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Abstract The occurrence of a major outbreak, the shape of the epidemic
curves, as well as the final sizes of outbreaks, are realizations of some stochas-
tic events with some probability distributions. These distributions are man-
ifested through some stochastic mechanisms. This chapter divides a typical
outbreak in a closed population into two phases, the initial phase and beyond
the initial phase. For the initial phase, this chapter addresses several aspects:
the invasion (i.e. the risk of a large outbreak); quantities associated with a
small outbreak; and characteristics of a large outbreak. In a large outbreak
beyond the initial phase, the focus is on its final size. After a review of dis-
tribution theories and stochastic processes, this chapter separately addresses
each of these issues by asking questions such as: Are the latent period and/or
the infectious period distributions playing any role? What is the role of the
contact process for this issue? Is the basic reproduction number R0 sufficient
to address this issue? How many stochastic mechanisms may manifest obser-
vations that may resemble a power-law distribution, and how much detail is
really needed to address this specific issue? etc. This chapter uses distribu-
tion theory and stochastic processes to capture the agent–host–environment
interface during an outbreak of an infectious disease. With different phases
of an outbreak and special issues in mind, modellers need to choose which
detailed aspects of the distributions and the stochastic mechanisms need to
be included, and which detailed aspects need to be ignored. With these dis-
cussions, this chapter provides some syntheses for the concepts and models
discussed in some proceeding chapters, as well as some food for thought for
following chapters on case studies.
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10.1 Introduction

This chapter limits the discussions to human–human transmission through
direct contacts involving an agent (e.g. virus, bacteria, etc.) in a closed popu-
lation. The agent has biological characteristics. The human hosts may differ
in susceptibility. The environment is where contacts and transmissions take
place. One wishes to control the outbreak aimed at preventing a large out-
break from happening. Should it happen, the number of individuals who are
infectious at time t can be approximated by a curve, either symmetrical or
slightly negatively skewed, like that illustrated in Fig. 10.1.

Fig. 10.1 Schematic illustration of the three objectives

Further public health objectives include:

1. Reducing the initial growth of the curve (and delaying the peak)
2. Reducing the peak burden
3. Reducing the final size, defined as the total number of individuals or

the proportion of individuals in the population that will be eventually
infected by the end of the outbreak.

Brauer [1] (Chap. 2 of this book) discussed the initial growth rate and the
maximum value of I(t) for the number of infectious individuals at time t in
a compartment model. The final size of an outbreak was not only discussed
in deterministic compartment models, but also by Allen [2] (Chap. 3 of this
book) with respect to stochastic models. There concepts are also embedded
in network models introduced by Brauer [3] in Chap. 4 of this book.
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10.2 A Review of Some Probability Theory
and Stochastic Processes

10.2.1 Non-negative Random Variables
and Their Distributions

10.2.1.1 The Distribution Functions, the Expectation (Mean)
and the Variance

Most random variables in this chapter, discrete or continuous, take non-
negative values X ≥ 0. The expected (mean) value and variance are denoted
by E[X] and var[X]. The cumulative distribution function (c.d.f.) is denoted
by FX(x) = Pr{X < x} satisfying FX(0) = 0, monotonically increasing, and
FX(∞) = 1. The survivor function is FX(x) = 1 − FX(x) = Pr{X ≥ x}.
The lower case fX(x) is used for the probability density function (p.d.f.)
fX(x) = − d

dxFX(x) = lim
δ→0

Pr{x≤X<x+δ}
δ if X is absolutely continuous; and

for the probability mass function (p.m.f.) fX(x) = FX(x) − FX(x + 1) =
Pr{X = x} if X is discrete taking values x = 0, 1, 2, · · · . fX(x) satisfies
(1) fX(x) > 0; (2)

∑∞
x=0 fX(x) = 1 for discrete and

∫∞
0

fX(x)dx = 1 for
continuous random variable X.

It can be shown that when X ≥ 0,

E[X] =
{∑∞

x=0 FX(x), if X discrete,∫∞
0

FX(x)dx, if X continuous.
(10.1)

10.2.1.2 The Probability Generating Function (p.g.f.)

If X is discrete taking values x = 0, 1, 2, · · · , the probability generating func-
tion, as previously introduced in Allen [2] and Brauer [3], is a mathematical
tool to study its distribution. It is defined as

GX(s) = E
(
sX
)

=
∞∑

x=0

sx Pr{X = x}, (10.2)

satisfying

GX(0) = Pr{X = 0}, GX(1) = 1, G′
X(s) > 0, G′′

X(s) > 0. (10.3)

If the p.m.f. f(x) = Pr{X = x} is given, GX(s) is uniquely defined through
(10.2). If GX(s) is given, provided that it is a smooth function of s with
higher order of derivatives, then
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Pr{X = x} =
1
x!

G
(x)
X (0), x = 0, 1, 2, · · · (10.4)

where G
(x)
X (0) = dx

dsx GX(s)
∣
∣
s=0

, so that the p.m.f. f(x) can be uniquely
generated through GX(s). Calculations of moments and of some probabilities
are very easy. The mean and variance of X are

E[X] = G′
X(1), (10.5)

var[X] = G′′
X(1) + G′

X(1) − (G′
X(1))2 .

10.2.1.3 The Hazard Function

If X is continuous, the hazard function, hX(x) def.= limδ→0
Pr{x≤X<x+δ|X≥x}

δ
uniquely determines the distribution of X, through the relationships fX(x) =
hX(x)FX(x) and FX(x) = exp

(
−
∫ x

0
hX(u)du

)
. The shape of hX(x) can be

used to define and classify families of continuous distributions for X. Some
commonly considered candidates are:

1. Constant: hX(x) = α
2. lim

x→∞
hX(x) = α, but hX(x) is monotone, either increasing or decreasing

3. Monotone with lim
x→∞

hX(x) =
{
∞, if increasing
0, if decreasing

4. Non-monotone: hX(x) initially increases to a maximum value and then
decreases with lim

x→∞
hX(x) = 0.

In the first case when hX(x) = α, FX(x) = exp (−αx) and fX(x) =
α exp (−αx) . This gives the exponential distribution. α is often called rate. If
X represents the infectious period in a Susceptible-Infective-Removed (SIR)
model, α is often referred to as the removal rate. The second equation in (2.1)
of Brauer [1] is a special case of a more general equation

d

dt
I(t) = i(t) −

∫ t

0

i(s) fX(t − s)ds (10.6)

= i(t) −
∫ t

0

i(s) hX(t − s)FX(t − s)ds

where the special case is hX(x) = α and FX(x) = exp (−αx) such that
d
dtI(t) = i(t) − α

∫ t

0
i(s)e−α(t−s)ds. Note that I(t) =

∫ t

0
i(s)e−α(t−s)ds, be-

cause
∫ t

0
i(s)e−α(t−s)ds =

∫ t

0
i(s) Pr{X > t− s}ds is the number of individu-

als infected before t who have not yet been removed. If one further assumes
i(t) = βI(t)S(t), then (10.6) reduces to I ′ = (βS − α) I which is (2.1) of
Brauer [1]. In addition, the exponential distribution has memoryless prop-
erty: Pr{X > x + y|X > x} = exp(−α(x+y))

exp(−αx) = exp (−αy) . For X with expo-
nential distribution, the rate is reciprocal to the mean duration: E[X] = 1

α .
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The exponentially distributed infectious period is the underlying assumption
in the continuous time Markov chain model in Allen [2].

In the second case lim
x→∞

hX(x) = α, a commonly used model is the gamma
distribution with p.d.f.

fX(x) =
α(αx)κ−1

Γ (κ)
e−αx (10.7)

and survivor function FX(x) = ακ

Γ (κ)

∫∞
x

uκ−1e−αudu, where α is a scale pa-
rameter. κ is the shape parameter that determines the shape of the hazard
function. When κ > 1, the hazard is an increasing function of x and when
κ < 1, a decreasing function of x. When κ = 1, it is the exponential distri-
bution. It can be shown that for any κ > 0, hX(x) = fX(x)

F X(x)
→ α as x → ∞.

In the third case, the monotone hazard function satisfies lim
x→∞

hX(x) = ∞,

if increasing, and lim
x→∞

hX(x) = 0, if decreasing. A common choice is hX(x) =

βαβxβ−1, a power function of x such that when β = 1, hX(x) = α; when
β > 1, hX(x) is an increasing function of x and when β < 1, hX(x) is a
decreasing function of x. β is the shape parameter that determines the shape
of the hazard function. The corresponding p.d.f. and the survivor function are
fX(x) = βα (αx)β−1

e−(xα)β

and FX(x) = e−(αx)β

. α is a scale parameter.
This is the Weibull distribution.

Of non-monotone hazard functions that initially increase to a maxi-
mum value and then decrease with lim

x→∞
h(x) = 0, there are two com-

monly used distributions in the literature: the log-normal distribution with

p.d.f. fX(x) = θ
x
√

2π
e

−θ2(log αx)2

2 and the log-logistic distribution with p.d.f.

fX(x) = αθ(αx)θ−1

(1+(αx)θ)2 . In both distributions α is a scale parameter and θ is the

shape parameter.
Another continuous distribution for X used in this chapter is the Pareto

distribution with hazard function hX(x) = ακ
1+αx which is monotonically de-

creasing lim
x→∞

hX(x) = 0. It has p.d.f. fX(x) = κα
(1+αx)κ+1 and survivor func-

tion FX(x) = 1
(1+αx)κ .

10.2.1.4 The Laplace Transform

For a non-negative continuous random variable X, it is sometimes convenient
to work with the Laplace transforms

LX(r) =
∫ ∞

0

e−rxfX(x)dx,
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and its related function L∗
X(r) =

∫∞
0

e−rxFX(x)dx = 1−L(r)
r , provided that

they exist. As a function of r, the following statements hold:

• limr→0 L∗
X(r) =

∫∞
0

FX(x)dx = E[X]
• L∗

X(r) is monotonically decreasing
• limr→∞ L∗

X(r) = 0

10.2.2 Some Important Discrete Random Variables
Representing Count Numbers

10.2.2.1 The Random Number Associated with the Basic
Reproduction Number R0

Let us call an infectious contact a contact at which transmission takes place
[4]. We use the notation N for a discrete valued random variable, defined as

N = the number of infectious contacts made by an infective individual, throughout
its entire infectious period, in a wholly susceptible population.

The expected value of N is the basic reproduction number R0 = E[N ].
Uncertainties are captured by var[N ] as well as the probability distribution
Pr{N = x}, x = 0, 1, 2, · · · . Some public health questions can be sufficiently
addressed by R0 = E[N ] alone. Some other public health questions can be
addressed by the first two moments: E[N ] and var[N ]. For some questions,
one needs to know the precise distribution for N. However, there are many
other important public health issues that are not addressed by the distribu-
tion N. The distribution for N may arise from a combination of the following
stochastic mechanisms:

1. The contact network structure and stochastic features that give rise to
the contact process

2. The individual (host) properties that determine transmissibility per con-
tact, such as host susceptibility

3. The probability distributions of durations of time-to-events, such as the
infectious period.

The same probability distribution Pr{N = x} can arise from different
stochastic mechanisms. For some public health questions, different stochastic
mechanisms may give different answers, even if the probability distribution
Pr{N = x} is the same. For some other public health aspects, different
distributions for Pr{N = x} may give the same answer as long as certain
aspects of the underlying stochastic mechanisms remain the same.
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10.2.2.2 Discrete Random Numbers Associated with the Final
Size of an Outbreak

Calendar time is denoted by t. At t = 0, there are S0 initial susceptible
individuals and I0 initial infectious individuals in a closed population. The
population size n = S0 + I0. S0 and I0 are fixed integers. Under the assump-
tion S0

n ≈ 1 (i.e. S0 is very large) and I0
n = ε ≈ 0 (i.e. I0 is very small),

if infective cases are removed at the end of their infectious period by recov-
ery with immunity, or by complete isolation through intervention, or death,
there may be a proportion of susceptible individuals that eventually escape
from infection when the outbreak is over. The following pair of quantities are
random:

• S∞ = the total number of susceptible individuals who have escaped from
infection in the population

• Z = n − S∞ = the final size, with a probability distribution Pr{Z = z},
z = 1, 2, · · ·

Diekmann and Heesterbeek [5] describe the distinction of a small outbreak
from a large outbreak. Using the random variable Z,

Small outbreak. As n → ∞, the infectious agent produces a handful of cases
and the outbreak becomes extinct, such that the expected number of cases,
E[Z], remains finite. The expected outbreak size as a proportion, E[Z]

n , is
concentrated at zero.

Large outbreak. As n → ∞, the final outbreak size as a proportion is a posi-
tive quantity, such that the expected final outbreak size number scales lin-
early with the size of the susceptible population. In other words, E[Z] → ∞
but E[Z]

n → η where η is a positive quantity, 0 < η < 1.

There are occasions that E[Z] → ∞ but E[Z]
n → 0 (e.g., in the order

∼n
2
3 ). In other words, although the final size as a proportion (scaled to the

population size n) is concentrated at zero, the final outbreak size as absolute
numbers can be very large. In this case, the outbreak size is neither small,
nor large.

10.2.2.3 The Time-to-Extinction of a Small Outbreak

A random variable Tg is defined as the time to extinction at generation
g = 1, 2, 3, · · · , where the event {Tg = g} refers to {no infected case at
generation g and at least one infected case at generation g−1}. The generation
time g is different from the calendar time t. In certain situations, observations
arising from an outbreak can be identified by generation time.
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10.2.2.4 Three Commonly Used Discrete Distributions

Allen [2] used p.g.f. to determine the probability of extinction in the context
of branching processes. Brauer [3] reviewed the use of p.g.f. to characterize
and calculate degree distributions with respect to the spread of diseases over
contact networks. In this chapter, p.g.f. will be used to generate the distribu-
tions for N which is related to the basic reproduction number R0, to derive
probability distributions for the final size Pr{Z = z} in small outbreaks, and
where possible, to derive the probability Pr{Tg = g}.

Table 10.1 Three discrete distributions frequently used in this chapter

fX(x) GX(s) E[X] var[X]

Poisson λx

x!
e−λ e−λ(1−s) λ λ

Geometric λx

(1+λ)x+1
1

1+λ(1−s)
λ λ2 + λ

Neg. binomial
Γ
(

x+ 1
φ

)

Γ (x+1)Γ
(

1
φ

) (λφ)x

(1+λφ)
x+ 1

φ

1

[1+λφ(1−s)]
1
φ

λ φλ2 + λ

Fig. 10.2 Comparing the negative binomial distributions at λ = 3

We use the notation X which could be N , Z or Tg depending on context.
Table 10.1 lists three commonly referred discrete distributions in this chapter.
In discrete distributions, fX(x) = FX(x + 1) − FX(x). The shapes of fX(x)
for these distributions are compared in Fig. 10.2. The Poisson distribution is
a special case of the negative binomial distribution as φ → 0; the geometric
distribution is a special case of the negative binomial distribution as φ = 1.
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10.2.3 Continuous Random Variables Representing
Time-to-Event Durations

In models involving a sequence of events, one may treat each pair of successive
events as an initiating event that leads to a subsequent event over a random
duration X ≥ 0. Durations can be categorized by: (1) the natural history of
infectiousness of an infected individual (e.g. latent and infectious periods);
(2) the natural history of clinical manifestation (e.g. incubation period and
duration of illness); and (3) the reaction time of the public health system
(e.g. time to detect an infection or to isolate an infectious individual).

Table 10.2 Some common durations in infectious disease models

Initiating event Subsequent event DurationX

Infection of a virus Becoming infectious Latent period

Becoming infectious Removal Infectious period
Infection of a virus Onset of symptoms Incubation period

Infection of a virus First positive test (diagnosis) Time to testing

Diagnosis Starting treatment Time to treatment
Diagnosis Isolation Time to isolation

Models are often developed along the event history based on one or a
combination of the three categories. For example, models based on the nat-
ural history of infectiousness of an infected host might be a deterministic or
stochastic SIR or a Susceptible-Latent-Infective-Removed (SEIR) model, like
those discussed in previous chapters.

