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Abstract. We developed an analysis pipeline enabling population studies of 
HARDI data, and applied it to map genetic influences on fiber architecture in 
90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, re-
sampling the spherical fiber orientation distribution functions (ODFs) in appro-
priate Riemannian manifolds, after ODF regularization and sharpening. Fitting 
structural equation models (SEM) from quantitative genetics, we evaluated ge-
netic influences on the Jensen-Shannon divergence (JSD), a novel measure of 
fiber spatial coherence, and on the generalized fiber anisotropy (GFA; [1]) a 
measure of fiber integrity. With random-effects regression, we mapped regions 
where diffusion profiles were highly correlated with subjects’ intelligence quo-
tient (IQ). Fiber complexity was predominantly under genetic control, and 
higher in more highly anisotropic regions; the proportion of genetic versus envi-
ronmental control varied spatially. Our methods show promise for discovering 
genes affecting fiber connectivity in the brain. 

1   Introduction 

Diffusion profiles of brain white-matter fibers are intermediate phenotypes that can be 
causally related to more basic biological measures, such as genetic variations across 
subjects, and to more high-order cognitive processes, such as intellectual perform-
ance. They serve as a valuable link in the quest to find genes that influence cognition 
and disease, as fiber integrity may be associated with genetic variation using quantita-
tive genetic modeling, and with cognitive scores (such as intelligence quotient or IQ).  

In this paper we analyzed the high angular resolution diffusion imaging (HARDI) 
data of 90 twin subjects. Studies of identical and fraternal twins – who share all or 
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half of their genes respectively - are informative for understanding the genetic control 
of brain structure and function. We measured the regional complexity of diffusion 
orientation distribution functions (ODF) by applying statistics to high-dimensional 
HARDI data in appropriate Riemannian manifolds. We visualized associations be-
tween diffusion profiles and genetic and environmental factors, and with IQ, by fitting 
structural equation (SEM) and random-effects regression (RRM) models at each 
voxel. To our knowledge, these are the first 3D maps of genetic influences on 
HARDI, and reveal that HARDI signals that are genetically controlled, to some ex-
tent, are also correlated with intelligence. 

2   Methods 

2.1   Subject Description and Image Acquisition 

HARDI data were acquired from 22 pairs of monozygotic (MZ; 20 males/24 females; 
age = 25.1±1.5 years) and 23 pairs of dizygotic twins (DZ; all same-sex pairs; 20 
males/26 females; age = 23.5±2.2 years) on a 4T Bruker Medspec MRI scanner using 
an optimized diffusion tensor sequence [2]. Imaging parameters were: 21 axial slices 
(5 mm thick), FOV = 23 cm, TR/TE 6090/91.7 ms, 0.5 mm gap, with a 128×100 ac-
quisition matrix. 30 images were acquired: 3 with no diffusion sensitization (i.e., T2-
weighted images) and 27 diffusion-weighted images in which the gradient directions 
were evenly distributed on the hemisphere [2]. The reconstruction matrix was 
128×128, yielding a 1.8×1.8 mm2 in-plane resolution. Total scan time was 3.05  
minutes. 

2.2   DTI Registration 

For each subject, diffusion tensor (DT) images (denoted by Dij, 1≤ i, j ≤3) were com-
puted from the HARDI signals using MedINRIA software (http://www-
sop.inria.fr/asclepios/software/MedINRIA). One diagonal component image (D11) 
was manually stripped of nonbrain tissues, yielding a binary brain extraction mask 
(cerebellum included). The masked image was then registered to the ICBM53 average 
brain template with a 12-parameter linear transformation using the software FLIRT 
[3], and resampled to isotropic voxel resolution (dimension: 128×128×93 voxels, 
resolution: 1.7×1.7×1.7 mm3). The resulting transformation parameters were used to 
rotationally reorient the tensor at each voxel [4], and then affine align the tensor-
valued images based on trilinear interpolation of the log-transformed tensors [5]. All 
affine-registered DT images were then registered to a randomly selected subject's 
image (a MZ subject), using an inverse-consistent fluid registration algorithm that 
minimizes the symmetrized Kullback-Leibler divergence (sKL-divergence) of the two 
tensor-valued images [6]. 

