Skip to main content

Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

  • Chapter
  • First Online:
Optical Guided-wave Chemical and Biosensors I

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 7))

Abstract

Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AWACSS:

Automated water analyzer computer supported system

CMOS:

Complementary metal oxide semiconductor

DCC:

Dicyclohexylcarbodiimide

DNA:

Deoxyribonucleic acid

EDC:

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

ELISA:

Enzyme-linked immunosorbant assay

IgG:

Immunoglobulin G

IOW:

Integrated optical waveguide

IR:

Infrared

IRE:

Internal reflection elements

ITO:

Indium tin oxide

LED:

Light emitting diode

LOD:

Limit of detection

MCLW:

Metal clad leaky waveguides

MEF:

Metal-enhanced fluorescence

NHS:

N-hydroxysuccinimde

Ni-NTA:

Nickel-nitriloacetic acid

NRL:

Naval Research Laboratory

OW:

Optical waveguide

PDMS:

Polydimethylsiloxane

RNA:

Ribonucleic acid

SEB:

Staphylococcal enterotoxin B

TIR:

Total internal reflection

TIRF:

Total internal reflection fluorescence

UV:

Ultra Violet

References

  1. Bally M, Halter M, Voros J et al (2006) Optical microarray biosensing techniques. Surf Interface Anal 38:1442–1458

    Article  CAS  Google Scholar 

  2. Ince R, Narayanaswamy R (2006) Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal Chim Acta 569:1–20

    Article  CAS  Google Scholar 

  3. Potyrailo RA, Hobbs SE, Hieftje GM (1998) Optical waveguide sensors in analytical chemistry: todays instrumentation, applications and trends for future development. Fresenius J Anal Chem 362:349–373

    Article  CAS  Google Scholar 

  4. Bernini R, Cennamo N, Minardo A (2006) Planar waveguides for fluorescence-based biosensing: optimization and analysis. IEEE Sens J 6:1218–1226

    Article  CAS  Google Scholar 

  5. Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluid 4:17–32

    Article  CAS  Google Scholar 

  6. Schmitt K, Oehse K, Sulz G et al (2008) Evanescent field sensors based on tantalum pentoxide waveguides – a review. Sensors 8:711–738

    Article  CAS  Google Scholar 

  7. Lehr HP, Brandenburg A, Sulz G (2003) Modeling and experimental verification of the performance of TIRF-sensing systems for oligonucleotide microarrays based on bulk and integrated optical planar waveguides. Sensors Actuators B Chem 92:303–314

    Article  CAS  Google Scholar 

  8. Zourob M, Mohr S, Treves-Brown BJ et al (2005) An integrated metal clad leaky waveguide sensor for detection of bacteria. Anal Chem 77:232–242

    Article  CAS  Google Scholar 

  9. Zourob M, Hawkes JJ, Coakley WT et al (2005) Optical leaky waveguide sensor for detection of bacteria with ultrasound attractor force. Anal Chem 77:6163–6168

    Article  CAS  Google Scholar 

  10. Zourob M, Simonian A, Wild J et al (2007) Optical leaky waveguide biosensors for the detection of organophosphorus pesticides. The Analyst 132:114–120

    Article  CAS  Google Scholar 

  11. Beuvink I, Kolb FA, Budach W et al (2007) A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res 35:e52

    Article  CAS  Google Scholar 

  12. Budach W, Neuschafer D, Wanke C et al (2003) Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling. Anal Chem 75:2571–2577

    Article  CAS  Google Scholar 

  13. Neuschafer D, Budach W, Wanke C et al (2003) Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays. Biosens Bioelectron 18:489–497

    Article  CAS  Google Scholar 

  14. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696

    Article  CAS  Google Scholar 

  15. Ganesh N, Zhang W, Mathias PC et al (2007) Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat Nanotechnol 2:515–520

    Article  Google Scholar 

  16. Konopsky VN, Alieva EV (2007) Photonic crystal surface waves for optical biosensors. Anal Chem 79:4729–4735

    Article  CAS  Google Scholar 

  17. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  Google Scholar 

  18. Mathias PC, Ganesh N, Chan LL et al (2007) Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface. Appl Opt 46:2351–2360

    Article  CAS  Google Scholar 

  19. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  20. Stranik O, Nooney R, McDonagh C et al (2007) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2:15–22

    Article  CAS  Google Scholar 

  21. Zhang YQ, Wang JX, Ji ZY et al (2007) Solid-state fluorescence enhancement of organic dyes by photonic crystals. J Mater Chem 17:90–94