10.2.3.1 Ordering and Tail Properties of Non-negative
Continuous Random Variables

Very often one wants to compare two non-negative random variables X1 and
X2, either through some overall summary of their distributions, or through
their tail properties. For notational simplicity, we write F 1(x) = FX1(x) and
F 2(x) = FX2(x) hereafter.

Definition 1. X2 is longer than X1 in stochastic order, denoted by X2 ≥st

X1, if corresponding survivor functions F 2(x) ≥ F 1(x) for all x.

In general, F 2(x) ≥ F 1(x) ⇒ E[X2] =
∫∞
0

F 2(x)dx ≥ E[X1] =∫∞
0

F 1(x)dx. The reverse is not true for non-exponential distributions.

Definition 2. X2 is longer than X1 in hazard rate order, denoted by X2 ≥hr

X1, if corresponding hazard functions h2(x) ≤ h1(x), for all x > 0.

Note that X2 ≥hr X1 ⇒ X2 ≥st X1,
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Definition 3. X2 is longer than X1 in Laplace transform order, denoted by
X2 ≥L X1, if L∗

2(r) =
∫∞
0

e−rxF 2(x)dx ≥ L∗
1(r) =

∫∞
0

e−rxF 1(x)dx.

Note that for the Laplace transforms L2(r) =
∫∞
0

e−rxf2(x)dx and
L1(r) =

∫∞
0

e−rxf1(x)dx, X2 ≥L X1 ⇔ L2(r) ≤ L1(r) since L∗
X(r) =

1−LX(r)
r .

In the special case when X is exponentially distributed, with µX = E[X],
the hazard function is hX(x) = 1

µX
; the survivor function is FX(x) = e

− x
µX ;

and L∗
X(r) = µX

1+rµX
. If X2 and X1 are both exponentially distributed, X2 ≥hr

X1 ⇔ X2 ≥st X1 ⇔ X2 ≥L X1 ⇔ E[X2] ≥ E[X1]. In general,

X2 ≥hr X1 ⇒ X2 ≥st X1 ⇒ X2 ≥L X1. (10.8)

Another stochastic property used in this chapter is the relationship be-
tween the hazard function and the tail properties of randomly distributed
durations. Denote Xs = (X − s|X > s) as the residual life of a duration
X conditioning on X > s. If X stands for the infectious period, then Xs

stands for the time remaining to be infectious, after s amount of time since
the beginning of the infectious period. Thus

Pr{Xs > x} = Pr{X > s + x|X > s} =
FX(s + x)

FX(s)

is the survivor function of Xs. Given the hazard function hX(x), it can be
shown that F X(s+x)

F X(s)
= exp

(
−
∫ s+x

s
hX(u)du

)
. This leads to:

1. If hX(x) is strictly increasing with hX(x) → ∞, then F X(s+x)

F X(s)
is a de-

creasing function of s, lims→∞
F X(s+x)

F X(s)
= 0, for any x > 0.

2. If there exists x0 ≥ 0 such that for x > x0, hX(x) is a decreasing function
of x with limx→∞ hX(x) = 0, then

lim
s→∞

FX(s + x)
FX(s)

= 1, for any x > 0. (10.9)

The distribution is said to be heavy tailed if it satisfies (10.9). Intuitively,
if X ever exceeds a large value, then it is just as likely to exceed any
larger value.

3. If hX(x) → α, the distribution has exponential tail

lim
s→∞

FX(s + x)
FX(s)

= e−αx, for any x > 0. (10.10)
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4. A distribution is sub-exponential, if limx→∞
F X(x)

exp(−αx) = ∞, implying that
it has a heavier tail (goes to zero more slowly) than an exponential tail.
All heavy tailed distributions are also sub-exponential.

Another form of heavy tailed distribution is that of the Pareto form, such
that for some θ > 0, A > 0, limx→∞

F X(x)
xθ+1 = A. They are heavy tailed with

power-law property ∝ 1
xθ+1 .

Table 10.3 Comparison of hazard functions and tail properties

p.d.f. fX(x) Hazard hX(x) Pr{Xs > x}, x > 0

Exponential αe−αx Constant
F X (s+x)

F X (s)
= e−αx

α (exponential)

Gamma
α(αx)κ−1

Γ (κ)
e−αx Converge lim

s→∞
F X (s+x)

F X (s)
= e−αx

h(x) → α (exponential)

Weibull βαβxβ−1e−(xα)β
h(x) ↓ 0 lim

s→∞
e
αθ
(

sθ−(s+x)θ
)

= 1

(if β < 1) (heavy, not power-law)

Log-logistic
αθ(αx)θ−1

(1+(αx)θ)2
h(x) ↓ 0 lim

s→∞
1+(αx)θ

1+(α(x+y))θ = 1

After x > x0 (heavy, not power-law)

Log-normal θ
x
√

2π
e

−θ2(log αx)2

2 h(x) ↓ 0 lim
s→∞

F X (s+x)

F X (s)
= 1

After x > x0 (heavy, not power-law)

Pareto κα
(1+αx)κ+1 h(x) = ακ

1+xα
↓ 0 lim

s→∞
(sα+1)κ

(sα+xα+1)κ = 1

(heavy and power-law)

10.2.4 Mixture of Distributions

In a heterogenous population an individual i is associated with a random
variable Xi following a distribution with p.m.f. or p.d.f. f(x|θi) specified up
to a parameter θi. If the heterogeneity can be observed through a vector of
covariates z, say, such as gender, birth date, height, etc., a common practice
in statistics is to model θi as a function of z via a generalized linear model
η(θi) = β1z1 + β2z2 + · · · + βqzq, where η(·) is a link function such that
−∞ < η(θi) < ∞.

If the heterogeneity is not observable, one assumes that θi varies among
individuals as independently and identically distributed (i.i.d.) random vari-
ables with expectation Eθ[·] such that at the population level, one may model
X arising from a distribution given by

fX(x) = Eθ [f(x|θ)] =
∫

θ∈Θ

f(x|θ)dU(θ),
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where U(θ) is a c.d.f. of the mixing distribution.

Example 1. Each individual is associated with an infectious period with a
constant removal rate λi, and λi itself varies across individuals. Then at the
individual level, this leads to an exponentially distributed infectious period
with p.d.f. f(x|λi) = λie

−λix. If λi has a gamma distribution with p.d.f.
u(λ) = λκ−1

ακΓ (κ)e
−λ�α, then the resulting distribution is the Pareto distribu-

tion with p.d.f. fX(x) = κα
(1+αx)κ+1 , survivor function FX(x) = 1

(1+αx)κ and
hazard function hX(x) = ακ

1+xα .

There is often unobservable heterogeneity with respect to the infectious
period, where removal can be due to deaths, recovery, or public health inter-
vention such as isolation. By this example, even at the individual level it is
justified to use an exponentially distributed infectious period with a removal
rate λi, observed data from a population often arise as if the infectious period
follows a distribution with a power-law heavy tail.

10.2.4.1 Mixed Poisson Distributions

Mixed Poisson distributions play a central role in the chapter. It is con-
structed by f(x|λ) = λx

x! e
−λ and an arbitrary mixing distribution U(λ). It is

a discrete distribution with p.m.f. and p.g.f.

fX(x) = Pr{X = x} =
∫ ∞

0

λx

x!
e−λdU(λ)

GX(s) =
∫ ∞

0

eλ(s−1)dU(λ) = Eλ

[
eλ(s−1)

]
.

Example 2. In 1920, Greenwood and Yule [6] derived the negative binomial
distribution as a mixed Poisson distribution. The mixing distribution is a

gamma distribution with p.d.f. u(λ) = 1
φµΓ ( 1

φ )

(
λ

φµ

) 1
φ−1

e−
λ

φµ with E[λ] = µ

and var[λ] = φµ2. The p.m.f. of the mixed Poisson distribution is

fX(x) = Pr{X = x} =
Γ
(
x + 1

φ

)

Γ (1 + x) Γ
(

1
φ

)
(φµ)x

(1 + φµ)x+ 1
φ

(10.11)

and p.g.f. GX(s) = 1

[1+φµ(1−s)]
1
φ

. The mean and variance is E[X] = µ and

var[X] = φµ2 + µ. The special case when φ = 1 gives the exponential dis-
tribution for u(λ) and geometric distribution for Pr{X = x}. The special
case when φ → 0 degenerates u(λ) to a fixed point and results in the Pois-
son distribution. Note that the p.d.f. of gamma distributions displayed in
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Fig. 10.3 shows the remarkable resemblance of the p.m.f. to the negative bi-
nomial distributions in Fig. 10.2.

Fig. 10.3 P.d.f. for gamma distributions with µ = 1 and different φ values

10.2.5 Stochastic Processes

A stochastic process {X(t), t ∈ T} is a collection of random variables. For
each t in the index set T, X(t) is a random variable. If t is referred to as time,
then X(t) is the state of the process at time t. A realization of {X(t), t ∈ T}
is called a sample path. This chapter is restricted to discrete, non-negative
sample paths, that is, for given t, X(t) is a non-negative discrete random
variable taking values x = 0, 1, 2, · · · . The index t can be either discrete, or
continuous. The distribution of X(t) for given t often depends on the past
history of the process Ht = {X(u), 0 < u ≤ t−}. The conditional probability
Pr{X(t) = x|Ht} is meaningful.

If the conditional distribution of the future state at time t + s, given the
present state at time s and all past states, depends only on the present state
and is independent from the past, that is, for all continuous time s, t > 0 and
non-negative integers i, j

Pr{X(t + s) = i|X(s) = i,Hs} = Pr{X(t + s) = i|X(s) = i}, (10.12)

we call it a Markov process. If, in addition, Pr{X(t + s) = i|X(s) = i} =
{X(t) = i|X(0) = i} is independent of s, then the stochastic process {X(t)}
is a continuous time stationary Markov chain.
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10.2.5.1 Continuous Time Markov Chain SIR Model

An SIR model can be expressed as a bivariate continuous time-homogeneous
Markov chain {S(t), I(t)} as described in Allen [2]. At any given time t, both
S(t) and I(t) take integer values. Transitions can only occur from {S(t) = s,
I(t) = i} to {S(t + ∆t) = s − 1, I(t + ∆t) = i + 1} corresponding to a new
infection, or from {S(t) = s, I(t) = i} to {S(t + ∆t) = s, I(t + ∆t) = i − 1}
corresponding to a removal.

Let R(t) be the number of removed individuals at time t; M(t) =
I(t) + R(t) be the total number of infected individuals by time t; and
S(t) + I(t) + R(t) = n, assuming a closed population. {R(t)} and {M(t)}
are also stochastic processes. Let Ht be the history of the epidemic process
up to time t. Under the time stationary Markov chain assumption, the model
in Allen [2] can be re-written as
⎧
⎪⎨

⎪⎩

Pr{dM(t) = 1, dR(t) = 0|Ht} ≈ β S(t)
n I(t)dt,

Pr{dM(t) = 0, dR(t) = 1|Ht} ≈ 1
µI(t)dt,

Pr{dM(t) = 0, dR(t) = 0|Ht} ≈ 1 − β S(t)
n I(t)dt − 1

µI(t)dt.

(10.13)

Assuming the outbreak is originated from a single initial infective, the
stochastic means follow the following renewal-type equations: E[M(t)] =
1 + β

∫ t

0
e−

1
µ xE[M(t − x)]dx, E[R(t)] = 1 − e−

1
µ t + β

∫ t

0
e−

1
µ xE[R(t − x)]dx.

Therefore,

E[I(t)] = e−
1
µ t + β

∫ t

0

e−
1
µ xE[I(t − x)]dx (10.14)

where I(t) = M(t) − R(t). The first term e−
1
µ t in (10.14) is the probability

that the initial infective is still infectious at time t according to an expo-
nentially distributed infectious period. With respect to the integration for
the second term, during the interval (0, t] the initial infective makes many
infectious contacts with a constant rate β, so that the expected number of
infectious contacts at an infinitesimal interval containing x ∈ (0, t] is βe−

1
µ x.

The expected number of individuals who are still infectious at time t evolved
from such contacts at x ∈ (0, t] is E[I(t − x)]. It can be shown that [7]

d

dt
E[I(t)] =

{
βE[S(t)]

n
− 1

µ

}

E [I(t)] +
β

n
cov {S(t), I(t)} (10.15)

where E[S(t)], E[I(t)] and cov {S(t), I(t)} are expected values for the random
variables S(t) and I(t) as well as their covariance at fixed time t.
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Comparison with the Deterministic SIR Model

The deterministic counterpart of (10.13) is
{

d
dtS(t) = −β S(t)

n I(t),
d
dtI(t) =

{
β S(t)

n − 1
µ

}
I(t).

(10.16)

The solution of the deterministic equations is not simply the mean of the
stochastic process since the covariance term in (10.15) is ignored. Never-
theless, for a broad class of processes, the deterministic solution is a good
approximation to the stochastic mean of a major outbreak when n is large.

Fig. 10.4 E[I(t)] by stochastic SIR model compared with its deterministic counterpart,

from Bailey [8]
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Bailey [8] gives a thorough discussion of the properties of deterministic
and stochastic versions of the SIR model, along with comparisons of E[I(t)]
(stochastic model) versus I(t) (deterministic model) for n = 10 and n = 20.
These are reproduced as Fig. 10.4.

10.2.5.2 Counting Processes

A counting process {K(t), t ∈ [0,∞)} is a stochastic process with the mean-
ing:

K(t) = cumulative number of events by time t.

K(t) is a non-negative integer random variable for fixed time t, non-decreasing
(K(s) ≤ K(t), if s < t) and K(t) − K(s) equals the number of events in the
interval (s, t]. For example, {R(t)} and {M(t)} in (10.13) are counting pro-
cesses. The derivative β(x) = d

dxE[K(x)] is the instantaneous increment of
the counting process {K(x)}. A counting process is said to have independent
increment, if the numbers of events in disjoint intervals are independent. A
counting process is said to have stationary increment, if the distribution of
numbers of events that occur in any time interval depends only on the length
of the time interval. For a stationary increment process, β(x) = constant β.

The Stationary Poisson Process

The stationary Poisson process is a counting process satisfying both the
independent increment and the stationary increment properties. In addi-
tion, it satisfies K(0) = 0. It is also a stationary Markov chain with
Pr{K(t + ∆t) = k + 1|K(t) = k,Ht} = Pr{K(∆t) = 1|K(0) = 0} such that
Pr{K(∆t) = 1|K(0) = 0} = λ∆t+o(∆t), Pr{K(∆t) ≥ 2|K(0) = 0} = o(∆t),
where λ is call the intensity of the process. It has the property

Pr{K(t + s) − K(s) = k} = Pr{K(t) = k} =
(λt)k

k!
e−λt

so that the number of events in an interval of length t is Poisson distributed
with mean and variance E [K(t)] = var [K(t)] = λt.

An important consequence of the independent increment and the station-
ary increment properties is that, if we denote X1 the time to the first event,
and for k ≥ 1, Xk the time between the (k − 1)th and the kth events, then
Xk : k = 1, 2, · · · are i.i.d. exponentially distributed random variables with
mean 1

λ . (X1,X2, · · · ,Xk) are called inter-arrival times between events.
Let Y1 = X1, Y2 = X1+X2, · · · , Yk = X1+X2+ · · ·+Xk denote the times

that events occur, it can be further shown that, conditioning on K(t) = k, the
k arrival times of events (Y1, Y2, · · · , Yk) have the same distribution as the
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order statistics corresponding to k independent uniformly distributed random
variables on the interval (0, t).