2.3   HARDI Processing and Registration 

Orientation distribution functions (ODF) for water diffusion were computed vox-
elwise from the HARDI signals using the Funk-Radon Transform (FRT) [1]. We used 
Descoteaux’s method [7], which expands the HARDI signals as a spherical harmonic 
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(SH) series, simplifying the FRT to a linear matrix operation on the coefficients. To 
estimate the SH coefficients, we set the order of the SH series to 4, and added a 
Laplacian smoothing regularizer to reduce the noise level, and also a Laplacian sharp-
ening regularizer to help detect the peaks of the ODF, as in [7]. The estimated ODF 
was normalized to unit mass, creating a diffusion probability density function (PDF) 
parameterized by spherical angle.  

Images of the diffusion ODFs were registered to the target subject by applying the 
corresponding DTI mapping (both affine and fluid mappings) in the previous section. 
To keep the direction of the diffusion ODFs oriented with the direction of the under-
lying fibers, ODFs were reoriented using the Preservation of Principal Direction 
(PPD) method [4], where the principal direction of the ODF was determined by prin-
cipal component analysis [8]. A generalized fractional anisotropy (GFA) map was 
constructed from the registered ODF ψ [1]: 

GFA = n ψ (ui) − ψ( )2

i=1

n
∑ (n − 1) ψ(ui)

2

i=1

n
∑

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .

 (1) 

Here ui, 1 ≤ i ≤ n, are n gradient directions, and 〈ψ〉 is the mean of the ODF with re-
spect to spherical angle. 

Spatial interpolation of HARDI ODFs is a new issue, and is required when the reg-
istration mapping falls on non-lattice points. We addressed this by taking the square 
root of the ODF: the Riemannian manifold for the square root of a PDF is isomorphic 
to a unit sphere and there are closed form expressions defining the geodesic distance, 
exponential and inverse exponential mappings [9]. The interpolated square-rooted 
ODF (sqrt-ODF) φ at point (x, y, z) was then constructed by finding the weighted 
Karcher mean of its 8 diagonal neighbors φi in 3D at lattice points (xi, yi, zi), which 
minimizes the square sum of the geodesic distance d: 

φ = argmin wid(φ,φi)
2

i=1
8∑ . (2) 

Here wi is the trilinear interpolation weight defined as 
wi = 1− x − xi( )1− y − yi( )1− z − zi( ). The weighted Karcher mean φ was computed 

using a gradient descent approach as in [9]. 

2.4   Measuring Regional Complexity of Diffusion 

We defined the regional complexity of diffusion using the generalized Jensen-
Shannon divergence (JSD) [10]. JSD measures the dissimilarity of n probability dis-
tributions, given by: 

JSDw (p1,...,pn ) = H wipii=1
n∑( )− wiH(pi)i=1

n∑ . (3) 

Here pi = pij ,1 ≤ j ≤ k pij =1j=1

k∑{ }, and w = wi ,1 ≤ i ≤ n wi = 1i=1

n∑{ }. H(•) is the Shannon 

entropy, defined as H(p) = − pj logj=1

k∑ pj
. JSDw(p1,…,pn) = 0 if and only if all p1,…, pn 

are equal. The complexity of diffusion at voxel x was defined as the JSD for the ODF 
at x and its contiguous 26 ODFs. We adopted an equal weight of 1/n for simplicity. 
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2.5   Statistical Analysis of Structural Models for Twins 

