Skip to main content

The Life Cycle of the Endocannabinoids: Formation and Inactivation

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

In this chapter, we summarise the current thinking about the nature of endocannabinoids. In describing the life cycle of these agents, we highlight the synthetic and catabolic enzymes suggested to be involved. For each of these, we provide a systematic analysis of information on sequence, subcellular and cellular distribution, as well as physiological and pharmacological substrates, enhancers and inhibitors, together with brief descriptions of the impact of manipulating enzyme levels through genetic mechanisms (dealt with in more detail in the chapter “Genetic Models of the Endocannabinoid System” by Monory and Lutz, this volume). In addition, we describe experiments investigating the stimulation of endocannabinoid synthesis and release in intact cell systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2AG:

2-Arachidonoylglycerol

2AG-3P:

2-Arachidonoylglycerol-3-phosphate

AEA:

Anandamide, N-arachidonoylethanolamine

COX:

Cyclooxygenase

DAG:

Diacylglycerol

DGL:

Diacylglycerol lipase

DSI:

Depolarization-evoked suppression of inhibition

ECB:

Endocannabinoid

EET:

Epoxyeicosatrienoic acid

Epac:

Exchange protein activated by cyclic AMP

FAAH:

Fatty acid amide hydrolase

LOX:

Lipoxygenase

LPI:

Lysophosphatidylinositol

LPLC:

Lysophospholipase C

LPLD:

Lysophospholipase D

lysoNAPE:

Lyso-N-acylphosphatidylethanolamine

MAFP:

Methylarachidonylfluorophosphonate

MGL:

Monoacylglycerol lipase

NAAA:

N-Acylethanolamine acid amidase

NAE:

N-Acylethanolamine

NAPE:

N-Acylphosphatidylethanolamine

ODA:

Oleamide

OEA:

N-Oleoylethanolamine

PE:

Phosphatidylethanolamine

PEA:

N-Palmitoylethanolamine

PIP2 :

Phosphatidylinositol-4,5-bisphosphate

PLA1 :

Phospholipase A1

PLA2 :

Phospholipase A2

PLB:

Phospholipase B

PLC:

Phospholipase C

PLD:

Phospholipase D

SEA:

N-Stearoylethanolamine

THL:

Tetrahydrolipstatin

References

  • Ahn DK, Choi HS, Yeo SP et al. (2007) Blockade of central cyclooxygenase (COX) pathways enhances the cannabinoid-induced antinociceptive effects on inflammatory temporomandibular joint (TMJ) nociception. Pain 132:23–32

    PubMed  CAS  Google Scholar 

  • Aneetha H, O'Dell DK, Tan B et al. (2009) Alcohol dehydrogenase-catalyzed in vitro oxidation of anandamide to N-arachidonoyl glycine, a lipid mediator: Synthesis of N-acyl glycinals. Bioorg Med Chem Lett 19:237–241

    PubMed  CAS  Google Scholar 

  • Aoki J, Inoue A, Makide K et al. (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204

    PubMed  CAS  Google Scholar 

  • Artmann A, Petersen G, Hellgren LI et al. (2008) Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta-Mol Cell Biol L 1781:200–212

    CAS  Google Scholar 

  • Bajo M, Roberto M, Schweitzer P (2009) Differential alteration of hippocampal excitatory synaptic transmission by cannabinoid ligands. J Neurosci Res 87:766–775

    PubMed  CAS  Google Scholar 

  • Basanez G, Nieva JL, Goni FM et al. (1996) Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. Biochemistry 35:15183–15187

    PubMed  CAS  Google Scholar 

  • Bequet F, Uzabiaga F, Desbazeille M et al. (2007) CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur J Neurosci 26:3458–3464

    PubMed  Google Scholar 

  • Berdyshev EV, Schmid PC, Krebsbach RJ et al. (2001) Activation of PAF receptors results in enhanced synthesis of 2-arachidonoylglycerol (2-AG) in immune cells. FASEB J 15:2171–2178

