Skip to main content

Deciphering the Arbuscular Mycorrhizal Pathway of P Uptake in Non-responsive Plant Species

  • Chapter
  • First Online:
Book cover Mycorrhizas - Functional Processes and Ecological Impact

Abstract

Although arbuscular mycorrhizal (AM) symbioses are considered to be mutualistic, plant benefit is not always immediately obvious. Non-responsiveness in terms of growth and phosphorus (P) nutrition is observed in a wide variety of plant species, including natives and some widely cultivated crops (e.g. cereals). Non-responsiveness is primarily attributed to variations in the exchange of carbon (C) and P between the symbionts. Here, we explore recent insights into P uptake in non-responsive plants. The AM pathway of P uptake can be functional in non-responsive plants, as shown by fungal 32/33P uptake, which has raised questions regarding functionality of the direct uptake pathway. As the mechanisms for P uptake via AM and direct uptake pathways are revealed, we can begin to explore functional differences at the molecular level. Identifying factors which influence AM responsiveness will provide critical insights for future crop breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P-efficiency. Plant Soil 157:97–105

    Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT. ) from the endomycorrhizal fungus Glomus mosseae Mycorrhiza 15:620–627

    Article  PubMed  CAS  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Phys 24:225–252

    Article  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Bürkert B, Robson A (1994) 65. Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Burleigh SH, Bechmann IE (2002) Plant nutrient transporter regulation in arbuscular mycorrhizas. Plant Soil 244:247–251

    Article  CAS  Google Scholar 

  • Burleigh SH, Cavagnaro TR, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Chiou T-J, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula. indicate a role in phosphate transport at the root/soil interface Plant J 25:281–293

    Article  PubMed  CAS  Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213

    Article  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+. -ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco Planta 211:609–613

    Article  PubMed  CAS  Google Scholar 

  • Glassop D, Smith SE, Smith F (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  PubMed  CAS  Google Scholar 

  • Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi. Can J Bot 85:644–651

    Article  CAS  Google Scholar 

  • Gordon-Weeks R, Tong YP, Davies TGE, Leggewie G (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116:3135–3144

    Article  PubMed  CAS  Google Scholar 

  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2008) Arbuscular Mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonisation, fungal puptake or effects on expression of plant phosphate transporter genes. New Phytologist, in press.

    Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–632

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula. involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi Plant Cell 14:2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Schwab AP (1994) Mycorrhizal activity in warm-season and cool-season grasses: variation in nutrient-uptake strategies. Can J Bot 72:1002–1008

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J Bot 74:19–25

    Article  CAS  Google Scholar 

  • Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. Varma A, Hock B Mycorrhiza; structure, function, molecular biology and biotechnology. Springer, Berlin 297–324

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum. L. 2. Hyphal transport of 32P over defined distances New Phytol 120:509–516

    Article  CAS  Google Scholar 

  • Jakobsen I, Chen B, Munkvold L, Lundsgaard T, Zhu YG (2005) Contrasting phosphate acquisition strategies of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ 28:928–938

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007a) A Medicago truncatula. phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis Proc Natl Acad Sci USA 104:1720–1725

    Article  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007b) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  Google Scholar 

  • Jifon JL, Graham JH, Drouillard DL, Syvertsen JP (2002) Growth depression of mycorrhizal citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytol 153:133–142

    Article  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum. L. 3. Hyphal transport of 32P and 15N New Phytol 124:61–68

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  PubMed  CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Kiers ET, van der Heijden MGA (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636

    Article  PubMed  Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Smith FA, Dickson S, Holloway RE, Smith SE (2008) Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol 178:852–862

    Article  PubMed  Google Scholar 

  • Li X-L, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998a) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91–99

    Article  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998b) Cloning and characterization of two phosphate transporters from Medicago truncatula. roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi Mol Plant Microbe Interact 11:14–22

    Article  CAS  Google Scholar 

  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus. suppresses mutualistic symbiosis Plant Cell Physiol 47:807–817

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices. is regulated in response to phosphate in the environment Mol Plant Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Mimura T (1999) Regulation of phosphate transport and homeostasis in plant cells. Int Rev Cytol 191:149–200

    Article  CAS  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum. and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species Plant J 42:236–250

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32. P and 33P New Phytol 124:489–494

    Article  CAS  Google Scholar 

  • Poulsen KH, Nagy R, Gao L-L, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–454

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    Article  PubMed  CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618

    Article  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003a) Phosphate transport in plants. Plant Soil 248:71–83

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic, Cambridge,

    Google Scholar 

  • Smith SE, Dickson S, Morris C, Smith FA (1994) Transfer of phosphate from fungus to plant in VA mycorrhizas: calculation of the area of symbiotic interface and of fluxes of P from two different fungi to Allium porrum. L New Phytol 127:93–99

    Article  CAS  Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694

    CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003b) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Article  Google Scholar 

  • Tobar R, Azcón R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122

    Article  Google Scholar 

  • Woolhouse H (1975) Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movement and the regulation of the endotrophic mycorrhizal associations. Sanders F, Mosse B, Tinker P Endomycorrhizas. Academic, London 209–223

    Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

  • Zhu YG, Smith FA, Smith SE (2003) Phosphorus efficiencies and responses of barley (Hordeum vulgare. L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil Mycorrhiza 13:93–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mark Tester and Olivier Cotsaftis for supervision of the project, helpful discussions and ongoing support. Emily Grace is grateful for a Commonwealth Hill postgraduate research scholarship and to the Australian Centre for Plant Functional Genomics for research support and infrastructure. Part of our research program is also supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grace, E.J., Smith, F.A., Smith, S.E. (2009). Deciphering the Arbuscular Mycorrhizal Pathway of P Uptake in Non-responsive Plant Species. In: Azcón-Aguilar, C., Barea, J., Gianinazzi, S., Gianinazzi-Pearson, V. (eds) Mycorrhizas - Functional Processes and Ecological Impact. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87978-7_7

Download citation

Publish with us

Policies and ethics