To analyze genetic and environmental correlations in twins, structural equation mod-
els (SEM; [11, 12]) can evaluate contributions of additive genetic (A), shared envi-
ronmental (C) and random environmental (E) components to the covariances of the 
observed variables (y) for MZ and DZ twins, according to the following model: 

y j = aAj + cC j + eE j, (4) 

where j = 1 or 2 for the first or second twin in the same pair. Since A, C, and E are 
unobservable variables, their weights θ = (a, c, e) were estimated by comparing the 
covariance matrix implied by the model, Σ(θ), and the sample covariance matrix of 
the observed variables, S, using maximum-likelihood fitting: 

FML,θ = logΣ(θ) + trace(Σ−1(θ)S) − logS − p, (5) 

where p = 2 is the number of observed variables. Under the null hypothesis that the 
population covariance matrix of the observed variables equals Σ(θ), and the n-sample 
data y are multivariate normal, TML,θ  = (n−1)FML,θ follows a χ2 distribution with 
p(p+1)−t degrees of freedom, where t is the number of free model parameters. Accep-
tance of the null hypothesis (p > 0.05) indicates a good fit for the model. 

Parameter fitting based on the above χ2 distribution may be biased if the sample 
data are non-normal.  To free SEM from distributional assumptions, we used permu-
tation methods to determine goodness of fit [13]. At each voxel, the GFA or JSD of 
the diffusion ODFs served as the observed variable, with the subject’s age regressed 
out. We computed TML,θ using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
method [14] to minimize FML in (5) in the original sample, as well as in 2000 per-
muted samples in which the twin pairs’ MZ or DZ labels were randomly shuffled. In 
each permutation relabeling, four null hypotheses with different θ were evaluated, for 
fitting the E:θ = (e), CE: θ = (c, e), AE: θ = (a, e), and ACE: θ = (a, c, e) models, and 
the p-values, pE, pCE, pAE, and pACE, were determined separately by comparing TML,θ in 
the true labeling to the permutation distribution. Since the permutation distribution of 
the χ2 statistic TML,θ may differ from its original distribution, we rescaled the sample 
data using the Bollen-Stine transformation for each null hypothesis [13]: 

Z = YS−1/ 2Σ1/ 2(θ). (6) 

Here Y is an n×2 matrix of the observed variables for the n twin pairs. Matrix square 
roots were computed by Cholesky factorization. The rows of Z instead of Y were 
permuted. 

The four permutation p-values, pE, pCE, pAE, and pACE, were compared at each voxel 
and the voxel was assigned to one of E, CE, AE, and ACE models if the p-value for 
that model was greater than the other three and also greater than 0.05. Color-coded 
maps visualized the optimal model fitted at each voxel, with E coded as blue, CE as 
green, AE as red, and ACE as yellow. For better visualization, we defined “model 
clusters”, i.e. sets of connected (26-neighborhood) voxels where the same model  
fitted, for each of the four models, and displayed only clusters of more than 10,000 
voxels. 
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2.6   Linkage of Diffusion Anisotropy or Complexity with Cognitive Function 

We used random-effects regression models (RRM) [15] to measure correlations be-
tween the full-scale intelligence quotient (FSIQ) and GFA or JSD. Ordinary regres-
sion methods are inappropriate because observations are clustered within twin pairs, 
violating the assumption that observations must be statistically independent. In RRM, 
the lack of independence is addressed by adding a random variable αi, to incorporate 
the clustering of the observed variables within the ith pair, into the ordinary regres-
sion equations: 

y i = Xiβ + 1iα i + εi . (7) 

Here yi = the 2×1 vector of observed variables (GFA or JSD) within the ith pair, β = a 
(q+1) ×1 vector of unknown regression coefficients, Xi = a known 2× (q+1) covariate 
matrix, 1i = a 2×1 vector of ones, and εi represents the 2×1 error vector. q was set to 1 
for subjects’ FSIQ score as the covariate. We assumed that αi and εi, and thus yi, were 
normally distributed, with αi ∼ N(0, σα