    PubMed  CAS  Google Scholar 

  • Bisogno T, Maurelli S, Melck D et al. (1997) Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem 272:3315–3323

    PubMed  CAS  Google Scholar 

  • Bisogno T, Melck D, De Petrocellis L et al. (1999) Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J Neurochem 72:2113–2119

    PubMed  CAS  Google Scholar 

  • Bisogno T, Howell F, Williams G et al. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    PubMed  CAS  Google Scholar 

  • Bisogno T, Ortar G, Petrosino S et al. (2009) Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo. Biochim Biophys Acta 1791:53–60

    PubMed  CAS  Google Scholar 

  • Bobrov MY, Shevchenko VP, Yudushkin IA et al. (2000) Hydrolysis of anandamide and eicosapentaenoic acid ethanolamide in mouse splenocytes. Biochemistry (Mosc) 65:615–619

    CAS  Google Scholar 

  • Brindley DN (2004) Lipid phosphate phosphatases and related proteins: Signaling functions in development, cell division, and cancer. J Cell Biochem 92:900–912

    PubMed  CAS  Google Scholar 

  • Cadas H, Gaillet S, Beltramo M et al. (1996a) Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J Neurosci 16:3934–3942

    PubMed  CAS  Google Scholar 

  • Cadas H, Schinelli S, Piomelli D (1996b) Membrane localization of N-acylphosphatidylethanolamine in central neurons: studies with exogenous phospholipases. J Lipid Mediat Cell Signal 14:63–70

    PubMed  CAS  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ et al. (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65:999–1007

    PubMed  CAS  Google Scholar 

  • Chen P, Hu S, Yao J et al. (2005) Induction of cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. Microvasc Res 69:28–35

    PubMed  CAS  Google Scholar 

  • Craib SJ, Ellington HC, Pertwee RG et al. (2001) A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus. Br J Pharmacol 134:30–37

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP et al. (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    PubMed  CAS  Google Scholar 

  • Dawson RMC, Clarke N, Quarles RH (1969) N-acylphosphatidylethanolamine, a phospholipid that is rapidly metabolized during the early germination of pea seeds. Biochem J 114:265–267

    PubMed  CAS  Google Scholar 

  • De Petrocellis L, Melck D, Ueda N et al. (1997) Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase. Biochem Biophys Res Commun 231:82–88

    PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Di Marzo V, Fontana A, Cadas H et al. (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691

    PubMed  Google Scholar 

  • Di Marzo V, Bisogno T, Sugiura T et al. (1998) The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide. Biochem J 331:15–19

    PubMed  Google Scholar 

  • Diana MA, Marty A (2004) Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 142:9–19

    PubMed  CAS  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM et al. (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99:10819–10824

    PubMed  CAS  Google Scholar 

  • Dinh TP, Kathuria S, Piomelli D (2004) RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol Pharmacol 66:1260–1264

    PubMed  CAS  Google Scholar 

  • Duncan M, Thomas AD, Cluny NL et al. (2008) Distribution and function of monoacylglycerol lipase in the gastrointestinal tract. Am J Physiol – Gastrointest Liver Physiol 295:G1255–G1265

    PubMed  CAS  Google Scholar 

  • Edgemond WS, Hillard CJ, Falck JR et al. (1998) Human platelets and polymorphonuclear leukocytes synthesize oxygenated derivatives of arachidonylethanolamide (anandamide): their affinities for cannabinoid receptors and pathways of inactivation. Mol Pharmacol 54:180–188

    PubMed  CAS  Google Scholar 

  • Edwards DA, Kim J, Alger BE (2006) Multiple mechanisms of endocannabinoid response initiation in hippocampus. J Neurophysiol 95:67–75