Mixed Poisson Process

Analogue to the mixed Poisson distributions, if individual i is associated
with a Poisson process with intensity λi which varies across individuals and
if factors resulting in the heterogeneity cannot be observed or at present
understood, one may consider a random variable ξ > 0 with E[ξ] = λ and
var[ξ] = σ > 0. This model is expressed by a conditional process {K(t)|ξ}
and a marginal process {K(t)}.

At the individual level, the cumulative number of infectious contacts is the
conditional process {K(t)|ξ} and is assumed to follow a Poisson process with
intensity rate ξ. The mean and variance are

E[K(t)|ξ] = var[K(t)|ξ] = ξt. (10.17)

The process as seen at the cohort level is the marginal process {K(t)} and is a
mixed Poisson process, of which, for given time t, the probability Pr{K(t) =
k} is

Pr{K(t) = k} =
∫ ∞

0

(ξt)k

k!
e−ξtdU(ξ). (10.18)

For given t, one can write the p.g.f. for K(t) as

GK(s, t) =
∫ ∞

0

eξt(s−1)dU(ξ) = Eξ[(et(s−1))ξ]. (10.19)

Proposition 1. The mixed Poisson process {K(t)} is not a Poisson process.
It preserves the stationary increment of the Poisson process, but loses the
independent increment property.

To show it is not a Poisson process, it is only necessary to notice that

E[K(t)] = E{E[K(t)|ξ]} = λx (10.20)
var[K(t)] = E{var[K(t)|ξ]} + var{E[K(t)|ξ}

= λx + σ(λx)2 > E[K(t)].

To prove that {K(t)} does not have independent increment, one only needs
to show that Pr{K(s) = k,K(s + t) − K(s) = l} 
= Pr{K(s) = k}Pr{K(s +
t) − K(s) = l}.

Unlike the Poisson process where E[X1] = 1
λ , in the mixed Poisson process,

E[X1] > 1
λ as explained by Jensen’s inequality,

E[X1] = E{E[X1|ξ]} = E

[
1
ξ

]

>
1

E [ξ]
=

1
λ

.



246 P. Yan

10.2.5.3 Branching Processes

Consider a population consisting of individuals or particles able to produce
offspring of the same kind. Each individual i is associated with a generation
time TG and by the end of TG, it produces a random number Ni of new
offsprings. We use g = 0, 1, 2, · · · as the discrete time unit to represent gen-
erations. Let X0 be the number of individuals initially present at the zeroth
generation. All offsprings of the zeroth generation constitute the first gen-
eration and their number is denoted by X1. Let Xg denote the size of the
gth generation. Given Xg−1, if the distribution of Xg only depends on Xg−1,
then {Xg} is a discrete time Markov chain. This process {Xg} is called a
branching process. Suppose that X0 = 1, we can calculate

Xg =
Xg−1∑

i=0

Ni.

In most branching processes, it is assumed that Ni is i.i.d. according to a
random variable N which does not vary over generations. We say a branching
process becomes extinct at generation g, if Xg−1 > 0 but Xg = 0. In such
case, we denote Z =

∑
g Xg as the final size upon extinction.

Branching processes are often used in infectious disease epidemiology to
approximate the initial stage of an outbreak, where the depletion of the num-
ber of susceptible individuals is negligible. A discrete time branching process
that is well studied in the literature is the Galton–Watson process.

Galton–Watson process. Each infected individual is associated with a fixed
length of generation time TG. At its end, this individual produces a random
number of N secondary infections.

There are various types of continuous time branching processes.

Bellman–Harris processes. Infected individuals have independently and ar-
bitrarily distributed generation time TG. Each individual produces a ran-
dom number of N secondary infections only at the end of the generation
time. TG and N are independent.

Crump–Mode–Jagers (CMJ) processes. Infected individuals have indepen-
dently and arbitrarily distributed generation time TG. Throughout the
generation time, each individual produces secondary infections according
to a counting process {K(x)}. Different individuals follow the same count-
ing process. It is assumed that the generation time TG and {K(x)} are
independent. By the end of the generation time, an infected individual
produces a random number of N secondary infections.

The CMJ processes have been used to approximate the early phase of the
SIR models [9,10]), where the generation time TG has the meaning of the
infectious period.
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In an SEIR model, let us denote TE as the latent period during which an
infected individual is unable to transmit the disease and TI as the infectious
period during which an infected individual is able to transmit the disease, and
let TG = TE +TI . If the infectious period degenerates to µ = E[TI ] → 0, such
that by the end of the latent period, the infected individual instantly produces
N new infections and is removed, then TG = TE and the branching process
approximations are Bellman–Harris processes, including special cases (1) the
Markov branching process assuming TE is exponentially distributed; (2) the
Galton–Watson process assuming TE is non-random. If there is no latent
period, TG = TI , the branching process approximations are CMJ processes.
Therefore, we get:

Combined Bellman–Harris–CMJ processes. TE and TI are independent. TE

is random with an arbitrary but specified distribution. Only after TE

amount of time has elapsed, an infected individual can produce secondary
infections according to a CMJ process.

In these branching processes, there is an embedded Galton–Watson branch-
ing process to track the generations. The basic reproduction number corre-
sponds to the mean value of this embedded Galton–Watson branching pro-
cess with R0 = E[N ]. A schematic illustration of these branching processes
is given in Fig. 10.5.

Fig. 10.5 Illustrations of branching processes in the context of SEIR models
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10.2.6 Random Graph and Random Graph Process

As introduced in Brauer [3], a graph G consists of a set of vertices V =
{v1, ..., vn} and a set of pairs of distinct vertices called edges. The degree of a
vertex vi is the number of vertices adjacent to it which is the number of edges
attached to vertex vi. A subgraph G′ is a graph whose vertices and edges
form subsets of the vertices and edges of a given graph G. A component is a
connected subgraph. A graph may consist of a number of disjoint components.
The size of a graph is n = the total number of vertices.

10.2.6.1 Random Graph

A random graph is obtained by starting with a set of n vertices and adding
edges between them at random. The degrees in a random graph are ran-
dom associated with the degree distribution. In addition, a random graph has
several measures on its geometry, such as measures on its connectivity, diam-
eter, sizes of its components, clustering coefficient, etc. All these measures are
outcomes of random events. Different random graph models produce different
probability distributions on graphs.

10.2.6.2 Random Graph Processes

If new edges are added to vertices according to some stochastic processes over
time, then it becomes a random graph process. It has not only a time dimen-
sion, but also a spatial dimension. At any snapshot at time t, one observes
a realization of a random graph Gt. This is analogous to a random variable
X versus a stochastic process {X(t)}. One may aggregate, or superimpose,
these random graphs per unit of time over a fixed period of time. The result
is still a random graph. This gives an analogy to the counting process.

Similar to such concepts as independent increment, stationary increment,
Markov, etc. that determine the temporal growth of the counting processes
(e.g. the distribution of inter-arrival times and arrival times of events in a
Poisson process), one may develop concepts to capture the spatial-temporal
growth of random graph processes.

10.2.6.3 Infectious Disease Transmission as a Subgraph
in a Random Graph Process

Individuals are represented by vertices. Contacts are represented by edges.
(Social) contacts can be regarded as a random graph process by itself. Con-
tacts made over a fixed period of time is a random graph.
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An infectious contact is a contact at which a transmission of infection
takes place, and hence all infectious contacts during the same period make
a subgraph. The geometry of this subgraph is different from the graph that
represents social contacts. This subgraph grows along a tree, because if three
individuals {a, b, c} are friends forming a triangle relationship, and if individ-
ual a infects both individuals {b, c} , then b and c can not infect each other.
The social contact random graph may contain triangles and loops, as illus-
trated by broken lines in Fig. 10.6. The subgraph of infectious contacts can
not. This tree – like subgraph, illustrated in Fig. 10.6 by edges, may resemble
a realization of an embedded Galton–Watson branching process. However,
its growth is limited to the social contact network of susceptible individuals.
Only when the number of susceptible individuals is very large can the initial
growth of the subgraph be approximated by such a branching process.

Fig. 10.6 A random graph with several connected components, and a subgraph of infec-
tious contacts

10.3 Formulating the Infectious Contact Process

The infectious contacts arise from a combination of two aspects:

1. The environment. The social contact network of individuals in a pop-
ulation as a random graph process, determined by the temporal and
spatial network properties, such as whether the network is directed, the
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neighbourhood structure of the network, clustering, its growth over time
(e.g. stationary increment), etc.

2. The hosts. (1) Whether all susceptible individuals are of the same type
with equal susceptibility and (2) whether all infectious individuals have
equal ability to infect others, so that the probability of transmission per
contact, does not vary by contact to contact. If either (1) or (2) is not
true, there exists heterogeneity among hosts and this is the intrinsic het-
erogeneity.

Let x denote the time measured along a typical infectious individual, start-
ing from the beginning of the infectious period at x = 0. Following Bartlett
[9], and Mode and Sleeman [10], we use a counting process over the time
period {K(x), x ∈ [0,∞)} where

K(x) = cumulative number of infectious contacts by time x.

This process is illustrated in Fig. 10.7, which is (c) in Fig. 10.5.

Fig. 10.7 Event history and the point process for a typical infected individual by time x
since the beginning of the infectious period

When an individual is still in the latent period, we write x < 0. Given
x ≥ 0, K(x) is non-negative integer random variable with p.g.f. GK(s, x) =
E[sK(x)] =

∑∞
k=0 sk Pr{K(x) = k} and mean value E[K(x)]. We use the

notation FI(x) = Pr{TI < x} for the c.d.f. of the infectious period TI . The
mean infectious period is denoted by µ = E[TI ]. Transmission occurs only
when an infected individual is still infectious. The counting process {K(x)}
stops when the infectious period TI expires (removal). It is assumed that
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{K(x)} and TI are independent. TI serves as a random stopping time of the
process {K(x)}.

10.3.1 The Expressions for R0 and the Distribution
of N such that R0 = E[N ]

Let time τ denote that time since infection of a typical infectious individual.
A generic expression for R0 is given by the equation [5]

R0 =
∫ ∞

0

β(τ)A(τ)dτ (10.21)

where A(τ) is the probability that at time τ since infection the individual
is infectious. In other words, A(τ) = Pr{TE ≤ τ ∩ TE + TI > τ}. β(τ)
is associated with the property of a counting process that generates new
infectious individuals during the infectious period. The product β(τ)A(τ) is
the expected infectivity at time τ after infection.

If TE and TI are independent and if at time τ since infection, an individual
is infectious, then τ ≥ TE and TI > τ − TE . Therefore,

A(τ) =
∫ τ

0

F I(τ − x)fE(x)dx = FE+I(τ) − FE(τ), (10.22)

which can be easily proven since FE+I(τ) =
∫∞

τ

∫ y

0
fI(y − x)fE(x)dxdy and

FE(τ) =
∫∞

τ
fE(x)dx. fE(x) and fI(x) are the p.d.f.’s of TE and TI , respec-

tively. Therefore,
∫ ∞

0

A(τ)dτ =
∫ ∞

0

FE+I(τ)dτ −
∫ ∞

0

FE(τ)dτ

= E[TE + TI ] − E[TE ] = E[TI ] =
∫ ∞

0

F I(τ)dx = µ.

We first show that the formulation of R0 does not depend on any as-
sumption on the latent period, during which transmission does not occur.
For an individual with observed latent period TE = tE , β(τ) = 0, if τ ≤ tE ;
β(τ) = β(x), if τ > TE , TI > τ −TE , where x = τ − tE . The equation (10.21)
becomes R0 =

∫∞
tE

β(τ)A(τ)dτ =
∫∞
0

β(x)A(x + tE)dx. One can also show
that (exercise), A(x + tE) = F I(x). Therefore

R0 =
∫ ∞

0

β(x)F I(x)dx. (10.23)

Furthermore, if the counting process {K(x)} has stationary increment:
β(x) ≡ β, then
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R0 = βµ. (10.24)

β > 0 is a parameter that captures the transmission rate in the agent–host–
environment interface. It can be further sub-modelled to reflect the agent–
host–environment interface. A frequently seen expression is β = λp so that
R0 = λpµ. p is the probability of transmission per contact between an infec-
tious host and a susceptible host. λ is the average number of contacts among
hosts per unit of time in the environment. The control measure for β may
be further categorized into interventions designed to alter the social-contact
network and designed to alter the transmission probability.

One may also model β = ab where a measures the infectivity of an in-
fectious individual who comes in contact with a susceptible individual, for
whom, the susceptibility is measured by b. For example, to model the way
individuals respond to vaccination, an individual may respond to vaccination
with a change in their susceptibility to infection and if ever infected, their
infectivity may change from what it is without vaccination. For reference,
one may consult Becker and Starczak [11] which leads to references to many
more publications in this area.

Formation of R0 by a multiplicative relationship is useful for statistical
analyses and is thus of much public health interest. It leads to a log-linear
model to explore the controlled reproduction number Rc:

log Rc = log R0 + covariates (10.25)

where covariates are associated with intervention measures, such as social dis-
tancing, vaccination, treatment of infected individuals with anti-viral drugs,
or altering the duration of infectiousness such as rapid isolation of identi-
fied infectious individuals. If the probability distribution for N such that
R0 = E[N ] is known, the (10.25) leads to the use of generalized linear regres-
sion analyses for exploring the effectiveness of these intervention measures
aided by statistical packages.

An immediate generalization of (10.24) is when the infectious period can
be divided into stages T

(1)
I → T

(2)
I → · · · → T

(l)
I , where the duration T

(j)
I is

associated with distribution Fj(x) with mean µj . Let βj(x) = d
dxE[Kj(x)].

It can be shown that R0 =
∑l

j=1

∫∞
0

βj(x)F j(x)dx [10, p. 205]. In this case,
the infectious contact process may not have stationary increment over the
entire infectious period but has piecewise stationary increment within each
stage so that βj(x) = βj . (10.24) becomes

R0 = β1µ1 + β2µ2 + · · · + βlµl. (10.26)

In order to derive the distribution for N, denote

N(x) =
{

K(x), 0 < x < TI

K(TI). x ≥ TI .
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For fixed x, N(x) is also a random variable with p.g.f.

GN (s, x) =
∞∑

j=0

sj Pr{N(x) = j}.

It has been shown that [10, pp. 177–178] the following two recursive formulae
hold:

E[N(x)] = [1 − FI(x)] E[K(x)] +
∫ x

0

E[K(u)]dFI(u), (10.27a)

GN (s, x) = [1 − FI(x)] GK(s, x) +
∫ x

0

GK(s, u)dFI(u). (10.27b)

N = N(∞) is the cumulative number of infectious contacts generated by
an infectious individual throughout its entire infectious period. Let GN (s) =∑∞

x=0 sx Pr{N = x} be the p.g.f. for N. GN (s) uniquely defines the distribu-
tion Pr{N = x} following the relationship (10.4). GN (s) can be derived from
(10.27b):

GN (s) = lim
x→∞

GN (s, x) =
∫ ∞

0

GK(s, x)dFI(x). (10.28)

The mean and variance of N can be evaluated by (10.5), specifically, R0 =
G′

N (1). It can be also shown that (10.23) can be obtained through integration
by parts of (10.27a) so that E[N(x)] =

∫ x

0
β(u)F I(x)du.

