Skip to main content

Molecular Biology of Parkinson's Disease

  • Chapter
Molecular Biology of Neuropsychiatric Disorders

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 23))

  • 1017 Accesses

Abstract

Parkinson's disease is one of the most common neurodegenerative movement disorders of non specific etiology. It is characterized by tremor at rest, bradykinesia, rigidity, and in more advanced cases, postural instability. The most important environmental factors such as neurotropic infective agents, neurotoxins like heavy metals and pesticides are considered as major culprit to initiate the disease. So far, mutations in eight genes (SNCA, PRKN, PINK1, DJ-1, MAPT, UCH-L1, ATP13A2 and LRRK2) are reported for the familial form of Parkinson's disease. Genetic, neuropathological and neurochemical studies on substantia nigra from Parkinson patients and animal models have focused on several pathogenic processes at the time of neuronal death. A few potential contributing factors have been established to play crucial role in the development of Parkinson's disease. Most of these factors are involved in ongoing selective oxidative stress resulting from mitochondrial dysfunction, auto-oxidation or enzymatic (monoamine oxidase) oxidation of dopamine, excessive iron accumulation in the substantia nigra pars compacta and genetic susceptibility. In the following sections the role of each of these factors are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abahuni N, Gispert S, Bauer P, Riess O, Kruger R, Becker T, Auburger G (2007) Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease. Neurosci Lett 414:126–129

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi A, Fredrikson M, Jerregârd H, Akerbäck A, Fall PA, Rannug A, Axelson O, Söderkvist P (2000) GSTM1 and mEPHX polymorphisms in Parkinson's disease and age of onset. Biochem Biophys Res Commun 269:676–680

    Article  PubMed  CAS  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shlomo Y, Sieradzan K (1995) Idiopathic Parkinson's disease: epidemiology, diagnosis and management. Br J Gen Pract 45:261–268

    PubMed  CAS  Google Scholar 

  • Bosgraaf L, Van Haastert PJ (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 1643:5–10

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol 249(Suppl 3):1–5

    Article  Google Scholar 

  • Brooks DJ (2003) Imaging end points for monitoring neuroprotection in Parkinson's disease. Ann Neurol 53(suppl. 3):S110–S118; discussion, pp. S118–S119

    Article  PubMed  CAS  Google Scholar 

  • Buervenich S, Carmine A, Galter D, Shahabi HN, Johnels B, Holmberg B, Ahlberg J, Nissbrandt H, Eerola J, Hellstrom O, Tienari PJ, Matsuura T, Ashizawa T, Wullner U, Klockgether T, Zimprich A, Gasser T, Hanson M, Waseem S, Singleton A, McMahon FJ, Anvret M, Sydow O, Olson L (2005) A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample. Arch Neurol 62:74–78

    Article  PubMed  Google Scholar 

  • Calne DB, Langston JW (1983) Aetiology of Parkinson's disease. Lancet 8365:1457–1459

    Article  Google Scholar 

  • Chan P, Tanner CM, Jiang Z, Langston JW (1998) Failure to find the a-synuclein gene missense mutation (G209A) in 100 patients with younger onset Parkinson's disease. Neurology 50:513–514

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, et al (2004) α- Synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364:1167–1169

    Article  PubMed  CAS  Google Scholar 

  • Collins GG, Sandler M, Williams ED, Youdim MB (1970) Multiple forms of human brain mito- chondrial monoamine oxidase. Nature 225:817–820

    Article  PubMed  CAS  Google Scholar 

  • Coppedè F, Armani C, Bidia DD, Petrozzi L, Bonuccelli U, Migliore L (2005) Molecular implications of the human glutathione transferase A-4 gene (hGSTA4) polymorphisms in neurodegen- erative diseases. Mutat Res 579:107–114

    PubMed  Google Scholar 

  • Deplazes J, Schobel K, Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Becker G, Riess O, Berg D (2004) Screening for mutations of the IRP2 gene in Parkinson's disease patients with hyperechogenicity of the substantia nigra. J Neural Transm 111:515–521

    Article  PubMed  CAS  Google Scholar 

  • Ebadi M, Govitrapong P, Sharma S, Muralikrishnan D, Shavali S, Pellett L, Schafer R, Albano C, Eken J (2001) Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson's disease. Biol Signals Recept 10:224–253

    Article  PubMed  CAS  Google Scholar 

  • Elizan TS, Casals J (1983) The viral hypothesis in parkinsonism. J Neural Transm Suppl 19:75–88