    PubMed  CAS  Google Scholar 

  • Egertova M, Simon GM, Cravatt BF et al. (2008) Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: A new perspective on N-acylethanolamines as neural signaling molecules. J Comp Neurol 506:604–615

    PubMed  CAS  Google Scholar 

  • Egertová M, Giang DK, Cravatt BF et al. (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc R Soc Lond B Biol Sci 265:2081–2085

    Google Scholar 

  • Fowler CJ (2007) The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br J Pharmacol 152:594–601

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Tiger G, Stenstrom A (1997) Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure–activity relationship. J Pharmacol Exp Ther 283:729–734

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Janson U, Johnson RM et al. (1999) Inhibition of anandamide hydrolysis by the enantiomers of ibuprofen, ketorolac, and flurbiprofen. Arch Biochem Biophys 362:191–196

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Holt S, Tiger G (2003) Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. J Enzyme Inhib Med Chem 18:55–58

    PubMed  CAS  Google Scholar 

  • Fu J, Kim J, Oveisi F et al. (2008) Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats. Am J Physiol Regul Integr Comp Physiol 295:R45–R50

    PubMed  CAS  Google Scholar 

  • Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140(5):781–789

    PubMed  CAS  Google Scholar 

  • Ghafouri N, Tiger G, Razdan RK et al. (2004) Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. Br J Pharmacol 143:774–784

    PubMed  CAS  Google Scholar 

  • Gillett MP, Vieira EM, Dimenstein R (1993) The phospholipase activities present in preheparin mouse plasma are inhibited by antiserum to hepatic lipase. Int J Biochem 25:449–453

    PubMed  CAS  Google Scholar 

  • Gillum MP, Zhang D, Zhang XM et al. (2008) N-acylphosphatidylethanolamine, a gut-derived circulating factor induced by fat ingestion, inhibits food intake. Cell 135:813–824

    PubMed  CAS  Google Scholar 

  • Glass M, Hong JW, Sato TA et al. (2005) Misidentification of prostamides as prostaglandins. J Lipid Res 46:1364–1368

    PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R et al. (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102:18620–18625

    PubMed  CAS  Google Scholar 

  • Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta – Mol Basis Dis 1638:1–19

    CAS  Google Scholar 

  • Goparaju SK, Ueda N, Yamaguchi H et al. (1998) Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett 422:69–73

    PubMed  CAS  Google Scholar 

  • Grazia Cascio M, Minassi A, Ligresti A et al. (2004) A structure–activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 314:192–196

    PubMed  CAS  Google Scholar 

  • Hada T, Hagiya H, Suzuki H et al. (1994) Arachidonate 12-lipoxygenase of rat pineal glands: catalytic properties and primary structure deduced from its cDNA. Biochim Biophys Acta 1211:221–228

    PubMed  CAS  Google Scholar 

  • Hampson AJ, Hill WAG, Zanphillips M et al. (1995) Anandamide hydroxylation by brain lipoxygenase: metabolite structures and potencies at the cannabinoid receptor. Biochim Biophys Acta – Lip Lip Met 1259:173–179

    Google Scholar 

  • Hansen HS, Lauritzen L, Strand AM et al. (1995) Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cortical neurons in culture. Biochim Biophys Acta – Lip Lip Met 1258:303–308

    Google Scholar 

  • Hanus L, Gopher A, Almog S et al. (1993) Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem 36:3032–3034

    PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Maejima T et al. (2008) Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocanabinoid release. Neuropharmacol 54:58–67

    CAS  Google Scholar 

  • Higgs HN, Glomset JA (1994) Identification of a phosphatidic acid-preferring phospholipase A1 from bovine brain and testis. Proc Natl Acad Sci USA 91:9574–9578

    PubMed  CAS  Google Scholar 

  • Higgs HN, Han MH, Johnson GE et al. (1998) Cloning of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 273:5468–5477

    PubMed  CAS  Google Scholar 

  • Hiramatsu T, Sonoda H, Takanezawa Y et al. (2003) Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1α and mPA-PLA1β. J Biol Chem 278:49438–49447

