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Abstract. Fractures of the proximal femur are one of the principal causes of 
mortality among elderly persons. Traditional methods for the determination of 
femoral fracture risk use methods for measuring bone mineral density. How-
ever, BMD alone is not sufficient to predict bone failure load for an individual 
patient and additional parameters have to be determined for this purpose. In this 
work an approach that uses statistical models of appearance to identify relevant 
regions and parameters for the prediction of biomechanical properties of the 
proximal femur will be presented. By using Support Vector Regression the pro-
posed model based approach is capable of predicting two different biomechani-
cal parameters accurately and fully automatically in two different testing  
scenarios.  

Keywords: Fracture load, bone strength, proximal femur, support vectors, ap-
pearance models.  

1   Introduction 

Fractures of the proximal femur are one of the principal causes of mortality among 
elderly persons. Hip fractures are primarily caused by an increased fragility of the 
proximal femur, due to osteoporosis or other conditions affecting bone strength. 
Techniques for the determination of fracture risk traditionally use methods for meas-
uring bone mineral density (BMD) like e.g. DXA [1]. However, there is still a signifi-
cant overlap in bone mineral density between osteoporotic and normal individuals and 
BMD alone is not sufficient to predict bone failure load for an individual patient [2]. 
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As a consequence different other approaches were introduced using parameters based 
on bone geometry (e.g. [3]), trabecular (micro)-architecture (e.g. [4, 5]), and (micro)- 
finite element analysis (e.g. [6, 7]) to assess bone strength and estimate fracture risk.  

Apart from improving the identification of patients with a high fracture risk an-
other type of projects aims at improving the surgical treatment of femoral fractures, 
by predicting the risk of failure of an osteosynthesis, the so called “cut-out” risk. In 
[8] a tool has been developed which can be used during the surgical intervention by 
measuring the peak torque until complete breakaway of the cancellous bone in the 
femoral head. Moreover, several non invasive methods were introduced in order to 
predict the cut out risk using CT or x-ray images based on the calculation of Haralick 
texture features in CT images [9] or Minkowski functionals[10] in different regions of 
interest.  

Beside of finding appropriate parameters most of approaches mentioned above are 
also dependent on defining a number of different regions of interest (ROIs) in which 
potentially relevant parameters are obtained. In many cases the placement of these 
ROIs for an individual patient needs user interaction and is therefore subjective.  

Therefore in this work an approach that is based on the usage of statistical models 
will be presented. The key idea of this work is to use these models in order to identify 
relevant regions and parameters for the prediction of biomechanical properties of the 
proximal femur. By using these parameters as predictor variables for Support Vector 
Regression (=SVR) the proposed model based approach is capable of predicting two 
different biomechanical parameters accurately, objectively and fully automatically.  

2   Methods 

The workflow of the proposed algorithm can be summed up as follows:  

Step 1: Create an accurate combined representation of shape and spatial intensity 
distribution of an object by applying an atlas based non-rigid registration on a training 
set of CT images (for more details refer to section 2.1)  

Step 2: Apply Principal Component Analysis (=PCA) using the output of step 1 in 
order to reduce the dimensionality of the input space. By using a correlation-based 
feature selection method, a subset of n relevant Principal Components (=PCs) can be 
identified (for more details refer to 2.2).  

Step 3: Regress the PC scores of the n relevant PCs obtained in step 2 against the 
biomechanical parameter of interest and find the best subset of the PCs as well as the 
optimal parameter values for Support Vector Regression using a stratified cross-
validation scheme (for more details refer to 2.3). 

Step 4: Select a subsample of the original set of input variables represented by the 
combined shape-intensity representations by using the eigenvector loadings of the n 
relevant PCs in order to reduce the number of non-relevant variables and identify 
relevant regions (for more details refer to 2.4). 

Step 5: Repeat steps 2 and 3 with the subsample of the original set of input variables 
obtained in step 4. 