    Article  CAS  Google Scholar 

  22. Aslan K, Holley P, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, high throughput screening and drug discovery. J Immunol Methods 312:137–147

    Article  CAS  Google Scholar 

  23. Matveeva E, Gryczynski Z, Malicka J et al (2004) Metal-enhanced fluorescence immunoassays using total internal reflection and silver-coated surfaces. Anal Biochem 334:303–311

    Article  CAS  Google Scholar 

  24. Blue R, Kent N, Polerecky L (2005) Platform for enhanced detection efficiency in luminescent-based sensors. Electron Lett 41:682–684

    Article  Google Scholar 

  25. Burke CS, McGaughey O, Sabattie J-M et al (2005) Development of an integrated optic sensor using a novel, generic platform. The Analyst 130:41–45

    Article  CAS  Google Scholar 

  26. Holthoff WG, Tehan EC, Bukowski RM et al (2005) Radioluminescent light source for the development of optical sensors arrays. Anal Chem 77:718–723

    Article  CAS  Google Scholar 

  27. Schultz E, Galland R, Du Bouetiez D et al (2008) A novel fluorescence-based array biosensor: principle and application to DNA hybridization assays. Biosens Bioelectron 23:987–994

    Article  CAS  Google Scholar 

  28. Ligler FS, Sapsford KE, Golden JP et al (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10

    Article  Google Scholar 

  29. Hua P, Hole JP, Wilkinson JS et al (2005) Integrated optical fluorescence multisensor for water pollution. Opt Express 13:1124–1130

    Article  CAS  Google Scholar 

  30. Golden JP, Ligler FS (2002) A comparison of imaging methods for use in an array biosensor. Biosens Bioelectron 17:719–725

    Article  CAS  Google Scholar 

  31. Duveneck GL, Abel AP, Bopp MA (2002) Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Anal Chim Acta 469:49–61

    Article  CAS  Google Scholar 

  32. Malins C, Niggemann M, MacCraith BD (2000) Multi-analyte optical chemical sensor employing a plastic substrate. Meas Sci Technol 11:1105–1110

    Article  CAS  Google Scholar 

  33. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  34. Marquette CA, Blum LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron 21:1424–1433

    Article  CAS  Google Scholar 

  35. Moore P, Clayton J (2003) To affinity and beyond. Nature 426:725–731

    Article  CAS  Google Scholar 

  36. Budach W, Abel AP, Bruno AP et al (1999) Planar waveguides as high performance sensing platforms for fluorescence-based multiplexed oligonucleotide hybridization assays. Anal Chem 71:3347–3355

    Article  CAS  Google Scholar 

  37. Duveneck GL, Pawlak M, Neuschafer D et al (1997) Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides. Sensors Actuators B Chem 38:88–95

    Article  Google Scholar 

  38. Lim DV, Simpson JM, Kearns EA et al (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607

    Article  CAS  Google Scholar 

  39. Schaferling M, Nagl S (2006) Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 385:500–517

    Article  CAS  Google Scholar 

  40. Schuderer J, Akkoyun A, Brandenburg A et al (2000) Development of a multichannel fluorescence affinity sensor system. Anal Chem 72:3942–3948

    Article  CAS  Google Scholar 

  41. Kulagina NV, Lassman ME, Ligler FS et al (2005) Antimicrobial peptides for detection of bacteria in biosensor assays. Anal Chem 77:6504–6508

    Article  CAS  Google Scholar 

  42. Kulagina NV, Shaffer KM, Anderson GP et al (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal Chim Acta 575:9–15

    Article  CAS  Google Scholar 

  43. Kulagina NV, Shaffer KM, Ligler FS et al (2007) Antimicrobial peptides as new recognition molecules for screening challenging species. Sensors Actuators B Chem 121:150–157

    Article  CAS  Google Scholar 

  44. Ngundi MM, Taitt CR, Ligler FS (2006) Simultaneous determination of kinetic parameters for the binding of cholera toxin to immobilized sialic acid and monoclonal antibody using an array biosensor. Biosens Bioelectron 22:124–130

    Article  CAS  Google Scholar 

  45. Ngundi MM, Qadri SA, Wallace EV et al (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40:2352–2356

    Article  CAS  Google Scholar 

  46. Rowe-Taitt CA, Cras JJ, Patterson CH et al (2000) A ganglioside-based assay for cholera toxin using an array biosensor. Anal Biochem 281:123–133

    Article  CAS  Google Scholar 

  47. Ngundi MM, Taitt CR, McMurry SA et al (2006) Detection of bacterial toxins with monosaccharide arrays. Biosens Bioelectron 21:1195–1201