    PubMed  CAS  Google Scholar 

  • Hirasawa K, Irvine RF, Dawson RMC (1981) The catabolism of phosphatidylinositol by an EDTA-insensitive phospholipase A1 and calcium-dependent phosphatidylinositol phosphodiesterase in rat brain. Eur J Biochem 120:53–58

    PubMed  CAS  Google Scholar 

  • Ho W-SV, Randall MD (2007) Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol. Br J Pharmacol 150:641–651

    PubMed  CAS  Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM et al. (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    PubMed  CAS  Google Scholar 

  • Hoover HS, Blankman JL, Niessen S et al. (2008) Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg Med Chem Lett 18:5838–5841

    PubMed  CAS  Google Scholar 

  • Hu SSJ, Bradshaw HB, Chen JSC et al. (2008) Prostaglandin E-2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFκB activity. Br J Pharmacol 153:1538–1549

    PubMed  CAS  Google Scholar 

  • Inoue M, Okuyama H (1984) Phospholipase A1 acting on phosphatidic acid in porcine platelet membranes. J Biol Chem 259:5083–5086

    PubMed  CAS  Google Scholar 

  • Jaye M, Lynch KJ, Krawiec J et al. (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 21:424–428

    PubMed  CAS  Google Scholar 

  • Jhaveri MD, Richardson D, Robinson I et al. (2008) Inhibition of fatty acid amide hydrolase and cycloxygenase-2 increases levels of endocannabinoids and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacol 55:85–93

    CAS  Google Scholar 

  • Jimenez-Monreal AM, Villalain J, Aranda FJ et al. (1998) The phase behavior of aqueous dispersions of unsaturated mixtures of diacylglycerols and phospholipids. Biochim Biophys Acta 1373:209–219

    PubMed  CAS  Google Scholar 

  • Jin XH, Okamoto Y, Morishita J et al. (2007) Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J Biol Chem 282:3614–3623

    PubMed  CAS  Google Scholar 

  • Karbarz MJ, Luo L, Chang L et al. (2009) Biochemical and biological properties of 4-(3-phenyl-[1, 2, 4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase. Anesth Analg 108:316–329

    PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D et al. (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    PubMed  CAS  Google Scholar 

  • Kim J, Alger BE (2004) Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat Neurosci 7:697–698

    PubMed  CAS  Google Scholar 

  • Kim J, Isokawa M, Ledent C et al. (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci 22:10182–10191

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Kishimoto M, Okuyama H (1996) Phospholipases involved in lysophosphatidylinositol metabolism in rat brain. J Lipid Mediat Cell Signal 14:33–37

    PubMed  CAS  Google Scholar 

  • Kohno M, Hasegawa H, Inoue A et al. (2006) Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun 347:827–832

    PubMed  CAS  Google Scholar 

  • Koutek B, Prestwich GD, Howlett AC et al. (1994) Inhibitors of arachidonoyl ethanolamide hydrolysis. J Biol Chem 269:22937–22940

    PubMed  CAS  Google Scholar 

  • Kozak KR, Rowlinson SW, Marnett LJ (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem 275:33744–33749

    PubMed  CAS  Google Scholar 

  • Kozak KR, Crews BC, Ray JL et al. (2001) Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J Biol Chem 276:36993–36998

    PubMed  CAS  Google Scholar 

  • Kozak KR, Gupta RA, Moody JS et al. (2002) 15-lipoxygenase metabolism of 2-arachidonylglycerol: Generation of a PPARα agonist. J Biol Chem 277:23278–23286

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    PubMed  CAS  Google Scholar 

  • Kucera GL, Sisson PJ, Thomas MJ et al. (1988) On the substrate specificity of rat liver phospholipase A1. J Biol Chem 263:1920–1928