570 K. Fritscher et al. 

2.1   Combined Shape-Intensity Representation 

The method that is used to create a combined shape-intensity model is based on the 
approach presented in [11] and has been extended to generate combined representa-
tions of shape and spatial intensity-distribution [12]. The approach is based on the 
usage of rigid and non-rigid registration in order to align a number of subjects to an 
atlas subject. Performing this registration for n subjects results in n aligned intensity 
representations and n deformation fields {D1,D2, ..,Dn}, which represent shape varia-
tions. The aligned intensity representations In and the shape representations Dn for 
each subject of the training set are placed in one vector z. The length of the vector z is 
4 x number of pixels within the structure of interest (e.g. the proximal femur) for 3D 
images.  

2.2   Combined Shape-Intensity Model 

Using the representations described in section 2.1, PCA is applied to reduce the di-
mensionality of the input data: Given n, d-dimensional training vectors, {z1,…,zn} a 
training matrix M can be defined. Using Singular Value Decomposition, the covari-
ance matrix ∑ of M can be decomposed [13]. In the case when d>>n, the system is 
underconstrained resulting in a large number of eigenvectors that will be zero. In 
these cases the Matrix U, containing the eigenvectors of ∑ , can be calculated from 
the smaller Matrix T  
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where μ  is the mean of all training elements z [13]. 

The vector of PC scores α  for a subject x of the training set can be calculated by using  

 ( )T
kU xα μ= −  (2) 

kU  is a matrix consisting of the first k columns of U and represents the set of k or-

thogonal modes of shape-intensity variations. An approximation of a shape-intensity 
pair in 3D can then be represented by using k PCs and a k dimensional vector of PC 
scoresα . In order to compensate the differences in scaling of the pixel intensities 
representing the spatial intensity distribution and the deformation field components, 
the pixel intensities are rescaled by a factor f in each combined shape-intensity distri-
bution.  This factor is calculated by dividing the average range between the minimum 
and maximum deformation of all subjects by the average range between the highest 
and lowest intensity value of all subject.  

After performing PCA the PC scores of a subset of PCs will be used as predictor 
variables for SVR. This subset of PCs is determined in the next step. 

2.3   Attribute Selection and Support Vector Regression 

Using the PC scores and the biomechanical parameter of interest of all subjects in the 
training set a correlation-based feature selection method [14] with a greedy stepwise 
 



 Prediction of Biomechanical Parameters of the Proximal Femur 571 

forward search method  is used in order to identify a subset of k potentially relevant 
PCs. N-fold cross-validation (n=number of subjects in the training set) is applied for 
this purpose. The PC scores of the selected k PCs will then be used to train a Support 
Vector Regression [15] model. In this project an exponential kernel of the form 

p
k( x,x') x,x'=  with p ∈ was used for the Support Vector Regression. For details 

on Support Vector Regression please refer to [15]. The best subset of the k PCs as 
well as the optimal values for p and for the complexity parameter C (for details on the 
parameters of SVR please refer to [15]) are obtained by using a stratified cross-
validation scheme: First, one of the n subjects is chosen as the test data set. The re-
maining n-1 subjects serve as training set.  Using this leave-one out scheme a set of 
parameters for the SVR parameters C({0.3,0.5,0.7,1,3,5,10,20,40,60,80,100}) and 
p({1,2,3}) is defined. Starting with the subset of k PCs identified by the greedy step-
wise forward search method, the best combination of p and C is determined by reduc-
ing the numbers of used PCs by one in each step from k PCs down to 1 PC.  The order 
in which the PCs are excluded is determined by the ranking that results from the 
greedy stepwise search algorithm in the attribute selection step prior to SVR.    

