Biochim Biophys Acta 118:205–212

    Google Scholar 

  • Rolletschek H, Borisjuk L, Koschorreck M, Wobus U, Weber H (2002) Legume embryos develop in a hypoxic environment. J Exp Bot 53:1099–1107

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  CAS  Google Scholar 

  • Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH (1996) Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings. Plant Physiol 111:243–257

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91:119–127

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Sachs MM (2007) Responses to oxygen deprivation and potential for enhanced flooding tolerance in Maize. In: Bennitzen J, Hake S (eds) The maize handbook, 2nd edn, Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1994a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6:1747–1762

    Article  CAS  Google Scholar 

  • Subbaiah CC, Zhang J-K, Sachs MM (1994b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol 105:369–376

    Article  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Kollipara KP, Sachs MM (2000) A Ca2+-dependent cysteine protease is associated with anoxia-induced root tip death in maize. J Exp Bot 51:721–730

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Shah N, Rhoads DM (2006) Role of reactive oxygen species and alternative oxidase in hypoxia signaling in Arabidopsis. Poster presented at Plant Biology 2006, American Society of Plant Biologists, Boston, 5–9 Aug 2006, abstract P36053

    Google Scholar 

  • Szal B, Jolivet Y, Hasenfratz-Sauder MP, Dizengremel P, Rychter AM (2003) Oxygen concentration regulates alternative oxidase expression in barley roots during hypoxia and post-hypoxia. Physiol Plant 119:494–502

    Article  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Tamura S, Kuramochi H, Ishizawa K (2001) Involvement of calcium ion in the stimulated shoot elongation of arrowhead tubers under anaerobic conditions. Plant Cell Physiol 42:717–722

    Article  PubMed  CAS  Google Scholar 

  • Taylor BL (2007) Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol 65:1415–1424

    Article  PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB, Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128

    Article  PubMed  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Nakazono M, Saisho D, Tsutsumi N, Hirai A (2000) Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene. FEBS Lett 471:201–204

    Article  PubMed  CAS  Google Scholar 

  • Virolainen E, Blokhina O, Fagerstedt K (2002) Ca2+-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann Bot 90:509–516

    Article  PubMed  CAS  Google Scholar 

  • Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–726

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J 30:567–579

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Nickels R, McIntosh L (2001) A genome approach to mitochondrial-nuclear communication in Arabidopsis. Plant Physiol Biochem 39:345–353

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I thank Barry Taylor (Loma Linda University, CA, USA) for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Subbaiah *, C. (2009). Ionic Loops and Rebounds: Oxygen-Deprivation Signaling in Plants. In: Mancuso, S., Balu¿ka, F. (eds) Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89228-1_10

Download citation

Publish with us

Policies and ethics