    PubMed  CAS  Google Scholar 

  • Lee MW, Kraemer FB, Severson DL (1995) Characterization of a partially purified diacylglycerol lipase from bovine aorta. Biochim Biophys Acta 1254:311–318

    PubMed  Google Scholar 

  • Leung D, Saghatelian A, Simon GM et al. (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45:4720–4726

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Hawkins EG, Griffin G et al. (2002) Pharmacological activity of fatty acid amides is regulated, but not mediated, by fatty acid amide hydrolase in vivo. J Pharmacol Exp Ther 302:73–79

    PubMed  CAS  Google Scholar 

  • Liu Q, Tonai T, Ueda N (2002) Activation of N-acylethanolamine-releasing phospholipase D by polyamines. Chem Phys Lipids 115:77–84

    PubMed  CAS  Google Scholar 

  • Liu J, Wang L, Harvey-White J et al. (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacol 54:1–7

    CAS  Google Scholar 

  • Long JZ, Li W, Booker L et al. (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5:37–44

    PubMed  CAS  Google Scholar 

  • Makara JK, Mor M, Fegley D et al. (2005) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 8:1139–1141

    PubMed  CAS  Google Scholar 

  • Makara JK, Mor M, Fegley D et al. (2007) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 10(1):134

    CAS  Google Scholar 

  • Millns PJ, Chapman V, Kendall DA (2001) Cannabinoid inhibition of the capsaicin-induced calcium response in rat dorsal root ganglion neurones. Br J Pharmacol 132:969–971

    PubMed  CAS  Google Scholar 

  • Moise AM, Eisenstein SA, Astarita G et al. (2008) An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters. Psychopharmacol 200:333–346

    CAS  Google Scholar 

  • Moody JS, Kozak KR, Ji C et al. (2001) Selective oxygenation of the endocannabinoid 2-arachidonylglycerol by leukocyte-type 12-lipoxygenase. Biochemistry 40:861–866

    PubMed  CAS  Google Scholar 

  • Mulder AM, Cravatt BF (2006) Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines. Biochemistry 45:11267–11277

    PubMed  CAS  Google Scholar 

  • Nakane S, Oka S, Arai S et al. (2002) 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch Biochem Biophys 402:51–58

    PubMed  CAS  Google Scholar 

  • Natarajan V, Reddy PV, Schmid PC et al. (1982) N-Acylation of ethanolamine phospholipids in canine myocardium. Biochim Biophys Acta 712:342–355

    PubMed  CAS  Google Scholar 

  • Natarajan V, Schmid PC, Reddy PV et al. (1984) Catabolism of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem 42:1613–1619

    PubMed  CAS  Google Scholar 

  • Niforatos W, Zhang X-F, Lake MR et al. (2007) Activation of TRPA1 channels by the fatty acid amide hydrolase inhibitor 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597). Mol Pharmacol 71:1209–1216

    PubMed  CAS  Google Scholar 

  • Nishiyama M, Watanabe T, Ueda N et al. (1993) Arachidonate 12-lipoxygenase is localized in neurons, glial cells, and endothelial cells of the canine brain. J Histochem Cytochem 41:111–117

    PubMed  CAS  Google Scholar 

  • Oka S, Tsuchie A, Tokumura A et al. (2003) Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. J Neurochem 85:1374–1381

    PubMed  CAS  Google Scholar 

  • Oka S, Arai S, Waku K et al. (2007a) Depolarization-induced rapid generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in rat brain synaptosomes. J Biochem 141:687–697

    PubMed  CAS  Google Scholar 

  • Oka S, Nakajima K, Yamashita A et al. (2007b) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934

    PubMed  CAS  Google Scholar 

  • Oka S, Toshida T, Maruyama K et al. (2009) 2-Arachidonoyl-sn-glycero-3-phosphoinositol: A Possible Natural Ligand for GPR55. J Biochem 145:13–20