The equation (10.28) implies that the probability distribution of N does
not depend on the distribution of the latent period TE , but depends on:

1. The infectious contact process {K(x)}, with p.d.f. GK(s, x) incorporating
properties of the contact process and the probability of transmission per
contact

2. The infectious period distribution FI(x) = Pr{TI ≤ x}
However, differently specified infectious contact processes defined by

GK(s, x) and infectious period distributions FI(x) may result in the same
probability distribution for N and the same R0. We shall see later in this
chapter that for some public health applications, such as determining the
risk of whether a large outbreak may occur, or the distribution of the final
size η (in E[Z]

n → η) should a large outbreak occur, knowing R0 will be suf-
ficient. For some applications, one requires the knowledge of the distribution
for N. Once the distribution for N is determined, one can use theories for
the embedded Galton–Watson branching process to calculate quantities such
as the probability of a small outbreak π, the final size of the small outbreak
Pr{Z = z} and the probability of time to extinction Pr{Tg = g}. Yet there
are also applications where the detailed distribution for N is not sufficient.
One also needs to know the underlying stochastic mechanisms such as the
property of the counting process {K(x), x ∈ [0,∞)}, the distribution of the
latent period TE and the distribution of the infectious period TI .
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10.3.2 Competing Risks, Independence
and Homogeneity in the Transmission
of Infectious Diseases

Competing risk comes from survival analysis on a non-negative random vari-
able X > 0 associated with a “lifetime”. In a continuous framework, X is
associated with a hazard function h(x) for “failure”. In the competing risk
model, when failure occurs, it may be one of m distinct causes or types,
denoted by J ∈ {1, 2, ...,m}. The overall hazard function is the sum of type-
specific hazard functions h(x) =

∑m
j=1 hj(x) where

hj(x) = lim
∆→0

Pr{x < X ≤ ∆;J = j|X > x}
∆

.

Example 3. In Fig. 10.7, if we define Yk = X1 + · · ·+ Xk, Yk > 0 is a random
variable. Let T = min(Yk,W ). T > 0 is a random variable representing
either the infectious individual is removed or the individual produces its kth
infectious contact. The probability distribution for T arises from a competing
risk framework.

Example 4. In a contact network, let us consider a vertex v is a susceptible
individual attached to m edges, representing m neighbouring vertices with
on-going social contacts with vertex v. All the m neighbours are infectious.
Let T be the time until vertex v become infected. The type-specific hazard
function hj(t) represents the instantaneous risk of infection being transmitted
by the jth neighbouring vertex.

The word independence in the study of infectious diseases has several dif-
ferent aspects.

1. The counting process {K(x)} and the infectious period TI are indepen-
dent. This also implies that in the competing risk framework in Exam-
ple 3, Yk and TI are independent for all k.

2. Viewing the transmission as random graphs, if one randomly chooses a
vertex v to be the initial infective, this vertex makes independent infec-
tious contacts (i.e. adding edges) with other susceptible vertices through-
out its infectious period.

3. If one randomly chooses a vertex v to be a susceptible individual, trans-
mission of infection to this individual by any of its neighbouring infectious
individuals is independent from potential transmission from other neigh-
bouring infectious individuals.

If both 2 and 3 hold true, then we say that infectious contacts between
different pairs are mutually independent.

The word homogeneity also consists of three aspects.
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1. The population is homogeneously mixed. An individual makes contacts
with other individuals with the same probability. As the population size
→ ∞, the contact process itself is a stationary Poisson process with
constant intensity λ.

2. The hosts are homogeneous. All individuals are of the same type the
probability of transmission per contact between each pair of an infectious
individual and a susceptible individual is a constant p.

3. The infectious period from all infected individuals are equal to some
constant µ with FI(x) given by (10.29)

FI(x) =
{

0, x ≤ µ
1, x > µ

(10.29)

such that E[TI ] = µ and var[TI ] = 0.

Violations to one or a combination of the above assumptions result in
heterogeneous transmission.

10.4 Some Models Under Stationary Increment
Infectious Contact Process {K(x)}

If {K(x)} satisfies stationary increment E[K(x)] = βx so that β(x) =
d
dxE[K(x)] = β (constant), (10.23) has a simpler expression R0 = βµ where
µ = E[TI ] =

∫∞
0

F I(x)dx is the mean infectious period.

10.4.1 Classification of some Epidemics Where N
Arises from the Mixed Poisson Processes

Since the distribution of N does not depend on the distribution of the latent
period, we restrict discussion to the case where the latent period is absent. In
the expression GN (s) =

∫∞
0

GK(s, x)dFI(x), differently specified infectious
contact process {K(x)} defined by GK(s, x) and infectious period distribution
FI(x) may result in the same probability distribution for N at the macro
level, with very different characteristics at the micro level. Some models are
classified below as mixed Poisson processes.

10.4.1.1 The Poisson Epidemic

The assumptions are: (1) the infectious contact process is a Poisson process
with G(s, x) = eβx(s−1); (2) contacts between different pairs are mutually
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independent; (3) the infectious period from all infected individuals are equal
to some constant µ with FI(x) given by (10.29). Under this model,

GN (s) = eβµ(s−1) = eR0(s−1). (10.30)

Hence N is also Poisson distributed.

10.4.1.2 The Randomized Epidemic

This terminology is used in von Bahr and Martin-Löf [12]. The model assumes
that the infectious periods from all infected individuals are equal to some
constant µ with FI(x) given by (10.29). β is further sub-modelled as β = λp
where p is a random probability with itself following some distribution Fp

so that β = λE[p]. In this case, it can be shown (later) that GK(s, x) =∫
p
eλpx(s−1)dFp = Ep

[
eλpx(s−1)

]
. Under this model, GN (s) = Ep

[
eλpµ(s−1)

]
.

Without losing generality, we extend the above by assuming that factors
resulting in heterogeneous mixing and/or heterogeneous transmission are not
at present understood and the product ξ = λp is a random variable following
some distribution U(ξ) with E[ξ] = β. Therefore GK(s, x) = Eξ[eξx(s−1)] and

GN (s) = Eξ[eξµ(s−1)]. (10.31)

Provided that the mixing distribution U(ξ) is specified, GN (s) uniquely de-
fines the distribution of N as a mixed Poisson distribution.

10.4.1.3 The Generalized Epidemic

This terminology is used in Lefèvre and Utev [13]. The assumptions are: (1)
the infectious contact process is a Poisson process with G(s, x) = eβx(s−1);
(2) contacts between different pairs are mutually independent; (3) the in-
fectious periods from all infected individuals are i.i.d. following an arbitrary
distribution FI(x). Using (10.28),

GN (s) =
∫ ∞

0

eβx(s−1)dFI(x) = ETI

[
eβTI(s−1)

]
. (10.32)

One notices the duality between (10.31) and (10.32). As far as the distribution
for N is concerned, the generalized epidemic and the randomized epidemic
models can be unified as one mixed Poisson model with

GN (s) =
∫ ∞

0

eρ(s−1)dU(ρ) = Eρ

[
eρ(s−1)

]
(10.33)

with a mixing distribution U(ρ). In (10.32), ρ is re-scaled as ρ = βTI where
β is a constant and TI is random such that E[ρ] = βµ. In (10.31), ρ is



10 Stochastic Processes in Infectious Disease Modelling 257

re-scaled as ρ = ξµ where µ is constant, but ξ is random. It implies that, if
one starts with a simple Poisson distribution with p.g.f. eρ(s−1) and chooses
a mixing distribution U(ρ), the resulting distribution obtained by (10.33)
can be interpreted as arising either from a generalized epidemic with an
appropriately chosen infectious period distribution, or from a randomized
epidemic with an appropriately chosen distribution for ξ.

The General, or the Kermack–McKendrick, Epidemic

This is a special case of the generalized epidemic, by assuming FI(x) =
1 − e−

x
µ in (10.32). The p.d.f. is FI(x) = 1

µe−
x
µ with E[TI ] = µ. Under this

model, (10.32) becomes

GN (s) =
1
µ

∫ ∞

0

eβx(s−1)e−
x
µ dx =

1
1 + βµ(1 − s)

.

This p.g.f. gives the geometric distribution for N with R0 = βµ. This corre-
sponds to the underlying assumption for both the deterministic SIR model
and its stochastic counterpart, the bivariate Markov chain SIR model. Bailey
[8] gave it the name the general epidemic. A better name for this may be the
Kermack–McKendrick epidemic to reflect its early origins [14].

10.4.1.4 The Randomized and Generalized Epidemics

The infectious contact process {K(x)} is a mixed Poisson process under
the same assumptions as that in the randomized epidemic model, with
GK(s, x) = Eξ[eξx(s−1)]. The infectious periods from all infected individu-
als are i.i.d. following an arbitrary distribution FI(x), as that assumed in the
generalized epidemic model, then

GN (s) =
∫ ∞

0

Eξ[eξx(s−1)]dFI(x) = ETI

[
Eξ[eξTI(s−1)]

]
. (10.34)

With respect to (10.34), let ρ = ξTI . Conditioning on TI = x, ξ is random
and hence the conditional distribution for ρ, U1(ρ|x), depends on parameter
x. The integrand Eξ[eξx(s−1)] can be regarded as a mixed Poisson distribu-
tion with p.g.f.

∫
ρ
eρ(s−1)dU1(ρ|x). Provided no dependencies between the

parameters of the distributions considered, one can re-write (10.34) as
∫

ρ

eρ(s−1)

(∫

x

dU1(ρ|x)dFI(x)
)

=
∫

ρ

eρ(s−1)dU(ρ)
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so that it can be also unified as a mixed Poisson distribution with the mixing
distribution U(ρ) as a random mixture of two mixing distributions U1(ρ|x)
and FI(x).

The unification among (10.32), (10.31) and (10.34) is helpful to reduce
redundancy of proof for some theories. This unification can be only applied
to address certain aspects of an outbreak, such as the assessment of the risk of
a large outbreak and the final size, of which, the knowledge of the distribution
of N, uniquely defined by the p.g.f. GN (s), is sufficient.

10.4.2 Tail Properties for N

Karlis and Xekalaki [15] pointed out that the shape of the p.m.f. of a mixed
Poisson distribution exhibits a resemblance to that of the p.d.f. of the mixing
distribution u(λ). Lynch [16] proved that mixing carries the form of the mix-
ing distribution over to the resulting mixed distribution in general. Tail prop-
erties of some commonly used probability models for continuous non-negative
random variables have been summarized in Table 10.3. We now compare the
shape of the distributions for N generated by p.g.f.

∫
ρ
eρ(s−1)dU(ρ) with that

of their mixing distributions U(ρ).

10.4.2.1 N Distributed According to Geometric
and Negative-Binomial Distributions

Figures 10.3 and 10.2 illustrate that the shape of the geometric distribution
resembles that of the exponential distribution and the shape of the negative
binomial distribution resembles that of the gamma distribution. We may
re-parametrize the negative-binomial distribution (10.11) as Pr{N = x} =

Γ (x+ 1
φ )

Γ (x+1)Γ ( 1
φ )

ς
1
φ (1 − ς)x by letting ζ = 1

1+φµ . The geometric distribution is a

special case ς (1 − ς)x
.

1. The geometric distribution has exponential tail because for any x,
FN (x) =

∑∞
l=x ς (1 − ς)l = (1 − ς)x = e−

x
τ where 1

τ = − log (1 − ς) .

Hence F N (s+x)

F N (s)
= e−

x
τ .

2. The negative binomial distribution has exponential tail when φ > 1. In
fact, from page 210 of Johnson, Kotz and Kemp [17]

Pr{N ≥ x} =

∞∑

l=x

Γ (l + 1
φ )

Γ (l + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)l = fN (x)2F1[1, x +

1

φ
; x + 1; 1 − ς]

where fN (x) = Pr{N = x} and 2F1[a, b; c;x] is the Gaussian hypergeomet-
ric function. If c > b > 0, 2F1[a, b; c;x] = Γ (c)

Γ (b)Γ (c−b)

∫ 1

0
υb−1(1−υ)c−b−1

(1−υx)a dυ.



10 Stochastic Processes in Infectious Disease Modelling 259

When φ > 1,

FN (s + x)
FN (s)

=
fN (s + x)

fN (s)
2F1[1, s + x + 1

φ ; s + x + 1; 1 − ς]

2F1[1, x + 1
φ ;x + 1; 1 − ς]

=

∫ 1

0
υ

x+s+ 1
φ

−1
(1−υ)

− 1
φ

1−υ(1−ς) dυ

∫ 1

0
υ

x+ 1
φ

−1
(1−υ)

− 1
φ

1−υ(1−ς) dυ

(1 − ς)x → e−
x
τ , as s → ∞.

10.4.2.2 A Distribution Commonly Used in Social Networks
Modelling for Infectious Diseases

A distribution with supports 1, 2, · · · given by

Pr{N = x} = Cx−θe−
x
τ , x = 1, 2, 3, · · · (10.35)

where C = Li−1
θ

(
e−

1
τ

)
is the normalizing factor and Liθ (z) =

∑∞
n=1

zn

nθ , was
mentioned in Brauer [3]. It has been used in modelling the spread of infectious
diseases on scale-free networks by Newman [18]; Meyers, Pourbohloul et al.
[19] and many others.

• If θ → 0, (10.35) returns to the (zero-truncated) geometric distribution
x−θe− x

τ

Liθ

(
e− 1

τ

) → (1 − e−
1
τ )e−

x−1
τ , x = 1, 2, 3, · · · .

• If τ → ∞, (10.35) has the limiting distribution as the Zipf distribution
x−θe− x

τ

Liθ

(
e− 1

τ

) → 1
ς(θ)x

−θ where ζ(θ) =
∑∞

n=1
1

nθ .

When τ < ∞, the tail of this distribution is exponential. As s → ∞,

Pr{N ≥ s + x}
Pr{N ≥ s} =

∑∞
j=s+x j−θe−

j
τ

∑∞
j=s j−θe−

j
τ

= e−
x
τ

∑∞
j=s (j + x)−θ

e−
j
τ

∑∞
j=s j−θe−

j
τ

→ e−
x
τ .

There are many possible stochastic mechanisms for which a distribution
like (10.35) may arise. One of them is a generalized epidemic model aris-
ing from mixed Poisson distributions p.g.f.

∫∞
0

eβx(s−1)dFI(x), where the
infectious period W arises from a competing process. For some individuals,
the infectious period arises from an exponential distribution with constant
hazard he(x) = γ as the removal rate. For other individuals, the infectious
period follows a generally very short but highly skewed distribution, which
may be fitted well with a Pareto form, with the hazard function expressed
by hp(x) = αθ

1+αx . This scenario may arise if identified infectious individuals
are aggressively isolated during an outbreak. The survivor function of the in-
fectious period has a shape of that of a Pareto distribution with exponential
cut-off:
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F I(x) = exp
(

−
∫ x

0

(

γ +
αθ

1 + αt

)

dt

)

=
αθ

(1 + αx)θ
e−γx, α, γ, θ > 0.

It has an exponential tail:

F I(s + x)
F I(x)

=
(1 + αs)θ

(1 + αs + αx)θ
e−γx → e−γx, as s → ∞.

Although the exact distribution for N ,

Pr{N = j} =
αθ

j!

∫ ∞

0

(βx)j (θα + γ (1 + αx))

(1 + αx)θ+1
e−(β+γ)xdx

may not be easy to calculate, we may use the results in Karlis and Xekalaki
[15] to argue that it carries the shape of the mixing distribution F I(x) which
is a continuous analogue of (10.35).

10.4.2.3 Discrete Power-Law Distributions as Mixed Distributions

The term “scale-free” [20] refers to networks with degrees following a power-
law distribution with Pr{N = x} ∝ 1

xθ+1 . Scale-free models have gained much
attention in infectious disease literature. Liljeros et al. [21] used the power-law
distribution to model the web of sexual contacts with implication of studying
sexually transmitted infections. A discrete power-law distribution is the Zipf
distribution 1

ς(θ+1)x
−(θ+1), a discrete analogue to the continuous Pareto dis-

tribution. In a general sense, any distribution such that limx→∞
F (x)
xθ+1 = A, for

some θ > 0, A > 0 is a power-law distribution. Romillard and Theodorescu
[22] showed that certain Poisson mixtures are power-law.

A class of power-law distributions have the form with p.m.f.