2), εi ∼ N(0, σ2I2), and yi ∼ N(Xiβ, 
σα

21i1i
T+σ2I2), where Im represents an m×m identity matrix. Estimation of these un-

known parameters (β, σα
2, σ2) was based on maximum marginal likelihood (MML) 

methods detailed in [15]. 
We applied RRM to each voxel and tested the significance of the correlations by 

comparing the full (β = [β0, βIQ]T; β0 is a constant) and the reduced (β = β0) models, 
which gave a significance P-value based on Wilks' lambda distribution [16]: Λ = 
Σ full Σreduced

 ∼ Λ(p, νH, νE), where Σ is the estimated covariance matrix of yi. p = 2 

is the number of subjects in each pair, νH = 1 is the difference in the number of pa-
rameters between full and reduced models, and νE = n−q−1, where n is the number of 
twin pairs. Overall significance was assessed using the positive false discovery rate 
(pFDR) method [17]. A pFDR value < 0.05 was considered to be significant. 

3   Results  

Fig. 1 displays the spatial distribution of the average JSD (averaged across all 90 sub-
jects). The average JSD increases with GFA, suggesting that JSD is sensitive to the 
complexity of ODFs in major white matter fibers with high diffusion anisotropy, es-
pecially in regions where anisotropy values vary over a small spatial neighborhood.  

Fig. 2 shows the covariance structure fitting for GFA and JSD maps in the 90 
twins. When the AE model fits best, variation in GFA or JSD values is more attribut-
able to genetic influences, i.e., the covariance structures are best accounted for by 
additive genetic (added effect of genes) and random environmental effects (random 
experimental error is also lumped into the E term). When the CE model fits best, the 
variation in the observed measures is more due to environmental influences shared by 
twins reared in the same family [11]. The full ACE model, where all terms fit at once, 
could not be fitted for either GFA or JSD. For both GFA and JSD measures, more 
voxels had AE as the best-fitting model than CE or any other model, indicating that 
diffusion properties are more genetically influenced than environmentally influenced, 
in most brain regions.  
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Fig. 1. (a) The color-coded map shows that the JSD, a measure of fiber complexity, is greater 
in regions of high diffusion anisotropy (e.g., the corpus callosum), especially at interfaces be-
tween high and low anisotropy. This trend is clear when plotting JSD against the GFA (b). This 
property of JSD is useful because in DTI/HARDI studies, diffusion properties are more infor-
mative in highly anisotropic regions, where fiber structures are highly resolved. 

 

Fig. 2. The color-coded map shows which model fits best for the covariance matrices of (a) 
GFA, a measure of fiber integrity, and (b) JSD for fiber complexity, at each voxel. Voxels 
where the E model fits best are coded as blue, CE as green, and AE as red. For GFA and JSD, 
major fiber structures, such as the corpus callosum, cingulum, and internal capsules, are opti-
mally fitted using the AE and the CE models. Model fitting is visibly asymmetrical in the cin-
gulum fibers: the AE model fits in the right cingulum (yellow circles in (a) and (b)), while the 
CE model fits better in the left cingulum. 
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Fig. 3. Correlations of GFA with the FSIQ score based on random-effects regression, visual-
ized as maps of (a) regression coefficients (βIQ) and (b) P-values. Higher diffusion anisotropy 
is associated with higher IQ in the left anterior region of the corona radiata, cingulum, and 
internal capsule.  

Fig. 3 shows that GFA is positively correlated with FSIQ scores in the corona ra-
diata, corpus callosum and internal capsule (pFDR = 0.04). The correlations of JSD 
with FSIQ scores were not significant (pFDR = 0.21; figures not shown). Fiber meas-
ures were highly genetically controlled, especially in regions of high diffusion anisot-
ropy. We also found that higher diffusion anisotropy is correlated with better intellec-
tual performance in specific WM regions. Based on these measures and algorithms, 
future studies may be able to detect individual genes contributing to fiber architecture, 
and relate white matter integrity to cognition. 
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