    PubMed  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K et al. (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    PubMed  CAS  Google Scholar 

  • Overton HA, Babbs AJ, Doel SM et al. (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175

    PubMed  CAS  Google Scholar 

  • Parrish JC, Nichols DE (2006) Serotonin 5-HT2A receptor activation induces 2-arachidonoylglycerol release through a phospholipase C-dependent mechanism. J Neurochem 99:1164–1175

    PubMed  CAS  Google Scholar 

  • Patsos HA, Hicks DJ, Dobson RR et al. (2005) The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells: a possible role for cyclooxygenase-2. Gut 54:1741–1750

    PubMed  CAS  Google Scholar 

  • Petersen G, Hansen HS (1999) N-acylphosphatidylethanolamine-hydrolysing phospholipase D lacks the ability to transphosphatidylate. FEBS Lett 455:41–44

    PubMed  CAS  Google Scholar 

  • Reddy PV, Natarajan V, Schmid PC et al. (1983) N-Acylation of dog heart ethanolamine phospholipids by transacylase activity. Biochim Biophys Acta – Lip Lip Met 750:472–480

    CAS  Google Scholar 

  • Rindlisbacher B, Reist M, Zahler P (1987) Diacylglycerol breakdown in plasma membranes of bovine chromaffin cells is a two-step mechanism mediated by a diacylglycerol lipase and a monoacylglycerol lipase. Biochim Biophys Acta 905:349–357

    PubMed  CAS  Google Scholar 

  • Rockwell CE, Raman P, Kaplan BLF et al. (2008) A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol 76:353–361

    PubMed  CAS  Google Scholar 

  • Russo R, LoVerme J, La Rana G et al. (2007) The fatty-acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J Pharmacol Exp Ther 322:236–242

    PubMed  CAS  Google Scholar 

  • Saario SM, Savinainen JR, Laitinen JT et al. (2004) Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem Pharmacol 67:1381–1387

    PubMed  CAS  Google Scholar 

  • Sakagami H, Aoki J, Natori Y et al. (2005) Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem 280:23084–23093

    PubMed  CAS  Google Scholar 

  • Sang N, Zhang J, Chen C (2006) PGE2 glycerol ester, a COX-2 oxidative metabolite of 2-arachidonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons. J Physiol 572:735–745

    PubMed  CAS  Google Scholar 

  • Sang N, Zhang J, Chen C (2007) COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. J Neurochem 102:1966–1977

    PubMed  CAS  Google Scholar 

  • Sarmad S, Patel A, Barrett DA et al. (2008) Calcium-independent formation of endocannabinoids in rat brain slices. Proceedings of the British Pharmacological Society, p 111P

    Google Scholar 

  • Sato T, Aoki J, Nagai Y et al. (1997) Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J Biol Chem 272:2192–2198

    PubMed  CAS  Google Scholar 

  • Schmid PC, Reddy PV, Natarajan V et al. (1983) Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem 258:9302–9306

    PubMed  CAS  Google Scholar 

  • Simon GM, Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for α/β hydrolase 4 in this pathway. J Biol Chem 281:26465–26472

    PubMed  CAS  Google Scholar 

  • Simon GM, Cravatt BF (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-n-acyl ethanolamine precursors in mouse brain. J Biol Chem 283:9341–9349

    PubMed  CAS  Google Scholar 

  • Snider NT, Kornilov AM, Kent UM et al. (2007) Anandamide metabolism by human liver and kidney microsomal cytochrome P450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides. J Pharmacol Exp Ther 321:590–597

    PubMed  CAS  Google Scholar 

  • Snider NT, Sikora MJ, Sridar C et al. (2008) The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. J Pharmacol Exp Ther 327:538–545

    PubMed  CAS  Google Scholar 

  • Stark K, Dostalek M, Guengerich FP (2008) Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. FEBS J 275:3706–3717

    PubMed  CAS  Google Scholar 

  • Stella N, Piomelli D (2001) Receptor-dependent formation of endogenous cannabinoids in cortical neurons. Eur J Pharmacol 425:189–196

    PubMed  CAS  Google Scholar 

  • Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    PubMed  CAS  Google Scholar 

  • Sugiura T, Waku K (2000) 2-Arachidonoylglycerol and the cannabinoid receptors. pp. 89-106.