Pr{N = x} =

{
θ Γ (x+α)Γ (α+θ)

Γ (α)Γ (x+α+θ+1) , θ > 0, α > 0

θ Γ (x+1)Γ (θ+1)
Γ (x+θ+2) , special case α = 1

(10.36)

which is the Waring distribution given by (6.149) and the special case Yule
distribution corresponding to (6.139) when α = 1 of Johnson, Kotz and
Kemp [17]. The mean and variance may not exist. The first moment exists:
E[N ] < ∞ only if θ > 1. Using the Barnes expansion [17, p. 6],

Γ (x + α)
Γ (x + α + θ + 1)

≈ 1
xθ+1

(

1 − (θ + 1)(θ + 2α)
2x

+ · · ·
)
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it shows that when x is sufficiently large, the Waring and the Yule distribution
follow the power-law property: ∝ 1

xθ+1 where the parameter α plays little role.
The Waring (Yule) distribution can be generated as a mixture of the neg-

ative binomial distribution of the general form

Γ (x + 1
φ )

Γ (x + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)x , 0 < ζ < 1. (10.37)

If one takes a one-parameter Beta distribution u(ς) = θςθ−1 as the mixing
distribution onto a negative binomial, then

Pr{N = x} =
Γ (x + 1

φ )

Γ (x + 1)Γ ( 1
φ )

∫ 1

0

ς
1
φ (1 − ς)x

θςθ−1dς (10.38)

= θ
Γ (x + α)Γ (α + θ)

Γ (α)Γ (x + α + θ + 1)
, θ > 0, α =

1
φ

> 0.

which returns to the Waring distribution. The Waring distribution can be
justified as arising from a mixed Poisson [23, 24].

It can be also formulated as arising from a infectious contact process that
itself arises from a mixed negative binomial (10.37) with Pareto distribution
as its mixing distribution. Then one can use the results in Lynch [16] to
justify why (10.38) carries the Pareto shape. In fact, if we write ζ = 1

1+φρ ,

then dς = − φ
(1+ρφ)2

dρ, and u(ς) = θςθ−1 = θ
(

1
1+ρφ

)θ−1

. Hence (10.38)
becomes

Γ (x + 1
φ )

Γ (x + 1)Γ ( 1
φ )

∫ ∞

0

(
1

1 + φρ

) 1
φ
(

1 − 1
1 + φρ

)k
θφ

(1 + ρφ)θ+1
dρ

where u1(ρ) = θφ

(1+ρφ)θ+1 is the Pareto mixing distribution.

10.5 The Invasion and Growth During the Initial Phase
of an Outbreak

S(t) is the random number of susceptible individuals at time t with expected
value E[S(t)]. S0 is a fixed number of initial susceptible individuals at t = 0.
n is the total number of individuals in the population. The initial phase of
an outbreak is the period of time when depletion of susceptible individuals
can be ignored, which is

{
t : E[S(t)]

n ≈ 1
}

. During this phase, there are two
approximations to describe the disease spread:
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1. The branching process approximation: A typical infectious individual is
associated with a generation time TG = TE + TI and by its end, it
produces a random number of N new infections. The mean number of
these new infections is R0. If R0 ≤ 1, with certainty (i.e. with probability
one), this branching process will become extinct, resulting in a handful
of total infections. The extinction is intrinsic.

2. The exponential growth approximation: If R0 > 1, the expected number
of infectious individuals at time t follows the Malthus’ Law E[I(t)] ∝
ert [25,26], characterized by a parameter r. The growth is intrinsic and
r is known as the intrinsic growth rate, also known as the Malthusian
parameter.

There is an Euler–Lotka equation [5]
∫ ∞

0

e−rτβ(τ)A(τ)dτ = 1, (10.39)

where β(τ) and A(τ) are defined the same way as in (10.21).

10.5.1 Invasion and the Epidemic Threshold

Kendall [27] considered a continuous random variable Y = Z
n defined on

(0, 1], where Z = n − S∞ is the final size of an outbreak. The shape of this
distribution may have one of the two shapes: the J-shape and the U-shape.
The term J-shape refers to a distribution that is monotonically decreasing so
that it has a mode at zero. The distribution is said to have U-shape if it is
bimodal. As shown in Fig. 10.8, the U-shaped distribution can be thought of
as a weighted average between a J-shaped distribution with weight 0 < π < 1
and a uni-modal distribution of a bell-shape with weight 1 − π.

Fig. 10.8 J-shaped and U-shaped distributions for Y
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Näsell [28] describes the threshold as a value at which the distribution of
Y makes a transition from J-shape to U-shape. In a population with finite
size n, the transition occurs in the vicinity of 1 at the value 1 + K

n
1
3
, where

K is a constant independent of n, but depends on the number of initially
infected individuals I0.

When n → ∞, a sufficient condition for a J-shaped distribution of Y
is R0 < 1, under which, π = 1 (see Fig. 10.8). When R0 > 1, either an
outbreak dies out with a handful of cases with probability π < 1, or starts an
exponential growth into a large outbreak with probability 1 − π. Metz [29]
showed that the outbreak can be either small or large with no middle road
in between.

A small outbreak corresponds to a J-shaped distribution. The opposite
is not true. When n is finite and R0 lies within the vicinity of 1 of the
order of O(n− 1

3 ), then with probability π = 1, Y = Z
n will have a J-shaped

distribution with E[Z]
n → 0 meanwhile E[Z] → ∞. In this case, the outbreak

size is neither small, nor large. Martin-Löf [30] shows that Y ∗ = Z

n
2
3

has a
limit distribution as n → ∞. It may have different shapes, from J-shape to a
bimodal U-shape, to uni-modal with mode not at zero, or with a shape that
is rather flat. This makes the final size unpredictable.

10.5.2 The Risk of a Large Outbreak and Quantities
Associated with a Small Outbreak

10.5.2.1 The Risk of a Large Outbreak 1 − π

When n → ∞, a necessary condition for a non-zero probability 1 − π > 0
is that R0 exists and R0 > 1. It is possible that for some distributions for
N , R0 = E[N ] does not exist. Public health control measures against an
outbreak are often centred around the reduction of R0 to some controlled
reproductive number Rc by a reduction factor c so that

Rc = (1 − c) R0 < R0. (10.40)

Ideally, one wants Rc < 1 so 1−π = 0. If this is not achievable, it is important
to investigate what other aspects of the distribution for N such as var[N ]
as well as aspects of the underlying stochastic mechanisms that manifest the
p.g.f. GN (s) contribute to the reduction of the risk of a large outbreak 1−π.

Using standard results from the (embedded) Galton–Watson branching
process, for any R0 > 0 (if it exists), there is always a probability π so that
the branching process will become extinct and produce a small outbreak. π
is the smallest root of the Fixed-Point Equation

s = GN (s). (10.41)
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Fig. 10.9 The smallest root of the Fixed-Point equation s = GN (s)

From the properties of GN (s) given in (10.3) and the fact that R0 = G′
N (1),

the smallest root of (10.41) is illustrated in Fig. 10.9.
When R0 = G′

N (1) ≤ 1, the smallest root is π = 1. In this case, a large
outbreak will not occur. When R0 = G′

N (1) > 1, there is an unique solution
π in the open interval (0, 1) and the risk of a large outbreak is 1 − π. If the
outcome happens to be a small outbreak, the observed branching process will
be indistinguishable from that as if arising from a different “reproduction
number” R∗

0 = G′
N (π) < 1 with its p.g.f. obtained by taking the graph

Fig. 10.9 over [0, π] and re-scaling to make the domain and range [0, 1].

Application to Some Specific Distributions of N

Poisson In the Poisson epidemic, GN (s) = eR0(s−1). π is the smallest root
of the Fixed-Point Equation (10.41). If R0 > 1, the risk of a large outbreak
is calculated by

π = e−R0(1−π) (10.42)

If the outcome happens to be a small outbreak, the observed branching
process will be indistinguishable from that as if arising from a different
“reproduction number”

R∗
0 = G′

N (π) = R0e
R0(π−1) = πR0 < 1.

Geometric If the p.g.f. for N is GN (s) = 1
1+R0(1−s) , then N has the geo-

metric distribution. One of the stochastic mechanisms for producing the
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geometric distribution is the Kermack–McKendrick epidemic, with all the
underlying assumptions governing the deterministic or stochastic bivariate
Markov chain SIR models. Another stochastic mechanism for producing
the geometric distribution is the randomized distribution with the infec-
tious contact process arising from a mixed Poisson process with exponen-
tial mixing distribution. There are other stochastic mechanisms that also
produce N with geometric distribution. However, for studying the initial
behaviour using the embedded Galton–Watson branching process, it is
only the p.g.f. GN (s) that matters. If R0 > 1, the risk of a large outbreak
is calculated by π = 1

1+R0(1−π) with exact solution π = 1
R0

. The risk of a
large outbreak is 1 − 1

R0
. It can be also shown that R

∗

0 = G′
N (π) = 1

R0
.

Negative binomial If the p.g.f. for N has the form GN (s) = 1

[1+R0φ(1−s)]
1
φ

for some φ > 0, then N has the negative binomial distribution. It may
arise as a generalized epidemic with gamma distributed infectious period,
or as a randomized epidemic with the infectious contact process arising
from a mixed Poisson process with gamma mixing distribution. There are
also other stochastic mechanisms that can produce N with the negative
binomial distribution. In addition, 1

[1+R0φ(1−s)]
1
φ
→ eR0(s−1), as φ → 0. If

R0 > 1, the risk of a large outbreak is calculated by

π =
1

[1 + R0φ(1 − π)]
1
φ

. (10.43)

For later use, we write down the derivatives

G′
N (s) = R0

(1+φR0(1−s))
1
φ

+1
, G′′

N (s) = (1+φ)R2
0

(1+φR0(1−s))
1
φ

+2
. (10.44)

Proposition 2. Within the negative binomial family of distributions,
var[N ] = R0 + φR2

0, GN (s) is ordered by the parameter φ. That is, for each
fixed s ∈ (0, 1), φ1 < φ2 implies 1

[1+R0φ1(1−s)]
1

φ1
< 1

[1+R0φ2(1−s)]
1

φ2
.

Corollary 1. If R0 > 1 and π ∈ (0, 1) is the Fixed-Point as the smallest root
of (10.43), then π is an increasing function of φ. The larger the value of φ,
the larger the probability that an initial outbreak will die out without evolving
into a large outbreak and the smaller the risk.

An alternative way to show that π is an increasing function of φ is to use
implicit differentiation for (10.43) to directly show that dπ

dφ > 0. In fact

dπ

dφ
=

1
1 − R0

(φR0(1−π)+1)
1
φ

+1

(1+R0φ(1−π)) log(1+R0φ(1−π))−R0φ(1−π)

φ2(φR0(1−π)+1)
1
φ

+1
.

From (10.44), R0

(1+φR0(1−π))
1
φ

+1
= G′

N (π) < 1. One only needs to show
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(1 + R0φ (1 − π)) log (1 + R0φ (1 − π)) − R0φ (1 − π) > 0

which is true because log (1 + x) > x
1+x for any x > 0.

Corollary 2. If R0 > 1, the Poisson epidemic, as φ → 0, gives the smallest
probability π and hence the highest risk of a large outbreak, compared with
any other model within the negative binomial family of distributions with the
same R0.

This statement can be extended beyond the negative binomial family. For
all randomized and generalized epidemics that can be formulated as mixed
Poisson distributions, the Poisson epidemic always produces the smallest
probability π.

Proposition 3. Let π0 be the smallest root of s = eR0(s−1) corresponding
to the Poisson epidemic. Let πρ be the smallest root of s =

∫
eρ(s−1)dU(ρ)

corresponding to an epidemic arising from some stochastic mechanisms such
that GN (s) = Eρ

[
eρ(s−1)

]
can be interpreted as the p.g.f. of a mixed Poisson

distribution. If the latter epidemic has finite mean R0 which equals that of
the Poisson epidemic, then π0 < πρ.

Since from any distribution with p.g.f. given by GN (s), Pr{N = 0} =
GN (0) which is the probability that, after introducing the initially infected
individuals into a susceptible population, transmission never occurs. This
leads to the next Corollary, which is a well-known result that was originally
proven by Feller [31] in 1943.

Corollary 3. eR0(s−1) < Eρ

[
eρ(s−1)

]
implies e−R0 < GN (0) = Eρ [e−ρ] .

Therefore, the probability of N = 0 is always higher under a mixed Poisson
distribution than under a simple Poisson distribution with the same mean.

It implies that variances imposed by infectious period, heterogeneous con-
tact environment, heterogeneous transmission among individuals or combi-
nations of them, all reduce the risk of an large outbreak.

10.5.2.2 Boom or Bust: Generations to Extinction in Small
Outbreaks

Using the branching process approximation in the early stage of the epidemic
and from the theory of branching process (Chap. 8 of [32]), Pr{Tg ≤ g} is
uniquely determined by the p.g.f. GN (s) and is calculated by

Pr{Tg ≤ g} = Gg
N (0) def.= GN (GN (· · ·GN︸ ︷︷ ︸

g times

(0) · · ·︸︷︷︸)
g times

. (10.45)

If there is no secondary transmission, the initial infective individuals make
the first generation, hence Pr{Tg = 1} = Pr{N = 0} = GN (0). Pr{Tg ≤ g}
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is a non-decreasing function of g. Starting from Pr{Tg = 1} = GN (0), with
the limit

lim
g→∞

Pr{Tg ≤ g} = π

{
= 1, if R0 < 1,
< 1, if R0 > 1.

For any R0 > 0, the probability of a small outbreak that becomes extinct in a
few generations is π, the smallest root of s = GN (s), s ∈ (0, 1]. The recursive
procedure and convergence of (10.45) are illustrated in Fig. 10.10.

Fig. 10.10 Graphic presentation of Pr{Tg ≤ g} = Gg
N (0) → π, as g → ∞

1
π (1 − Pr{Tg ≤ g}) = π−Gg

N (0)

π is the conditional probability that, given
the outbreak being small, it has become extinct after g generations. It can
be shown that for a suitable positive constant A,

π − Gg
N (0) = π − Pr{Tg ≤ g} ∼ A [G′

N (π)]g

and 0 < G′
N (π) < 1. It implies that if extinction is going to occur, the

smaller the value of G′
N (π), the more likely it will happen quickly with very

few generations.

When N Follows the Negative Binomial Distribution

When N arises from the negative-binomial distribution, (10.45) becomes
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Pr{Tg = 1} = Pr{N = 0} = (1 + φR0)
− 1

φ

Pr{Tg ≤ 2} =
(
1 + φR0 − φR0 (1 + φR0)

− 1
φ

)− 1
φ

...

Pr{Tg ≤ g} =
1

[1 + φR0 (1 − Pr{Tg ≤ g − 1})]
1
φ

,

with the limit limg→∞ Pr{Tg ≤ g} = π.
It can be shown that, Tg is ranked by stochastic order in the sense of

the survivor function FTg(g) = Pr{Tg ≥ g} = 1 − Pr{Tg ≤ g − 1}, ac-
cording to the parameter φ. The larger the φ, the shorter the distribu-
tion Pr{Tg ≥ g}. For N with negative-binomial distribution with mean
value R0, not only large variance var[N ] = φR2

0 + R0 lowers the risk of
large outbreaks 1 − π, but also that if extinction is going to occur, it is
likely to happen quickly with very few generations. An extreme case is
when φ → ∞. It can be shown that limφ→∞ (1 + φR0)

− 1
φ = 1 and hence

limφ→∞ (1 + φR0 − φR0 Pr{Tg ≤ g − 1})−
1
φ = 1, thus

lim
φ→∞

Pr{Tg ≤ g} = 1, any g ≥ 2.

Special Cases as φ → 0 and φ = 1

The special cases are summarized in Table 10.4.