    PubMed  CAS  Google Scholar 

  • Felletschin B, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, Sommer U, Zeiler B, Becker G, Riess O, Berg D (2003) Screening for mutations of the ferritin light and heavy genes in Parkinson's disease patients with hyperechogenicity of the substantia nigra. Neurosci Lett 352:53–56

    Article  PubMed  CAS  Google Scholar 

  • Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51:296–301

    Article  PubMed  CAS  Google Scholar 

  • Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L (2006) LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 59:714–719

    Article  PubMed  CAS  Google Scholar 

  • Gasser T, Muller-Myhsok B, Wszolek ZK, Dorr A, Vaughan JR (1997) Genetic complexity and Parkinson's disease. Science 277:388–390

    PubMed  CAS  Google Scholar 

  • Gotz ME, Kunig G, Riederer P, Youdim MB (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix, and vesicle trafficking genes. J Neural Transm 111:1543–1573

    Article  PubMed  CAS  Google Scholar 

  • Hanson ES, Rawlins ML, Leibold EA (2003) Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem 278:40337–40342

    Article  PubMed  CAS  Google Scholar 

  • Harrington KA, Augood SJ, Kingsbury AE, Foster OJ, Emson PC (1996) Dopamine transporter (Dat) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson's disease. Brain Res Mol Brain Res 36:157–162

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10:717–721

    Article  PubMed  CAS  Google Scholar 

  • Hjelle JJ, Petersen DR (1983) Hepatic aldehyde dehydrogenases and lipid peroxidation. Pharmacol Biochem Behav 18(suppl 1):155–160

    Article  PubMed  CAS  Google Scholar 

  • Hughes AJ, Daniel SE, Lees AJ (1993) The clinical features of Parkinson's disease in 100 histo- logically proven cases. Adv Neurol 60:595–599

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(suppl 6): S2–S12

    Article  PubMed  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47:S161–S170

    PubMed  CAS  Google Scholar 

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    Article  PubMed  CAS  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Lennox GG, Lowe JS (1997) Dementia with Lewy bodies. Baillieres Clin Neurol 6:147–166

    PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson's disease. Nature 395:451–452

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Dickson D (1997) Pathological diagnostic criteria for dementia associated with cortical Lewy bodies: review and proposal for a descriptive approach. J Neural Transm Suppl 51:111–120

    PubMed  CAS  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, Rechavi G, Youdim MB (2005) Gene Expression Profiling of Sporadic Parkinson's Disease Substantia Nigra Pars Compacta Reveals Impairment of Ubiquitin-Proteasome Subunits, SKP1A, Aldehyde Dehydrogenase, and Chaperone HSC-70. Ann N Y Acad Sci 1053:356–375

    Article  PubMed  CAS  Google Scholar 

  • Mardh G, Vallee BL (1986) Human class I alcohol dehydrogenases catalyze the interconversion of alcohols and aldehydes in the metabolism of dopamine. Biochem 18:7279–7282

    Google Scholar 

  • Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre- Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23:386–395

    Article  CAS  Google Scholar 

  • Morfini G, Pigino G, Opalach K, Serulle Y, Moreira JE, Sugimori M, Llinas RR, Brady ST (2007) 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc Natl Acad Sci U S A 104:2442–2447

    Article  PubMed  CAS  Google Scholar 

  • O'Carroll AM, Fowler CJ, Phillips JP, Tobbia I, Tipton KF (1983) The deamination of dopamine by human brain monoamine oxidase: specificity for the two enzyme forms in seven brain regions. Naunyn-Schmiedeberg's Arch Pharmacol 322:198–202

    Article  Google Scholar 

  • Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T alpha- synuclein mutation increases irondependent aggregation and toxicity. J Neurosci 20:6048–6054

    PubMed  CAS  Google Scholar 

  • Ouimet CC, Hemmings HC, Jr Greengard P (1989) ARPP-21, a cyclic AMP–regulated phospho- protein enriched in dopamine-innervated brain regions. II. Immunocytochemical localization in rat brain. J Neurosci 9:865–875

    PubMed  CAS  Google Scholar 

  • Pals P, Lincoln S, Manning J, Heckman M, Skipper L, Hulihan M, Van den Broeck M, De Pooter T, Cras P, Crook J, Van Broeckhoven C, Farrer MJ (2004) alpha-Synuclein promoter confers susceptibility to Parkinson's disease. Ann Neurol. 56:591–595

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou A, Veletza V, Hadjigeorgiou GM, Partikiou A, Hirano M, Anastasopoulos I (1999) Mutated a-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology 52:651–654