    Google Scholar 

  • Sugiura T, Waku K (2002) Cannabinoid receptors and their endogenous ligands. J Biochem 132:7–12

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A et al. (1996) Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid receptor ligand, in rat brain microsomes: comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem 240:53–62

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kodaka T, Kondo S et al. (1997) Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108-15 cells. J Biochem (Tokyo) 122:890–895

    CAS  Google Scholar 

  • Sugiura T, Kodaka T, Nakane S et al. (1999) Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure–activity relationship of 2-arachidonoylglycerol ether-linked analogues, and related compounds. J Biol Chem 274:2794–2801

    PubMed  CAS  Google Scholar 

  • Suh PG, Park JI, Manzoli L et al. (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41(6):415–434

    PubMed  CAS  Google Scholar 

  • Sun YX, Tsuboi K, Okamoto Y et al. (2004) Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem J 380:749–756

    PubMed  CAS  Google Scholar 

  • Sun YX, Tsuboi K, Zhao LY et al. (2005) Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages. Biochim Biophys Acta 1736:211–220

    PubMed  CAS  Google Scholar 

  • Sutherland CA, Amin D (1982) Relative activities of rat and dog platelet phospholipase A2 and diglyceride lipase. Selective inhibition of diglyceride lipase by RHC 80267. J Biol Chem 257:14006–14010

    Google Scholar 

  • Szabo B, Urbanski MJ, Bisogno T et al. (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577:263–280

    PubMed  CAS  Google Scholar 

  • Tian XY, Guo JX, Yao FM et al. (2005) The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer. J Biol Chem 280:29788–29795

    PubMed  CAS  Google Scholar 

  • Tornqvist H, Belfrage P (1976) Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251:813–819

    PubMed  CAS  Google Scholar 

  • Tsou K, Nogueron MI, Muthian S et al. (1998) Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci Lett 254:137–140

    PubMed  CAS  Google Scholar 

  • Tsuboi K, Hilligsmann C, Vandevoorde S et al. (2004) N-cyclohexanecarbonylpentadecylamine: a selective inhibitor of the acid amidase hydrolysing N-acylethanolamines, as a tool to distinguish acid amidase from fatty acid amide hydrolase. Biochem J 379:99–106

    PubMed  CAS  Google Scholar 

  • Tsuboi K, Sun YX, Okamoto Y et al. (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280:11082–11092

    PubMed  CAS  Google Scholar 

  • Tsutsumi T, Kobayashi T, Ueda H et al. (1994) Lysophosphoinositide-specific phospholipase C in rat brain synaptic plasma membranes. Neurochem Res 19:399–406

    PubMed  CAS  Google Scholar 

  • Tsutsumi T, Kobayashi T, Miyashita M et al. (1995) A lysophosphoinositide-specific phospholipase C distinct from other phospholipase C families in rat brain. Arch Biochem Biophys 317:331–336

    PubMed  CAS  Google Scholar 

  • Ueda H, Kobayashi T, Kishimoto M et al. (1993a) A possible pathway of phosphoinositide metabolism through EDTA-insensitive phospholipase A1 followed by lysophosphoinositide-specific phospholipase C in rat brain. J Neurochem 61:1874–1881

    PubMed  CAS  Google Scholar 

  • Ueda H, Kobayashi T, Kishimoto M et al. (1993b) The presence of Ca2+-independent phospholipase A1 highly specific for phosphatidylinositol in bovine brain. Biochem Biophys Res Commun 195:1272–1279