Table 10.4 The distributions for generation time to extinction

Poisson distribution Geometric distribution
φ → 0 φ = 1

GN (s) = exp(−R0(1 − s)) 1
1+R0(1−s)

Pr{Tg = 1} = e−R0

Pr{Tg ≤ 2} = eR0(e−R0−1) Pr{Tg ≤ g} =
R

g
0−1

R
g+1
0 −1

Pr{Tg ≤ 3} = e
R0

(

eR0(e−R0−1)−1

)

.

.

.
.
.
.

At φ = 1,

Pr{Tg ≤ g} =
Rg

0 − 1
Rg+1

0 − 1
→
{

1, R0 < 1
1

R0
, R0 > 1 as g → ∞.

To demonstrate that Tg is stochastically longer when φ → 0 compared
to when φ = 1, Fig. 10.11 illustrates the survivor function Pr{Tg ≥ g}
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at R0 = 0.667. Under the same R0, the probability of lasting more than
5 generations before extinction if N is Poisson distributed, is approximately
1.4 times of that if N has a geometric distribution.

Fig. 10.11 Under the same R0, Poisson distributed N provides a stochastically longer
generation time to extinction Tg than that based on a geometric distribution for N

10.5.2.3 Distribution of the Final Size of Small Outbreaks

For the integer-valued random variable Z corresponding to the final size of a
small minor outbreak, the probability

∞∑

z=1

Pr{Z = z} = π

{
= 1, if R0 ≤ 1
< 1, if R0 > 1

where π is the probability of a minor outbreak as a solution of (10.41). Let
GZ(s) =

∑∞
z=1 sz Pr{Z = z}. It was shown [10, p. 193] that GZ(s) = s ·

GN (GZ(s)). In general, GZ(s) is not a p.g.f. since GZ(1) = π ≤ 1. Taking
derivatives with respect to s,

G′
Z(s) = GN (GZ(s)) + sG′

N (GZ(s))G′
Z(s), (10.46a)

G′′
Z(s) = 2G′

N (GZ(s))G′
Z(s) + sG′′

N (GZ(s)) (G′
Z(s))2 (10.46b)

+ sG′
N (GZ(s))G′′

Z(s).
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Mean and Variances for Z When R0 < 1

In this case, π = 1 and GN (1) = GZ(1) = 1. Since G′
N (1) = R0 < 1, letting

s = 1 in (10.46a), one gets G′
Z(1) = 1 + R0G

′
Z(1). Hence

E[Z] = G′
Z(1) =

1
1 − R0

. (10.47)

Therefore, E[Z] = 1
1−R0

is valid for any distribution of N. Similarly, letting
s = 1 in (10.46b) and using var[Z] = G′′

Z(1) + G′
Z(1) − (G′

Z(1))2 , one gets

var[Z] =
G′′

N (1) + R0 (1 − R0)
(1 − R0)

3 =
var[N ]

(1 − R0)
3 . (10.48)

var[Z] increases with the variance of N.

Mean and Variances for Z When R0 > 1

In this case, there exits π ∈ (0, 1) such that π = GN (π). With probability
π, the observed branching process will be indistinguishable from that as if
arising from a different “reproduction number” R∗

0 = G′
N (π) < 1. (10.47)

and (10.48) can be extended as the following conditional expectation and
conditional variance:

E[Z|small outbreak] =
1

1 − R
∗
0

(10.49a)

var[Z|small outbreak] =
πG′′

N (π) + R
∗

0

[
1 − R

∗

0

]

(1 − R
∗
0)

3 (10.49b)

where (10.49a) and (10.49b) are extensions of (10.47) and (10.48) in the sense
that they are valid for both R0 > 1 and R0 < 1. For the latter, π = 1 and
G′

N (π) = R0.

The Distribution of Z

We treat GZ(s) =
∑∞

z=1 sz Pr{Z = z} as if a p.g.f. for both R0 > 1 and
R0 < 1, such that Pr{Z = z} = 1

z!G
(z)
Z (0) and G

(z)
Z (0) = dz

dsz GZ(s)
∣
∣
s=0

. If
R0 > 1,

Pr{Z = z|small outbreak} =
1
π

Pr{Z = z}

is the conditional distribution of the final size starting from one initial infec-
tive, conditioning on the outcome being a small outbreak.
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For any given p.g.f. GN (·), a closed analytic form of GZ(s) may not always
exist if one wants to solve GZ(s) = sGN (GZ(s)). However, G

(z)
Z (0) can be

sometimes solved recursively starting from Pr{Z = 1} = G′
Z(0). We use the

convention that

Pr{Z = 1} = G′
Z(0) = GN (0) = Pr{N = 0}

because the event {Z = 1} implies that there is no secondary transmission
in the population. There is also a convention that GZ(0) = Pr{Z = 0} = 0
as there must be at least one infective individuals to start an outbreak. The
recursive procedure can be demonstrated for Pr{Z = 2} and Pr{Z = 3}.
From (10.46b), G′′

Z(0) = 2G′
N (GZ(0))G′

Z(0) = 2G′
N (0)GN (0), which gives

Pr{Z = 2} =
1
2
G′′

Z(0) = Pr{N = 1}Pr{N = 0}.

It is the probability that the index case gives transmission to one individ-
ual with probability Pr{N = 1} and the second individual does not trans-
mit with probability Pr{N = 0}. With a bit more calculus, G

(3)
Z (0) =

3G′′
N (0) [GN (0)]2 + 6 [G′

N (0)]2 GN (0) so that Pr{Z = 3} = 1
6G

(3)
Z (0) can

be expressed as

Pr{Z = 3} =
1
2
G′′

N (0) [GN (0)]2 + [G′
N (0)]2 GN (0)

= Pr{N = 2} (Pr{N = 0})2 + (Pr{N = 1})2 Pr{N = 0}.

It implies that either the index case produces two secondary cases with
probability Pr{N = 2} and neither of the secondary cases produces fur-
ther transmission with probability (Pr{N = 0})2 ; or the index case produces
one transmission and the secondary case produce one transmission with joint
probability (Pr{N = 1})2 and the third case does not transmit with proba-
bility Pr{N = 0}.

The Case of Negative-Binomial Distribution for N

When GN (s) has a relatively simple form, one can use GN (s) and the re-
cursive procedure to generate the entire distribution 1

π Pr{Z = z}. Let
GN (s) = 1

[1+R0φ(1−s)]
1
φ

. GZ(s) = sGN (GZ(s)) can be written as:

GZ(s) =
s

[1 + R0φ(1 − GZ(s))]
1
φ

. (10.50)
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For z = 1, Pr{Z = 1} = G′
Z(0) = 1

[1+R0φ]
1
φ

. We can calculate recursively

for z ≥ 2, G
(z)
Z (0) =

z−2∏

j=0

(jφ + z)
(

1
φR0+1

) z
φ
(

R0
φR0+1

)z−1

and hence Pr{Z =

z|small outbreak} is

1
π

Pr{Z = z} =
1

πz!

z−2∏

j=0

(jφ + z)
(

1
φR0 + 1

) z
φ
(

R0

φR0 + 1

)z−1

, (10.51)

where π needs to be numerically calculated from the equation π =
1

[1+R0φ(1−π)]
1
φ

if R0 > 1. When R0 < 1, the mean and variance with respect

to (10.51) is

E[Z] =
1

1 − R0
, var[Z] =

(1 + φ)R2
0 + R0(1 − R0)

(1 − R0)3
. (10.52)

Example 5. When φ → 0 and R0 < 1, (10.51) is

Pr{Z = z} =
(R0z)z−1

z!
e−R0z. (10.53)

This distribution was first discovered by Borel (1942) and called the Borel–
Tanner distribution. It is discussed in Durrett [33] as Corollary 2.6.2. Its
variance is var[Z] = R0

(1−R0)3
.

Example 6. When φ = 1 and R0 < 1, (10.51) is

Pr{Z = z} =
1
z!

z−2∏

j=0

(j + z)
(

1
1 + R0

)z (
R0

1 + R0

)z−1

. (10.54)

This distribution can be found as (6.619) in Mode and Sleeman [10]. Its
variance is var[Z] = R0(R0+1)

(1−R0)3
.

When R0 > 1, to calculate the condition mean E[Z|small outbreak]
and the conditional variance var[Z|small outbreak], one uses (10.49a) and
(10.49b) for the calculation and substitutes R∗

0 = G′
N (π) = R0

(1+φR0(1−π))
1
φ

+1

and G′′
N (π) = (1+φ)R2

0

(1+φR0(1−π))
1
φ

+2
. In the geometric distribution where φ = 1

and π = 1
R0

, one gets simple expressions for R0 > 1 [10, p. 196]

E[Z|small outbreak] =
R0

R0 − 1
, var[Z|small outbreak] =

R0 (R0 + 1)
(R0 − 1)3

.
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10.5.3 Behaviour of a Large Outbreak in its Initial
Phase: The Intrinsic Growth

For the assessment of the risk of a large outbreak 1 − π and quantities asso-
ciated with a small outbreak, it is sufficient to know the distribution for N ,
without the necessity of knowing the distributions for the latent and infec-
tious periods. On the other hand, should a large outbreak occur, the intrinsic
growth rate r, also known as the Malthusian parameter, for E[I(t)] ∝ ert,
depends crucially on the latent and infectious periods distributions. In other
words, even detailed information of the distribution for N is not sufficient.
One needs to know the stochastic mechanisms that manifest the distribution
for N.

Yan [34] re-writes the equation (10.39) under the following conditions:

1. The infectious contact process {K(x)} has stationary increment β(x) ≡ β
over the infectious period

2. TE and TI are independent
3. The Laplace transforms for the latent period and the infectious period:

LE(r) =
∫∞
0

e−rxfE(x)dx and L∗
I(r) =

∫∞
0

e−rxF I(x)dx exist, then

βLE(r)L∗
I(r) = 1, (10.55)

implying that, the property of the infectious contact process {K(x)} as sum-
marized by the parameter β, the distribution of the latent period as summa-
rized by LE(r) and the distribution of the infectious period as summarized
by L∗

I(r), separately shape the shape of E[I(t)] during the initial phase of an
outbreak and a general relationship between the intrinsic growth rate r and
the basic reproduction number R0.

In fact,
∫∞
0

e−rτβ(τ)A(τ)dτ = 1 becomes

β

∫ ∞

0

e−rτ
[
FE+I(τ) − FE(τ)

]
dτ = β

[
L∗

E+I(r) − L∗
E(r)
]

= 1,

where L∗
E+I(r) =

∫∞
0

e−rτFE+I(τ)dτ and L∗
E(r) =

∫∞
0

e−rτFE(τ)dτ. Since
TE and TI are independent, the Laplace transform of the generation time
TE + TI is LE+I(r) = LE(r)LI(r). By writing L∗

E+I(r) = 1−LE(r)LI(r)
r and

L∗
E(r) = 1−LE(r)

r , one immediately gets βLE(r)L∗
I(r) = 1 in (10.55). Since

R0 = βµ, one further gets

R0 =
µ

LE(r)L∗
I(r)

=

{
1

LE(r) , if E[TI ] → 0,
µ

L∗
I (r) , if E[TE ] = 0. (10.56)

The necessary condition for r > 0 is R0 > 1. Together with R0 = βµ, one
gets µ > β−1. In this case, the relationship (10.55) can be illustrated in
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Fig. 10.12, where LE(r)L∗
I(r) =

∫∞
0

e−rτA(τ)dτ is a decreasing function of r,
satisfying limr→0 LE(r)L∗

I(r) = µ > 1
β and limr→∞ LE(r)L∗

I(r) = 0.

Fig. 10.12 Expression (10.55) as illustrated

Recalling the discussions on stochastic ordering and the relationship in
(10.8), one can immediately see that when β is fixed, stochastic ordering
of the latent and infectious periods determines the intrinsic growth rate r.
Therefore we have the following two propositions.

Proposition 4. When β and the infectious period distribution FI(x) are
given, the longer the latent period TE , the smaller the intrinsic growth r.
In this statement, the word longer refers to conditions so that TE is larger in
Laplace transform order.

Figure 10.12 shows that, when LE(r) is smaller, the root for r in the
equation LE(r)L∗

I(r) = β−1 is smaller. By consequence, the existence of a
latent period produces a smaller initial growth rate than that produced by
a model in the absence of a latent period. Since the distribution of TE does
not affect the basic reproduction number R0, we also have:

Corollary 4. For fixed infectious period distribution FI(x) and empirically
observed r, if one takes a distribution for the latent period which is shorter
in Laplace order than it really is, one underestimates R0.

Proposition 5. When β and the latent period distribution FE(x) are given,
among the distributions for the infectious period with equal mean value µ =
E[TI ], the longer the infectious period TI , the larger is the intrinsic growth
rate r. In this statement, the word longer refers to conditions so that TI is
larger in Laplace transform order.
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Figure 10.12 shows that, when L∗
I(r) = 1−LI(r)

r is larger, the root for r
in the equation LE(r)L∗

I(r) = β−1 is larger. In addition, the comparison
is restricted to infectious periods with equal mean value µ = E[TI ] because
R0 = βµ so that comparisons can be made under the same basic reproduction
number.

Corollary 5. Given empirically observed r and mean infectious period µ, if
one takes a distribution for the infectious period which is larger in Laplace
transform order than what it should be, one underestimates R0.

10.5.3.1 The Expressions (10.55) and (10.56) When the
Distributions of TE and TI Arise from Some Specific
Parametric Families

The gamma distribution with p.d.f. given in (10.7), re-parametrized by α =
κ
µ gives fX(x) = α(αx)κ−1

Γ (κ) e−αx =
κ
µ ( κ

µ x)κ−1

Γ (κ) e−
κ
µ x such that E[X] = µ and

var[X] = µ2

κ . The Laplace transform exists and has a simple expression

LX(r) =
(
1 + rµ

κ

)−κ and hence L∗
X(r) =

1−(1+ rµ
κ )−κ

r .
If two random variables TE and TI are both gamma distributed, we reserve

µ = E[TI ] for the mean infectious period. We introduce ν = E[TE ] for the
mean latent period. Thus,

LE(r) =
(

1 +
rν

κ1

)−κ1

, L∗
I(r) =

1 −
(
1 + rµ

κ2

)−κ2

r

where κ1 and κ2 are the shape parameters for the latent and infectious periods
when both are gamma distributed. In this case, The expressions (10.55) and
(10.56) become

β

r

(

1 +
rν

κ1

)−κ1
(

1 −
(

1 +
rµ

κ2

)−κ2
)

= 1 (10.57a)

R0 =
rµ
(
1 + rν

κ1

)κ1

1 −
(
1 + rµ

κ2

)−κ2
. (10.57b)

The expression (10.57b) was originally given by Anderson and Watson [35]
and recently re-visited by Wearing et al. [36] It has many special cases as
summarized by Table 10.5.