2.4   Reducing the Size of the Training Vectors Zi 

After the attribute selection the size of the training vectors zi is reduced in order to re-
move non-relevant elements of the training vectors zi and identify relevant properties. 
For this purpose the correlation coefficient rk between the score values of the kth PC for 
each subject in the training set and the biomechanical parameter of interest are calcu-
lated for each of the PCs that have been determined in the attribute pre-selection step. 
Using rk and Lk, which is the vector containing the eigenvector loadings of the kth PC, a 
vector Uw containing weights for each element of zi can be calculated as follows: 
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Using Uw the dimension of each original training vector zi is reduced by removing 
the elements of zi, whose weighting values in Uw are beneath a relative threshold T. 
This results in n reduced training vectors zsi. Using the vectors zsi, a second iteration 
of PCA, attribute selection and support vector regression is performed to obtain a 
final regression model. Analogously to the determination of the optimal numbers of 
PCs described in section 2.3 again a stepwise procedure is used to find the best values 
for T in this second iteration: Initially the calculations described in sections 2.2 and 
2.3 are performed setting T=90%. Thereafter T is reduced by 10 % and the calcula-
tions are performed again. T is reduced stepwise by 10 % as long as the predictive 
quality of any of the regression models resulting from different parameter combina-
tions for p and C does not decrease compared to the best working model in the previ-
ous step. In order to assess the predictive quality of a certain regression model the 
correlation between real and predicted parameter values, as well as the mean absolute 
error (MAE) and the relative absolute error (RAE) is measured.  
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2.5   Data Material 

The pipeline described above was tested in two different test settings in which two 
biomechanical parameters should be predicted. In the first setting (=setting A) the 
parameter “peak torque until complete breakaway” (=PTB), which was obtained using 
the DensiProbe tool presented in [8], should be predicted for 14 proximal femora of 
men and women aged between 64 and 96 years. For this purpose CT images of ca-
daveric femora have been used. The values for PTB ranged from 3.9 to 12.41 Nm. 
The special challenge using these dataset was that the CT images were obtained using 
two different micro CT scanners and different image resolutions. Seven out of the 14 
images had an original isotropic resolution of 0.082 x 0.082 x 0.082 mm and were 
acquired using a Scanco DensiScan 1000 microCT scanner. The remaining seven 
images were acquired using a Scanco XtremeCT scanner with an original image reso-
lution of 0.246 x 0.246 x 0.246 mm. In order to simulate clinical conditions all images 
were resampled to images with an isotropic voxel spacing of 0.984 mm (using linear 
interpolation).  

In test setting B, CT images of 26 femur specimen of men and women between 58 
and 98 years with an original resolution of 0.2 x 0.2 x 0.5 mm were used. Again – in 
order to simulate the resolution of images that are acquired in clinical routine - the 
images were resampled to images with an isotropic pixel spacing 0.7x0.7x0.7 mm 
(using linear interpolation). The fracture load of the femora was obtained by simulat-
ing a fall on the greater trochanter (=side-impact configuration), which was leading to 
different types of fractures (cervical, intertrochanteric and shaft fractures) [16]. The 
values for the fracture load ranged from 2453 to 6359 N. 

3   Results 

The accuracy of the registration during the modeling process was evaluated by calcu-
lating the mean absolute error between the pixel intensities of the original CT images 
and the model instances that were created by using the appearance model with all 
PCs. Moreover, the original images and the created instance images were converted to 
8-bit images (256 grey levels). 

For test setting A, a statistical model of the femoral head and neck region was 
created. Analyzing the registration accuracy as described above a mean absolute 
error of 7.3 grey levels (σ=6.6), which corresponds to 2.8 % of the whole intensity 
range was measured. The results of the leave-one-out tests for testing scenario A are 
summed up in table 1. The table is showing the number of used PCs, the obtained 
correlation, the errors RAE and MAE, the used combination of parameters (kernel 
exponent and C) and the percentage of input variables that lead to the best results 
for 1 to k (in this case k=7) predictor variables (=PCs).  Best results with R=0.975 
(p<0.01) could be achieved using 100 % of the input variables (last line) and 7 PCs. 
Using the criterion defined above the maximum reduction of the variable input 
space was 30% (P=70%). Using only 3 predictor variables a correlation of R=0.862 
(p<0.01) could be achieved. 
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Table 1. Evaluation of the predictive quality for the prediction of peak-torque to breakaway 

PCs R RAE [%] MAE[Nm] exp C P [%]