    PubMed  CAS  Google Scholar 

  • Ueda N, Yamamoto K, Yamamoto S et al. (1995) Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Biochim Biophys Acta – Lip Lip Met 1254:127–134

    Google Scholar 

  • Ueda N, Yamanaka K, Terasawa Y et al. (1999) An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett 454:267–270

    PubMed  CAS  Google Scholar 

  • van der Stelt M, Trevisani M, Vellani V et al. (2005) Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 24:3026–3037

    PubMed  Google Scholar 

  • Van Zadelhoff G, Veldink GA, Vliegenthart JFG (1998) With anandamide as substrate plant 5-lipoxygenases behave like 11-lipoxygenases. Biochem Biophys Res Commun 248:33–38

    PubMed  Google Scholar 

  • Vandevoorde S, Saha B, Mahadevan A et al. (2005) Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase. Biochem Biophys Res Commun 337:104–109

    PubMed  CAS  Google Scholar 

  • Vandevoorde S, Jonsson KO, Labar G et al. (2007) Lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis in vitro. Br J Pharmacol 150:186–191

    PubMed  CAS  Google Scholar 

  • Varma N, Carlson GC, Ledent C et al. (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21:RC133

    Google Scholar 

  • Veldhuis WB, van der Stelt M, Wadman MW et al. (2003) Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: Role of vanilloid receptors and lipoxygenases. J Neurosci 23:4127–4133

    PubMed  CAS  Google Scholar 

  • Vellani V, Petrosino S, De Petrocellis L et al. (2008) Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacol 55:1274–1279

    CAS  Google Scholar 

  • Vila A, Rosengarth A, Piomelli D et al. (2007) Hydrolysis of prostaglandin glycerol esters by the endocannabinoid-hydrolyzing enzymes, monoacylglycerol lipase and fatty acid amide hydrolase. Biochemistry 46:9578–9585

    PubMed  CAS  Google Scholar 

  • Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24:8068–8074

    PubMed  CAS  Google Scholar 

  • Wang J, Okamoto Y, Morishita J et al. (2006) Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-β-lactamase family. J Biol Chem 281:12325–12335

    PubMed  CAS  Google Scholar 

  • Wang J, Okamoto Y, Tsuboi K et al. (2008a) The stimulatory effect of phosphatidylethanolamine on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD). Neuropharmacol 54:8–15

    CAS  Google Scholar 

  • Wang J, Zhao LY, Uyama T et al. (2008b) Amino acid residues crucial in pH regulation and proteolytic activation of N-acylethanolamine-hydrolyzing acid amidase. Biochim Biophys Acta 1781:710–717

    PubMed  CAS  Google Scholar 

  • Wei BQ, Mikkelsen TS, McKinney MK et al. (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281:36569–36578

    PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    PubMed  CAS  Google Scholar 

  • Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453–462

    PubMed  CAS  Google Scholar 

  • Woodward DF, Carling RW, Cornell CL et al. (2008) The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products. Phamacol Ther 120(1):71–80

    CAS  Google Scholar 

  • Yoshida T, Hashimoto K, Zimmer A et al. (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci 22:1690–1697

    PubMed  CAS  Google Scholar 

  • Yu M, Ives D, Ramesha CS (1997) Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 272:21181–21186

    PubMed  CAS  Google Scholar 

  • Zhang D, Saraf A, Kolasa T et al. (2007) Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacol 52:1095–1105

    CAS  Google Scholar 

  • Zheng B, Chen D, Farquhar MG (2000) MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16. Proc Natl Acad Sci USA 97:3999–4004

    PubMed  CAS  Google Scholar 

  • Zheng B, Berrie CP, Corda D et al. (2003) GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci USA 100:1745–1750

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. H. Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexander, S.P.H., Kendall, D.A. (2009). The Life Cycle of the Endocannabinoids: Formation and Inactivation. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_1

Download citation

Publish with us

Policies and ethics