In particular, Cases C1, C4, C5, C7 and C11 are highlighted below
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Table 10.5 Special cases with gamma distributed latent and infectious periods

Cases ν µ κ1 κ2 R0

C1 ν → 0 → ∞ κ2 erν = erTG

C2 ν → 0 = 1 κ2 1 + rν = 1 + rE[TG]

C3 ν → 0 κ1 κ2

(
1 + rν

κ1

)κ1

C4 0 µ κ1 → ∞ rµ
1−e−rµ = rTG

1−e−rTG

C5 0 µ κ1 = 1 1 + rµ = 1 + rE[TG]

C6 0 µ κ1 κ2
rµ

1−
(
1+ rµ

κ2

)−κ2

C7 ν µ → ∞ → ∞ erν rµ

(1−e−rµ)
C8 ν µ = 1 → ∞ (1 + rν) rµ

1−e−rµ

C9 ν µ κ1 → ∞
(
1 + rν

κ1

)κ1 rµ
1−e−rµ

C10 ν µ → ∞ = 1 erν (1 + rµ)

C11 ν µ = 1 = 1 (1 + rν) (1 + rµ)

C12 ν µ κ1 = 1
(
1 + rν

κ1

)κ1
(1 + rµ)

C13 ν µ → ∞ κ2 erν rµ

1−
(
1+ rµ

κ2

)−κ2

C14 ν µ = 1 κ2 (1 + rν) rµ

1−
(
1+ rµ

κ2

)−κ2

General ν µ κ1 κ2

(
1 + rν

κ1

)κ1 rµ

1−
(
1+ rµ

κ2

)−κ2

R0 = erE[TG] (10.58a)

R0 =
rµ

1 − e−rµ
(10.58b)

R0 = 1 + rµ (10.58c)

R0 = erν rµ

1 − e−rµ
(10.58d)

R0 = (1 + rν) (1 + rµ)

= 1 + rE[TG] + f(1 − f)(rE[TG])2, (10.58e)

where f = E[TE ]
E[TG] = ν

ν+µ . Of these expressions, (10.58a) is the most intuitive
and appears in ecology textbooks (e.g. [37]), assuming that the variation in
the generation time TG is negligible and only if TG = TE so that transmission
only occurs at an instantaneous moment at the end of the latent period. In
the absence of a latent period, a non-random infectious period gives (10.58b)
which can be found in Anderson and May [38]. The most commonly encoun-
tered relationship is (10.58c) which can be derived from the deterministic
or stochastic SIR models assuming an exponentially distributed infectious
period without a latent period, as in Chap. 2 of this book. If one assumes
that both TE = ν and TI = µ are not random, one gets (10.58d). In recent
years, (10.58e) is frequently seen in the literature, such as Lipsitch et al. [39]
in the application to the SARS epidemic in Singapore; Chowell et al. [40] for
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influenza, etc. The underlying assumption in (10.58e) is that both the latent
and infectious periods are exponentially distributed.

For gamma distributed latent period, the Laplace transform is LE(r) =
(
1 + rν

κ1

)−κ1

. Both ν and κ1 rank TE according to Laplace transform order.
For fixed κ1

d

dν
LE(r) = − r

(
1
κ1

(κ1 + rν)
)κ1+1 < 0,

implying that the longer the mean latent period, the larger the latent period
in Laplace transform order. On the other hand, for the same mean latent
period ν,

d

dκ1
LE(r) = − κκ1

1

(κ1 + rν)κ+1

[

(κ1 + rν) log
κ1 + rν

κ1
− rν

]

< 0,

implying that the larger the value of the shape parameter κ1 (hence the
smaller the variance var[TE ] = ν2

κ1
), the smaller the value of LE(r) and hence

the longer the latent period in Laplace transform order. In both cases, if β
and L∗

I(r) are fixed, a longer latent period in Laplace transform order implies
a smaller value of r.

Two benchmarks are κ1 = 1 and κ1 → ∞. Among a subset of the gamma
distribution with κ1 ≥ 1, for the same R0, the exponentially distributed latent
period gives the largest r. When the latent period distribution degenerates
to a fixed point with TE = ν, one gets the smallest r. Conversely, if r is
empirically observed, then the exponentially distributed latent period yields
the smallest R0 whereas the fixed latent period yields the largest R0.

To examine the effects of the infectious period distribution on r with a
given latent period distribution FE(x), since R0 = βµ, we only consider dis-
tributions for the infectious period with equal mean value µ = E[TI ]. Under
this condition, the longer the infectious period TI in Laplace transform or-
der, the larger is the intrinsic growth rate r. For gamma distributed infectious

period, L∗
I(r) =

1−(1+ rµ
κ )−κ

r and

d

dκ2
L∗

I(r) =
κκ2

2

r (κ2 + rµ)κ2+1

[

(κ2 + rµ) log
κ2 + rµ

κ2
− rµ

]

> 0.

In this case, since we keep the mean µ = E[TI ] fixed and var[TI ] = µ
κ2

, a
longer infectious period TI in Laplace transform order implies that the vari-
ance is smaller. In other words, under the same R0 and fixed latent period
distribution, a gamma distributed infection period with smaller variance pro-
duces larger initial growth rate. Among a subset of the gamma distribution
with κ2 ≥ 1, for the same R0, the exponentially distributed infectious pe-
riod (κ2 = 1) gives the smallest r and the fixed infectious period (κ2 → ∞)
gives the largest r. Conversely, if r is empirically observed and if the mean
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infectious period µ is given (along with the given latent period distribution),
the larger the value κ2 (hence the smaller the variance), the smaller the R0.
This can be also seen by taking the derivative of (10.57b) with respect to κ2:

d

dκ2
R0 = −

rµκκ2
2 (κ1 + rν)κ1

[
(κ2 + rµ) log 1

κ2
(κ2 + rµ) − rµ

]

κκ1
1 (κ2 + rµ)1−κ2 (κκ2

2 − (κ2 + rµ)κ2)2
< 0.

Example 7. Let us consider an SIR model without the latent period. Let us
assume that the infectious contacts arise from a Poisson process and that
the infectious period has mean µ = 4.098. In this example, let R0 = βµ =
1.386. The infectious period TI has the distribution fI(x) = κκxκ−1

µκΓ (κ) e
−κx

µ ,

µ > 0, κ = 1, 2, 3, · · · , a special case of the gamma distribution (the Erlang
distribution) with integer-valued κ. It can be viewed as the distribution of
the sum of κ i.i.d. exponential random variables with mean µ

κ . A “linear
chain trick” is to consider a compartment model as given by Fig. 10.13 and
to use deterministic ordinary differential equations to numerically calculate
I(t) ≈ E[I(t)]. Figure 10.14 shows results with κ = 1, 2, 3, 4. When κ = 1,

Fig. 10.13 Illustration of the linear chain trick

the model reduces to the SIR model with exponentially distributed infectious
period with r = R0−1

µ = 0.386
4.098 = 0.094192 The larger the κ, the steeper the

initial increase one expects. If κ = 4, r can be solved via the equation:
1.386
4.098r

(
1 −
(
1 + 4.098r

4

)−4
)

= 1 for the non-negative real value. The solution
is r = 0.14122.

One can replace the gamma distribution for the latent or the infectious
period by other distributions, provided that their Laplace transforms exist.
For example, one may consider an inverse-Gaussian distribution for a non-
negative random variable X with p.d.f.

fX(x) =
√

κµ

2πx3
exp
{

−κ(x − µ)2

2µx

}

, µ, κ > 0. (10.59)
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Fig. 10.14 Same R0 : the larger the κ, the larger the growth rate r

It has been parametrized such that E[X] = µ and var[X] = µ2

κ , like
for the gamma distribution. The Laplace transform is LX(r) =

exp
{

κ

(

1 −
√

2rµ+κ
κ

)}

.

If two random variables TE and TI are both inverse-Gaussian distributed,
as before, we reserve µ = E[TI ] for the mean infectious period and use ν =

E[TE ] for the mean latent period. Then LE(r) = exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)}

and L∗
I(r) =

1−exp
{

κ2

(
1−
√

2rµ+κ2
κ2

)}

r . The expressions (10.55) and (10.56)
become

β

r
exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)}(

1 − exp
{

κ2

(

1 −
√

2rµ+κ2
κ2

)})

= 1,

R0 =
1

exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)} × rµ

1 − exp
{

κ2

(
1 −
√

2rµ+κ2
κ2

)} .

Similar to Table 10.5, one can make a table of all the special cases; see
Table 10.6.

One does not need to assume that the latent and infectious periods arise
from the same distribution family. For example, one may take an inverse-
Gaussian distributed latent period to combine with a gamma distributed
infectious period and derive

R0 =
1

exp
{

κ1

(
1 −
√

2rν+κ1
κ1

)} × rµ

1 −
(
1 + rµ

κ2

)−κ2
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Table 10.6 Cases with inv.-Gaussian distributed latent and infectious periods

ν µ κ1 κ2 R0 Remarks

C1 ν → 0 → ∞ κ2 erν = erTG C1 in Table 10.5

C2 ν → 0 = 1 κ2
1

exp(1−
√

1+2rν)
C3 ν → 0 κ1 κ2

1

exp

{

κ1

(

1−
√

2rν+κ1
κ1

)}

C4 0 µ κ1 → ∞ rµ
1−e−rµ C4 in Table 10.5

C5 0 µ κ1 = 1 rµ

1−exp{(1−√
2rµ+1)}

C6 0 µ κ1 κ2
rµ

1−exp

{

κ2

(

1−
√

2rµ+κ2
κ2

)}

C7 ν µ → ∞ → ∞ erν rµ
1−e−rµ C7 in Table 10.5

.

..
.
..

.

..
.
..

.

..
.
.. Other cases

or a gamma distributed latent period to combine with an inverse-Gaussian
distributed infectious period and derive

R0 =
(

1 +
rν

κ1

)κ1 rµ

1 − exp
{

κ2

(
1 −
√

2rµ+κ2
κ2

)} .

10.5.4 Summary for the Initial Phase of an Outbreak

10.5.4.1 Invasion and Everything about a Small Outbreak

The latent period does not play any role. Knowledge of the distribution for N
is sufficient. One uses the p.g.f. GN (s) to calculate the probability 1−π for the
risk of a large outbreak. If the outbreak is small, GN (s) further determines
the distribution of the generation time to extinction Pr{Tg ≤ g} and final
size at extinction Pr{Z = z}.

If the distribution of N can be derived from observed data, then details
with respect to underlying stochastic mechanisms that give rise to GN (s),
such as the property of the infectious contact process {K(x)} and infectious
period distribution FI(x), are irrelevant.

On the other hand, with knowledge of the property of the infectious contact
process {K(x)} and the infectious period distribution FI(x), one can use the
CMJ branching process to derive the p.g.f. GN (s) for N.

10.5.4.2 When the Outbreak is Large

The initial phase of a large outbreak is characterized by the approximation
E[I(t)] ∝ ert. Under the condition that {K(x)} has stationary increment
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property, r is determined by (10.55). It shows that β, the distribution of the
latent period and the distribution of the infectious period separately shape
the shape of E[I(t)] during the initial phase. However, the distribution for N
is irrelevant.

10.6 Beyond the Initial Phase: The Final Size of Large
Outbreaks

For a large outbreak, the expected final outbreak size number scales linearly
with the size of the susceptible population. In other words, E[Z] → ∞ but
E[Z]

n → η where η is a positive quantity, 0 < η < 1. Therefore, one considers
the continuous random variable Y = Z

n , distributed over the range (0, 1), as
the final size.

Theorem 1. When R0 > 1, conditioning on the outcome being a large out-
break and assuming that limn→∞

I0
n → ε, let η be the root of the equation

1 − η = exp (−R0 (η + ε)) . (10.60)

Then S∞−nη√
n

has Gaussian limit distribution N(0, σ2) and the asymptotic
variance is given by

σ2 =
η (1 − η)

(1 − R0η)2
+

η2 (var[N ] − R0) (1 − η + ε)
(1 − R0η)2

. (10.61)

This central limit theorem has been developed from different mathematical
approaches by von Bahr and Martin-Löf [12], Ludwig [41], Scalia-Tomba [42],
Martin-Löf [43] and Lefèvre and Picard [44]. The final size proportion Y =
Z
n converges in distribution to a point mass at η, the root of (10.60). The
fluctuations around the limit are Gaussian of order 1√

n
, which become large

if the variance var[N ] is large. Contrary to the study of the intrinsic growth
rate r at the initial phase, the final size is more robust with respect to the
stochastic mechanisms at the micro level. Even the distribution of N does
not play a significant role, except for its first two moments: R0 = E[N ] and
var[N ].

In von Bahr and Martin-Löf [12], Theorem 1 was first proven under a
Reed-Frost epidemic model [45]. For such a model, it is assumed that an
individual i is infected at time t. A given individual j is contacted by i
and if j is susceptible then j becomes infected at time t + 1. Meanwhile, i
becomes removed (by immunity or death) and plays no further part in the
epidemic process. All contacts are assumed to be independent of each other.
At each increment of time from t to t + 1, an individual produces a random
number of infectious contacts among the available susceptible individuals
following a binomial distribution. When n is large, the binomial distribution
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is approximated by a Poisson distribution. von Bahr and Martin-Löf [12] then
extended their proof to the randomized epidemic model where each infectious
individual i has its own transmission probability per contact pi; the pi are
i.i.d. random variables with a given distribution.

Earlier in this chapter we made the statement that as far as the dis-
tribution for N is concerned, the generalized epidemic and the random-
ized epidemic models can be unified as one mixed Poisson model with
GN (s) =

∫∞
0

eρ(s−1)dU(ρ) = Eρ

[
eρ(s−1)

]
. This corresponds to Ludwig [41],

where it was noted that as far as the distribution of Y = Z
n is concerned, the

generalized epidemic model with an arbitrary but specified infectious period
distribution can be reformulated as a special case of the randomized epidemic
model.

10.6.1 Generality of the Mean Final Size

Subject to the approximation S0
n ≈ 1 and if one re-writes x = 1− S∞

S0
, ε = I0

S0
,

the asymptotic mean of a large outbreak (10.60) is in close agreement with
that given by Kermack and Mckendrick [14], of which, given (R0, S0, I0) , one
solves for S∞ in the equation

S0 − S∞ + I0 +
S0

R0
log
(

S∞
S0

)

= 0. (10.62)

From a deterministic perspective, Ma and Earn [46] used integro-differential
equations to show that the final size calculated by (10.62) is invariant, includ-
ing the existence of a latent period, arbitrarily distributed infectious period,
any number of distinct infectious stages and/or a stage during which in-
fectious individuals are isolated, as well as the existence of super-spreading
events.

From a probabilistic perspective, let us consider a typical susceptible in-
dividual νs. We define a type-specific hazard function

h
(s)
j (t − tj)

{
> 0, if t > tj
= 0, otherwise,

where tj is the time of infection of the individual j, representing the instan-
taneous risk of infection being transmitted by the jth infectious individual.
As illustrated by Example 4, the hazard of a susceptible individual νs to be-
come infected at time t, denoted by h(s)(t), can be thought as a competing
risk problem. Under the independence assumption, h(s)(t) =

∑
j h

(s)
j (t− tj).

Then the probability that a susceptible individual νs ever gets infected over
the course of the epidemic is ηs = 1− exp

{
−
∑

j

∫∞
0

h
(s)
j (t − tj)dt

}
. Hence,
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ηs depends on the set of infectious contact processes that correspond to the
hazard h

(s)
j only through the cumulative hazard

∫∞
0

h
(s)
j (t)dt.

Then we add two homogeneity assumptions:

1. Homogeneous mixing. As population size → ∞, the contact process itself
is a stationary Poisson process with constant intensity λ;

2. Homogeneous hosts. All individuals are of the same type the probability
of transmission per contact between each pair of an infectious individual
and a susceptible individual is a constant p.

Under these assumptions, the type-specific hazard is h
(s)
j (t) = β∗ = λp.

The overall hazard of a susceptible individual νs to become infected at time t
becomes h(s)(t) = h(t) which does not depend on νs (from assumption 2) and
h(t) = β∗E[I(t)]. E[I(t)] is the expected number of infectious individuals at
time t. The probability that a susceptible individual ever get infected over
the course of the epidemic is

η = 1 − exp
{

−
∫ ∞

0

h(t)dt

}

= 1 − exp
{

−β∗
∫ ∞

0

E[I(t)]dt

}

. (10.63)

Note that
∫∞
0

E[I(t)]dt is the expected total infectious time per person. µ =
E[TI ] is the average time spent infectious per infection. Thus,

∫∞
0

E[I(t)]dt =
ηS0E[TI ] = ηS0µ

⇒ η = 1 − exp {− (β∗S0µ) η} = 1 − exp {−R0η}

which is (10.60) and R0 = β∗S0µ = βµ. Ludwig [41] used this analogy in a
discrete time setting, and provided a rigorous proof that the final size distri-
bution does not depend on the duration of latency in the individuals, or on
the time course of infectivity, but only on the “time-integrated infectivity” in
discrete time. The “time-integrated infectivity” is analogous to

∫∞
0

h
(s)
j (t)dt,

for closed populations with homogeneous mixing.