    PubMed  CAS  Google Scholar 

  • Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL (2007) Autoantibodies to alpha-synuclein in inherited Parkinson's disease. Journal of Neurochemistry 101:749–756

    Article  PubMed  CAS  Google Scholar 

  • Parsian A, Racette B, Zhang ZH, Rundle M, Goate AM, Perlmutter JS (1998) Mutation, sequence analysis and association studies of a-synuclein in Parkinson's disease. Neurology 51:1757–1759

    PubMed  CAS  Google Scholar 

  • Parsian AJ, Racette BA, Zhao JH, Sinha R, Patra B, Perlmutter JS, Parsian A (2007) Association of alpha-synuclein gene haplotypes with Parkinson's disease. Parkinsonism Relat Disord 13:343–347

    Article  PubMed  CAS  Google Scholar 

  • PerezPastene C, Graumann R, Díaz-Grez F, Miranda M, Venegas P, Godoy OT, Layson L, Villagra R, Matamala JM, Herrera L, Segura-Aguilar J (2007) Association of GST M1 null polymorphism with Parkinson's disease in a Chilean population with a strong Amerindian genetic component. Neurosci Lett 418:181–185

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al (1997) Mutation in the a-synuclein gene identified in families with Parkinson's disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Ponka P (2004) Hereditary causes of disturbed iron homeostasis in the central nervous system. Ann NY Acad Sci 1012:267–281

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  • Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA, Vance JM, Sudarsky LR, Standaert DG, Growdon JH, Jensen RV, Gullans SR (2007) Molecular markers of early Parkinson's disease based on gene expression in blood. Proc Natl Acad Sci U S A 104:955–960

    Article  PubMed  CAS  Google Scholar 

  • Scott WK, Stajich JM, Yamaoka LH, Spur MC, Vance JM, Roses AD, et al (1997) Genetic complexity and Parkinson's disease. Science 277:387

    Article  PubMed  CAS  Google Scholar 

  • Simon-Sanchez J, Herranz-Perez V, Olucha-Bordonau F, Perez-Tur J (2006) LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur J Neurosci 23:659–666

    Article  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnston J, Singleton A, Hague S, Kachergus J, et al (2003) a-synuclein locus triplication causes Parkinson's disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  • Tsou K, Girault JA, Greengard P (1993) Dopamine D1 agonist SKF 38393 increases the state of phosphorylation of ARPP-21 in substantia nigra. J Neurochem 60:1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Turnbull S, Tabner BJ, El-Agnaf OM, Moore S, Davies Y, Allsop D (2001) α-Synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biol Med 30:1163–1170

    Article  CAS  Google Scholar 

  • Vilar R, Coelho H, Rodrigues E, Gama MJ, Rivera I, Taioli E, Lechner MC (2007) Association of A313 G polymorphism (GSTP1*B) in the glutathione-S-transferase P1 gene with sporadic Parkinson's disease. Eur J Neurol 14:156–161

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen G, Muckenthaler M, Galy B, Hentze MW, Pantopoulos K (2004) Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol Cell Biol 24:954–965

    Article  PubMed  CAS  Google Scholar 

  • Wu YR, Wang CK, Chen CM, Hsu Y, Lin SJ, Lin YY, Fung HC, Chang KH,Lee-Chen GJ (2004) Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson's disease. Hum Genet 114:236–241

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Ben-Shachar D Riederer P (1993) The possible role of iron in the etiopathology of Parkinson's disease. Mov Disord 8:1–12

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Riederer P (1997) Understanding Parkinson's disease: the smoking gun is still missing, but growing evidence suggests highly reactive substances called free radicals are central players in this common neurological disorder. Sci Am 276:52–59

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Riederer P (2004) Iron in the brain, normal and pathological. In: Encyclopedia of neuroscience. Elsevier, Amsterdam, New York

    Google Scholar 

  • Zarranz JJ, Alegre J, Ge mez-Esteban J, Lezcano E, Ros R, Ampuero I, et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing, and neuro- degenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Hattori N, Leroy E, Morris HR, Kubo S, Kobayashi T, Wood NW, Polymeropoulos MH, Mizuno Y (2000) Association between a polymorphism of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) gene and sporadic Parkinson's disease. Parkinsonism Relat Disord 6:195–197

    Article  PubMed  Google Scholar 

  • Zimprich A, Biskup S, Leitner P, et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Parsian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parsian, A., Patra, B. (2009). Molecular Biology of Parkinson's Disease. In: Wildenauer, D.B. (eds) Molecular Biology of Neuropsychiatric Disorders. Nucleic Acids and Molecular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85383-1_9

Download citation

Publish with us

Policies and ethics