    Article  CAS  Google Scholar 

  48. Peterson AW, Heaton RJ, Georgiadis RM (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res 29:5163–5168

    Article  CAS  Google Scholar 

  49. Zhi ZL, Powell AK, Turnbull JE (2006) Fabrication of carbohydrate microarrays on gold surfaces: direct attachment of noderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal Chem 78:4786–4793

    Article  CAS  Google Scholar 

  50. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromol 8:1775–1789

    Article  CAS  Google Scholar 

  51. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego

    Google Scholar 

  52. Bilitewski U (2006) Protein-sensing assay formats and devices. Anal Chim Acta 568:232–247

    Article  CAS  Google Scholar 

  53. Pierce. (2008) Avidin biotin products. http://www.piercenet.com/Objects/View.cfm?Type=Page&ID=DDDF4C6A-DF1E-40D5-A01D-870EA98CBF19. Accessed 09 Sept, 2008

  54. Bonroy K, Frederix F, Reekmans G, Dewolf E, De Palma R, Borghs G, Declerck P, Goddeeris B (2006) Comparison of random and oriented immobilization of antibody fragments on mixed self-assembled monolayers. J Immunol Methods 312:167–181

    Article  CAS  Google Scholar 

  55. Johnson CP, Jensen IE, Prakasam A et al (2003) Engineered protein A for the orientational control of immobilized proteins. Bioconjug Chem 14:974–978

    Article  CAS  Google Scholar 

  56. McLean MA, Stayton PS, Sligar SG (1993) Engineering protein orientation at surfaces to control macromolecular recognition events. Anal Chem 65:2676–2678

    Article  CAS  Google Scholar 

  57. Shen Z, Tan H, Zhang Y et al (2008) Engineering peptide linkers for scFv immunosensors. Anal Chem 80:1910–1917

    Article  CAS  Google Scholar 

  58. Valsesia A, Colpo P, Mannelli I et al (2008) Use of nanopatterned surfaces to enhance immunoreaction efficiency. Anal Chem 80:1418–1424

    Article  CAS  Google Scholar 

  59. Vigmond SJ, Iwakura M, Mizutani F et al (1994) Site-specific immobilization of molecularly engineered dihydrofolate-reductase to gold surfaces. Langmuir 10:2860–2862

    Article  CAS  Google Scholar 

  60. Vijayendran RA, Leckband DE (2001) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal Chem 73:471–480

    Article  CAS  Google Scholar 

  61. Vikholmn I, Albers WM (1998) Oriented immobilization of antibodies for immunosensing. Langmuir 14:3865–3872

    Article  Google Scholar 

  62. Beaucage SL (2001) Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. Curr Med Chem 8:1213–1244

    CAS  Google Scholar 

  63. Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22:173–184

    Article  CAS  Google Scholar 

  64. Wellman AD, Sepaniak MJ (2006) Magnetically-assisted transport evanescent field fluoroimmunoassay. Anal Chem 78:4450–4456

    Article  CAS  Google Scholar 

  65. Wellman AD, Sepaniak MJ (2007) Multiplexed, waveguide approach to magnetically assisted transport evanescent field fluoroassays. Anal Chem 79:6622–6628

    Article  CAS  Google Scholar 

  66. Loete F, Vuillemin B, Oltra R et al (2006) Application of total internal reflection fluorescence microscopy for studying pH changes in an occluded electrochemical cell: development of a waveguide sensor. Electrochem Commun 8:1016–1020

    Article  CAS  Google Scholar 

  67. Ichinose J, Sako Y (2004) Single-molecule measurement in living cells. Trends Anal Chem 23:587–594

    Article  CAS  Google Scholar 

  68. Mashanov GI, Tacon D, Knight AE et al (2003) Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29:142–152

    Article  CAS  Google Scholar 

  69. Webb SED, Needham SR, Roberts SK et al (2006) Multidimensional single-molecule imaging in live cells using total-internal-reflection fluorescence microscopy. Opt Lett 31:2157–2159

    Article  CAS  Google Scholar 

  70. Moran-Mirabal JM, Edel JB, Meyer GD et al (2005) Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys J 89:296–305

    Article  CAS  Google Scholar 

  71. Hoshino A, Fujioka K, Manabe N et al (2005) Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol Immunol 49:461–470

    CAS  Google Scholar 

  72. Rodriguez-Mozaz S, Reder S, Lopez de Alda MJ et al (2004) Simultaneous multi-analyte determination of estrone, isoproturon, and atrazine in natureal waters by the RIver ANAlyser (RIANA), an optical immunosensor. Biosens Bioelectron 19:633–640