10.6.2 Some Cautionary Remarks

10.6.2.1 The Risk of Large Outbreak =Final Size?

In the literature, one sometimes encounter such a statement that “the risk of
large outbreak = the final size of the large outbreak”. In general, this state-
ment is not true. On one hand, the final size equations (10.60) and (10.62)
are functions of R0 = E[N ], but do not depend on the exact distribution of
N. On the other hand, the risk of a large outbreak 1 − π is determined by
the equation (10.41) which is crucially dependent on GN (s), the probability
generating function of N.
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To give a counterexample, if N follows a geometric distribution, with
R0 > 1, the risk of a large outbreak is calculated with π = 1

1+R0(1−π) with
exact solution π = 1

R0
. The risk of an large outbreak is 1 − 1

R0
. On the

other hand, in a Kermack–McKendrick SIR model, N follows a geometric
distribution, but the final size equations are (10.60) and (10.62).

The statement holds if the outbreak can be described by a Poisson epi-
demic. In this case, the probability of a large outbreak is 1 − π = e−R0π as
derived from (10.42) and it is identical to the final size equation (10.60) as
ε → 0. Recall that a Poisson epidemic arises in the following manner.

1. As n → ∞, the social contact network grows in such a way that at any
time t, the realization can be regarded as a Bernoulli random graph [47]
with Poisson degree distribution with mean λt. If D is the duration of
an outbreak, the random graph as observed at D is a large Bernoulli
random graph approximated by a Poisson degree distribution with mean
R∗

0 = λD.
2. The infectious contact subgraph also grows according to a Poisson degree

distribution with mean λpt = βt. Every infective has a fixed infectious
period µ. By the end of the outbreak, the observed infectious contacts
makes a subgraph which is a large Bernoulli random graph with i.i.d.
Poisson degree distributions with mean R0 = βµ.

Using Theorem 2.3.2. of Durrett [33] (which can be proven using random
walk theory), if R∗

0 > 1, with probability one, there is only one giant compo-
nent with size ∼ η∗n where η∗ is root x of the equation 1 − x = exp (−R∗

0x)
in (0, 1). All other components are small in the sense that there is a constant
ω such that the largest of the remaining components can not have more than
ω log n vertices. The infectious contact subgraph is proportional to the social
contact graph with R0 ∝ R∗

0 by a factor pµ
D .

There is a difference in concept between a random graph and a realization
of a random graph. The random graph belongs to a probability space. A
realization of a large outbreak takes place only within the giant component
of the social contact graph. Since the relative sizes of all other component in
the social contact graph → 0 as n → ∞, the size of a realized large outbreak
η is thus proportional to η∗ by the same factor pµ

D . Therefore we get the final
size equation 1 − η = exp (−R0η) .

There are two independence properties involved.

1. A transmission from an infectious vertex vi to a susceptible vertex vj is
independent from infections to other susceptible vertices derived from vi.

2. All infectious vertices transmit the diseases independently.

A heuristic argument is that, if one randomly chooses vertex vi to be the
initial infective, the probability that it will lead to a large outbreak is the
same probability that it belongs to the giant component. And hence, “the
risk of a large outbreak = its final size”.
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However, if there is a random period of time T
(i)
I to each vertex so that

vi, where T
(i)
I ’s are i.i.d. with distribution FI(x), the evolution of the in-

fectious contact subgraph will be very different from the evolution of the
subgraph where every vertex has a fixed infectious period, even though the
social contact network is the same Bernoulli random graph. If one chooses a
vertex vi to be the initial infective, then each of the other susceptible ver-
tices in the graph has a probability

∫∞
0

(
1 − e−λpx

)
FI(x) to be ever infected

by vi. It can be shown that the probability of vi infects vj is dependent on
other infections of other susceptible vertices with vi as their direct origin of
transmission. By the end of the outbreak the degree of the infectious contact
subgraph has the mean value R0 = λpE[TI ]. The degree distribution has
p.g.f. GN (s) =

∫∞
0

eβx(s−1)dFI(x). N is associated with a larger variance,
with many infectious vertices having few edges due to a shorter infectious
period and some infectious vertices having a large number of vertices due to
a longer infectious period. Because of the loss of independency and the large
variance, the equality between the risk of a large outbreak and the final size
of the large outbreak is lost in generalized epidemic models.

10.6.2.2 Situations Where (10.63) may be Violated

Under the independence assumption that transmission of infection to indi-
vidual νs by individual j is independent from potential transmissions from
other infectious individuals, then the hazard function for individual νs to be
infected at time t is h(s)(t) =

∑
j h

(s)
j (t − tj). There are occasions that this

independent competing risk can be violated. Such an occasion can arise in a
highly clustered social contact network where a number of infectious individu-
als are correlated within a social cluster. Another occasion is that susceptible
individuals are removed by quarantine if they have been identified as exposed
to known infectives. In these circumstances, final size equations (10.60) and
(10.62) may be incorrect.

10.7 When the Infectious Contact Process
may not Have Stationary Increment

If the infectious contact process {K(x)} has β(x) = d
dxE[K(x)] as a func-

tion of x, (10.21) and (10.39) do not have simple forms. Most of the results
discussed in previous sections will no longer apply.
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10.7.1 The Linear Pure Birth Processes and the Yule
Process

Let us consider a process without the stationary increment property, with
β(x) = d

dxE[K(x)] = βeβφx as a function of x. It can be constructed in
the following manner. Consider a linear pure birth process, defined by the
conditional probability with the Markov property so that Pr{K(x + h) −
K(x) = 1|Hx}, k = 0, 1, 2, · · · is equal to

Pr{K(x + h) = k + 1|K(x) = k} = (β1k + β2)h + o(h). (10.64)

Conditioning on K(x) = k, the instantaneous rate of producing the next
infectious contact during [t, t + h) can be considered as an independent com-
peting risk hazard: either from a global environment, with constant rate β2,
or from a clustered environment with non-constant rate β1k and β1 
= β2.
The hazard of producing an infectious contact at time x is

lim
h→0

Pr{K(x + h) = k + 1|K(x) = k}
h

= β1k + β2 = β (kφ + 1) .

When φ = β1
β1

→ 0, the linear pure birth process reduces to a Poisson
process with β = β2

Pr{K(x + h) = k + 1|K(x) = k} = βh + o(h), k = 0, 1, 2, · · · . (10.65)

When φ = 1, the linear pure birth process is the Yule process with

Pr{K(x+h) = k+1|K(x) = k} = β(k+1)h+o(h), k = 0, 1, 2, · · · . (10.66)

According to (10.66), given that an infectious individual has produced k in-
fectious contacts by time x, the hazard for producing the (k + 1)st contact
is a increasing function of k. Starting at x = 0, corresponding to the begin-
ning of the infectious period for an infectious individual, the waiting time
to producing the first infectious contact is exponentially distributed with
mean E[X1] = 1

β1
; conditioning on the first infectious contact, the waiting

time to the second infectious contact is exponentially distributed with mean
E[X2] = 1

2β1
; · · · ; and conditioning on an infectious individual who has pro-

duced k infectious contacts, the waiting time to producing the (k+1)st infec-
tious contact is exponentially distributed with mean E[Xk+1] = 1

(k+1)β1
. On

the surface, it looks as if the more infectious contacts it produces, the more
likely it produces more infectious contacts.
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10.7.1.1 A Justification of Whether the Linear Pure
Birth Processes may be a Sensible Model

This infectious contact process may arise from the following hypothesis. A
typical infectious individual resides in a highly clustered environment (house-
hold, hospital ward, etc.) but meanwhile has contacts with susceptible indi-
viduals from outside this environment. The contact network structures in
the clustered environment is different from that in the “global” environment.
During its infectious period, this individual may infect:

1. Susceptibles from the highly clustered environment such as household
members (if such environment is a household) or nurses and other patients
(if such environment is a clustered hospital ward), such that this network
manifest data as if arising from a preferential attachment model

2. Susceptibles from a “global” environment that can be approximated by
a large Bernoulli random graph

For outbreaks that mainly spread within and among a highly clustered
environment, infected individuals directly and indirectly attributed to the
index case during the time x ≤ TI (infectious period) are often recorded as
exposed and counted as the next generation of the index case. This artificially
changes the order of events and creates artificial “generations” of infectives.
However, real-life epidemiologic data may arise in this “artificial” order. Let
us modify the definition of {K(x)} so that K(x) is not only the cumulative
number of infectious contacts produced directly by an infectious individual,
but also includes those infected cases attributed to itself in later generations,
counted up to time x when the original index case is still infectious. By time
x, if an infected individual is still infectious, then

lim
h→0

Pr{K(x + h) − K(x) = 1|K(x) = 0}
h

= β1

lim
h→0

Pr{K(x + h) − K(x) = 1|K(x) = 1}
h

= 2β1 (10.67)

...

where (10.67) implies that given the index case has produced one infectious
case, and at time x both cases are infectious, the instantaneous rate of a new
infectious contact attributed to the index case is due to the contribution of
the index case itself and of the other infectious individual. {K(x)} is a Yule
process which could be manifested by real epidemiologic data, if the index
case resides in a highly clustered and connected environment and simulta-
neously gives exposure (not necessarily transmission) to a large number of
people. It is the environment that manifests a large number of infected in-
dividuals (i.e. super-spreading events) and data “directly link” them to the
first case in the environment.
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10.7.2 Parallels to the Preferential Attachment Model
in Random Graph Theory

In random graph theory, there is a concept of “preferential attachment” [20]
of the random graphs over the space of vertices. The linear pure birth pro-
cess is an analogue to such a concept over time. There is an ongoing de-
bate whether preferential attachment actually happen in growing networks.
Liljeros et al. [21] are convinced of preferential attachment as a mechanism
for sexual networks, as “people become more attractive the more partners
they get.” However, Jones and Handcock [48] are skeptical and argue that
networks with infinitely large variances but dramatically different structures
can manifest the same marginal degree distribution, whereas these different
network structures produce different epidemic behaviour. This debate has a
longer history. In 1919, Greenwood and Woods [49] put forward three hy-
potheses into the occurrence of accidents:

1. Pure chance, which gives rise to the Poisson process (10.65)
2. True contagion, i.e. initially all individuals have the same probability of

incurring an accident, but this probability is modified by each accident
sustained to give rise to the linear pure birth process

3. Apparent contagion (proness), i.e. individuals have constant but unequal
probabilities of having an accident and the resulting process being a
mixed Poisson process (10.18)

Xekalaki [50] gives a comprehensive survey of the history of these hy-
potheses and related models. The arguments on occurrence of accidents can
be equally applied to disease transmission: whether observed data can dis-
tinguish if the underlying stochastic mechanism is arising from a linear pure
birth process or a mixed Poisson process with large variance. The two very dif-
ferent stochastic mechanisms produce quantitatively very different epidemic
behaviour.

10.7.3 Distributions for N when {K(x)} Arises
as a Linear Pure Birth Process

Let us start with an infectious contact process {K(x)} with a marginal dis-
tribution having the negative binomial form

Pr{K(x) = k} =
Γ (k + 1

φ )

Γ (k + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)k (10.68)

which a parameter 0 < ς < 1.
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If {K(x)} arises as a linear pure birth process given by (10.64), from page
274 of Bhattachrya and Waymire [51], the marginal distribution for K(x) is

Pr{K(x) = k} =
Γ (k + 1

φ )

Γ (k + 1)Γ ( 1
φ )

(
e−βφx

) 1
φ
(
1 − e−βφx

)k
. (10.69)

In this case, ς = e−βφx.
For comparison, a mixed Poisson process in (10.33) has marginal distribu-

tion

Pr{K(x) = k} =
Γ(k+ 1

φ )
Γ (k+1)Γ( 1

φ )

(
1

1 + βφx

) 1
φ
(

βφx

1 + βφx

)k

(10.70)

where K(x) has p.g.f. GK(s, x) =
∫∞
0

eξx(s−1)dU(ξ) and ξ follows a gamma
distribution. In this case, ς = 1

1+βφx .

The link functions ς = 1
1+βφx and ς = e−βφx are two hypotheses for

whether {K(x)} has stationary increment or not. However, they are often
not identifiable through data.

10.7.3.1 Degenerate Distribution of the Infectious Period
TI = µ

An infectious contact process {K(x)} with marginal distribution (10.68) can
be further stopped by a randomly distributed infectious period to generate
distributions for N. If all infectious individuals have constant infectious period
µ, then N also has a negative binomial distribution:

Pr{N = j} =
Γ (j + 1

φ )

Γ (j + 1)Γ ( 1
φ )

ς
1
φ (1 − ς)j

.

If data are available to suggest a distribution for N which is negative binomial,
there may be two further assumptions, either ς = 1

1+βφµ or ς = e−βφµ, asso-
ciated with two completely different stochastic mechanisms for how {K(x)}
arises. In addition, we have also seen a third way to get the negative distri-
bution for N. It corresponds to G(s, x) = e−βx(1−s) with gamma distributed
infectious period and E[TI ] = µ. Therefore, there are three stochastic mech-
anisms that give rise to the identical distribution for N. Observed data can
not identify these underlying models.
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10.7.3.2 Exponential Distribution of the Infectious Period
with E[TI ] = µ

If TI follows an exponential distribution with p.d.f. FI(x) = 1
µe−

x
µ and if

the infectious contacts follow a linear pure birth process with Pr{K(x) = k}
given by (10.69), the resulting distribution for N is

∫ ∞

0

Γ (j + 1
φ )

Γ (j + 1)Γ ( 1
φ )

(
e−βφx

) 1
φ
(
1 − e−βφx

)j
(

1
µ

e−
x
µ

)

dx. (10.71)

Since ς = e−βφx, (10.71) becomes

Pr{N = j} =
Γ (j + 1

φ )

Γ (j + 1)Γ ( 1
φ )

∫ 1

0

ς
1
φ (1 − ς)j (

θςθ−1
)
dζ

= θ
Γ (j + α)Γ (α + θ)

Γ (α)Γ (j + α + θ + 1)
, θ > 0, α =

1
φ

> 0. (10.72)

where θ = 1
βφµ > 0. It can be regarded as a mixing distribution in

Γ (k+ 1
φ )

Γ (k+1)Γ ( 1
φ )

∫
ς

1
φ (1 − ς)k

u(ς)dς with u(ς) = 1
βφµ ς

1
φβµ−1 = θςθ−1, 0 < ς < 1.

We have seen it before as (10.36), with the power-law property: ∝ 1
jθ+1 .

Notice that the same Waring distribution can also arise if {K(x)} has
marginal distribution given by (10.70) combined with a Pareto infections
period distribution. Therefore, there are multiple stochastic mechanisms that
generate the distribution for N with power-law tail behaviour.

10.7.3.3 A General Observation for Models with Non-stationary
Increment Process {K(x)} with Random Mixing

If {K(x)} arises from a non-stationary increment process described by the
linear pure birth process (10.64), the marginal distribution for K(x) is given
by a negative-binomial form (10.68) with the link ς = e−φβx. Any fur-
ther assumption on randomness in φβx, such as a random infectious pe-
riod, will result in a mixed negative-binomial distribution with some mix-
ing distribution U(ς). It has been shown by Karlis and Xekalaki [52] that
Pr{N = j} ∝ j−θ

∑j
l=0

(
j
l

)
(−1)j−l

E
(
ςj−θ
)

which is a finite series of non-
integral moments of the mixing distribution E

(
ςj−θ
)
, with a predominant

power-law factor. It is heavy-tailed and power-law, if

lim
j→∞

∑j+1
l=0

(
j+1

l

)
(−1)j−l+1

E
(
ςj−θ+1

)

∑j
l=0

(
j
l

)
(−1)j−l

E (ςj−θ)
= 1.
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