1 0.630 74 1.66 1 0.5 70

2 0.800 49 1.1 2 3 90

3 0.862 42 0.94 3 1 100

4 0.850 44 1.34 2 0.3 70

5 0.905 40.2 1.26 1 0.3 80

6 0.952 30 0.67 1 0.5 80
7 0.975 22.4 0.503 1 0.5 100  

For test setting B a model of the whole proximal femur including the small tro-
chanter was created. Analyzing the registration accuracy a mean absolute error of 9.1 
grey levels (σ=7.1), which corresponds to 3.6% of the whole intensity range, was 
measured. The results of the leave-one-out tests are summed up in table 2, which is 
having the same structure as table 1. Using 100 % of the input variables (last line), the 
highest correlation R=0.93 (p<0.01) could be obtained with 10 predictor variables. 
The variable input space could be reduced up to 50%, which also lead to the highest 
correlation (R=0.944, p<0.01). Using 3 predictor variables still a correlation of 
R=0.886 (p<0.01) could be achieved. Note, that for both testing scenarios all results 
have been obtained using n-fold cross-validation 

 
Table 2. Evaluation of the predictive quality for the prediction of failure load 

PCs R RAE [%] MAE[N] exponent C P [%]

1 0.755 59 602 2 0.5 50

2 0.763 55 552 1 5 60

3 0.886 36 368 3 1 50

4 0.830 45.6 459 3 0.7 50

5 0.880 41 412 2 0.3 50

6 0.944 29 301 2 10 50

7 0.891 39.8 401 1 0.7 60

8 0.910 34.3 344 1 3 100

9 0.930 30.6 308 1 5 100

10 0.930 27.6 278 1 10 100
 

 
For this study DXA measurements in 5 different regions in the head and neck re-

gion of the proximal femur were also obtained. The DXA values measured in the 
femoral neck showed the highest correlation to failure load with R=0.73. Figure 1 is 
illustrating what structures are described by the 3 PCs showing highest correlation to 
failure load on one coronal sample slice.  



574 K. Fritscher et al. 

 

Fig. 1. Variations of the proximal femur described by the 3 Principal Components with highest 
correlation to failure load (Coronal cut through femoral head neck and shaft) 

 
The images illustrate the major differences between femora with low (top) and 

high fracture load (bottom). PC 3 predominantly illustrates variations of the shape of 
the femur (neck thickness, shape of head, shape of greater trochanter) and the cancel-
lous bone in the femoral head. The two other PCs mainly describe variations of the 
cancellous bone in the shaft, neck (PC 16) and head region (PCs 16 and 8). PC 8 also 
illustrates variations concerning the shape and length of the cortical region in the 
lower femoral neck. The regions around the greater and small trochanter, around the 
femoral head and neck as well as the cortical region in the shaft also remained in the 
model after 50 % reduction of the input variables.   

4   Discussion 

Using two different testing scenarios and an extensive cross-validation scheme it has 
been demonstrated that the model based approach presented in this work, can provide 
an excellent tool for estimating femoral fracture load and peak torque to breakaway 
with high accuracy using CT images with clinical resolution. By using this approach 
one has the possibility to depict a number of different geometric and structural proper-
ties that can be used to predict biomechanical bone parameters, accurately and relia-
bly. Although the tests were performed using images with comparably low resolution, 
the quantitative results in terms of the amount of correlation between real and pre-
dicted parameter values are absolutely comparable to studies that partly use higher 
image resolutions [7-10].  

Beside of the accuracy of the proposed method, another positive aspect of the al-
gorithm is its ability to implicitly identify potential parameters as well as sub-regions 
that are useful for the prediction of biomechanical properties. The nature of the pa-
rameters that can be identified range from geometrical properties of the bone to varia-
tions of the spatial intensity distribution in medical images. In combination with the 
ease of use of the proposed algorithm this fact makes the approach useful for a wide 
field of applications. Having a valid (regression) model, the calculation of a shape-
intensity representation and parameter prediction for a new unseen segmented dataset 
only takes ~5-15 minutes, depending on the resolution of the CT images. The next 
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steps in this project will be the investigation of alternative methods for dimensionality 
reduction and the application of the proposed methods in a large clinical study, which 
has been started recently.        
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