    Article  CAS  Google Scholar 

  73. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    Article  CAS  Google Scholar 

  74. Tschmelak J, Proll G, Gauglitz G (2004) Verification of performance with the automated direct optical TIRF immunosensor (River analyser) in single and multi-analyte assays with real water samples. Biosens Bioelectron 20:743–752

    Article  CAS  Google Scholar 

  75. Tschmelak JG, Proll J, Riedt J et al (2005) Part I: project objectives, basic technology, immunoassay development, software design and networking. Part II: intelligent, remote controlled, cost effective, on-line, water monitoring measurement system. Biosens Bioelectron 20:1499–1519

    Article  CAS  Google Scholar 

  76. Tschmelak J, Kappel N, Gauglitz G (2005) TIRF-based biosensor for sensitive detection of progesterone in milk based on ultra-sensitive progesterone detection in water. Anal Bioanal Chem 382:1895–1903

    Article  CAS  Google Scholar 

  77. Tschmelak J, Kumpf M, Kappel N et al (2006) Total internal reflection fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: antibody characterization, assay development and real sample measurements. Talanta 69:343–350

    Article  CAS  Google Scholar 

  78. Engstrom HA, Andersson PO, Ohlson S (2006) A label-free continuous total-internal-reflection-fluorescence-based immunosensor. Anal Biochem 357:159–166

    Article  CAS  Google Scholar 

  79. Sapsford KE, Rasooly A, Taitt CR et al (2004) Detection of Campylobacter and Shigella species in food samples using an array biosensor. Anal Chem 76:433–440

    Article  CAS  Google Scholar 

  80. Sapsford KE, Taitt CR, Loo N et al (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol 71:5590–5592

    Article  CAS  Google Scholar 

  81. Sapsford KE, Liron Z, Shubin YS et al (2001) Kinetics of antigen binding to arrays of antibodies in different sized spots. Anal Chem 73:5518–5524

    Article  CAS  Google Scholar 

  82. Sapsford KE, Ligler FS (2004) Real-time analysis of protein adsorption to a variety of thin films. Biosens Bioelectron 19:1045–1055

    Article  CAS  Google Scholar 

  83. Lehr HP, Reimann M, Brandenburg A et al (2003) Real-time detection of nucleic acid interactions by total internal reflection fluorescence. Anal Chem 75:2414–2420

    Article  CAS  Google Scholar 

  84. Tolley SE, Wang HK, Smith RS et al (2003) Single-chain polymorphism analysis in long QT syndrome using planar waveguide fluorescent biosensors. Anal Biochem 315:223–237

    Article  CAS  Google Scholar 

  85. Bhatia SK, Hickman JJ, Ligler FS (1992) New approach to producing patterned biomolecular assemblies. J Am Chem Soc 114:4432–4433

    Article  CAS  Google Scholar 

  86. Bhatia SK, Teixeira JL, Anderson M et al (1993) Fabrication of surfaces resistant to protein adsorption and application to 2-dimensional protein patterning. Anal Biochem 208:197–205

    Article  CAS  Google Scholar 

  87. Liu XH, Wang HK, Herron JN et al (2000) Photopatterning of antibodies on biosensors. Bioconj Chem 11:755–761

    Article  CAS  Google Scholar 

  88. Arenkov P, Kukhtin A, Gemmell A et al (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278:123–131

    Article  CAS  Google Scholar 

  89. Guschin D, Yershov G, Zaslavsky A et al (1997) Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal Biochem 250:203–211

    Article  CAS  Google Scholar 

  90. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637

    Article  CAS  Google Scholar 

  91. Wadkins RM, Golden JP, Pritsiolas LM et al (1998) Detection of multiple toxic against using a planar array immunoassay. Biosens Bioelectron 13:407–415

    Article  CAS  Google Scholar 

  92. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  93. Blawas AS, Oliver TF, Pirrung MC et al (1998) Step-and-repeat photopatterning of protein features using caged/biotin-BSA: characterization and resolution. Langmuir 14:4243–4250

    Article  CAS  Google Scholar 

  94. Conrad DW, Golightley SK, Bart JC (1998) Photoactivatable o-nitrobenzyl polyethylene glycol-silane for the production of patterned biomolecular arrays. US Patent 5,773,308

    Google Scholar 

  95. Barbulovic-Nad I, Lucente M, Sun Y et al (2006) Bio-microarray fabrication techniques – a review. Crit Rev Biotechnol 26:237–259

    Article  CAS  Google Scholar 

  96. Delehanty JB, Ligler FS (2002) A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal Chem 74:5681–5687

    Article  CAS  Google Scholar 

  97. Delehanty JB, Ligler FS (2003) Method for printing functional protein microarrays. BioTechniques 34:380–385

    CAS  Google Scholar 

  98. Francois P, Charbonnier Y, Jacquet J et al (2006) Rapid bacterial identification using evanescent-waveguide oligonucleotide microarray classification. J Microbiol Methods 65:390–403

    Article  CAS  Google Scholar 

  99. Ito Y (2006) Photoimmobilization for microarrays. Biotechnol Prog 22:924–932

    Article  CAS  Google Scholar 

  100. Renault JP, Bernard A, Bietsch A et al (2003) Fabricating arrays of single protein molecules on glass using microcontact printing. J Phys Chem B 107:703–711

    Article  CAS  Google Scholar 

  101. Silzel JW, Cercek B, Dodson C et al (1998) Mass-sensing, multianalyte microarray immunoassay with imaging detection. Clin Chem 44:2036–2043

    CAS  Google Scholar 

  102. Wu P, Hogrebe P, Grainger DW (2006) DNA and protein microarray printing on silicon nitride waveguide surfaces. Biosens Bioelectron 21:1252–1263

    Article  CAS  Google Scholar 

  103. Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73:8–12

    Article  CAS  Google Scholar 

  104. Delamarche E, Juncker D, Schmid H (2005) Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater 17:2911–2933

    Article  CAS  Google Scholar 

  105. Feldstein MJ, Golden JP, Rowe CA et al (1999) Array biosensor: optical and fluidics systems. J Biomed Microdevices 1(2):139–153

    Article  CAS  Google Scholar 

  106. Golden JP, Shriver-Lake LC, Sapsford KE et al (2005) A "do-it-yourself" array biosensor. Methods 37:65–72

    Article  CAS  Google Scholar 

  107. Plowman TE, Durstchi JD, Wang HK et al (1999) Multiple-analyte fluoroimmunoassay using an integrated optical waveguide sensor. Anal Chem 71:4344–4352

    Article  CAS  Google Scholar 

  108. Ziegler J, Zimmermann M, Hunziker P et al (2008) High-performance immunoassays based in through-stencil patterned antibodies and capillary systems. Anal Chem 80:1763–1769

    Article  CAS  Google Scholar 

  109. Pawlak M, Schick E, Bopp MA et al (2002) Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2:383–393

    Article  CAS  Google Scholar 

  110. Zeller PN, Voirin G, Kunz RE (2000) Single-pad scheme for integrated optical fluorescence sensing. Biosens Bioelectron 15:591–595

    Article  CAS  Google Scholar 

  111. Duveneck GL, Neuschafer D, Ehrat M (1995) Process for detecting evanescently excited luminescence. International Patent Go1N 21/77, 21/64

    Google Scholar 

  112. Golden JP, Taitt CR, Shriver-Lake LC et al (2005) A portable automated multianalyte biosensor. Talanta 65:1078–1085

    Article  CAS  Google Scholar 

  113. Taitt CR, Golden JP, Shubin YS et al (2004) A portable array biosensor for detecting multi-analytes in complex samples. Microb Ecol 47:175–185

    Article  CAS  Google Scholar 

  114. Taitt CR, Anderson GP, Lingerfelt BM et al (2002) Nine-analyte detection using an array-based biosensor. Anal Chem 74:6114–6120

    Article  CAS  Google Scholar 

  115. Rowe CA, Scruggs SB, Feldstein MJ et al (1999) An array immunosensor for simultaneous detection of clinical analytes. Anal Chem 71:433–439

    Article  CAS  Google Scholar 

  116. Rowe-Taitt CA, Hazzard JW, Hoffman KE et al (2000) Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens Bioelectron 15:579–589

    Article  CAS  Google Scholar 

  117. Rowe CA, Tender LM, Feldstein MJ et al (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal Chem 71:3846–3852

    Article  CAS  Google Scholar 

  118. Ngundi MM, Shriver-Lake LC, Moore MH et al (2006) Multiplexed detection of mycotoxins in foods with a regenerable array. J Food Prot 69:3047–3051

    CAS  Google Scholar 

  119. Sapsford KE, Ngundi MM, Moore MH et al (2006) Rapid detection of foodborne contaminants using an array biosensor. Sensors Actuators B Chem 113:599–607

    Article  CAS  Google Scholar 

  120. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC et al (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens Bioelectron 21:1880–1886

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim E. Sapsford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sapsford, K.E. (2010). Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors I. Springer Series on Chemical Sensors and Biosensors, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88242-8_1

Download citation

Publish with us

Policies and ethics