Skip to main content

Microbial Transformation of Organic Chemicals in Natural Environments: Fate of Chemicals and Substantiation of Microbial Involvement through Enrichment Culturing Techniques

  • Chapter
Soil Mineral Microbe-Organic Interactions
  • 1939 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arias YM, Tebo BM (2003) Cr(VI) Reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl Environ Microbiol 69:1847-1853

    Article  Google Scholar 

  • Adrian L, Manz W, Szewzyk U, Görisch H (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64:496-503

    Google Scholar 

  • Aleshchenkova ZM, Smsonova AS, Semochkina NF, Baikova SV, Tolstolutskaya LI,Begel’man MM (1997) Utilization of isophthalic acid esters by Rhodococci. Microbiol 66:515-518

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, California

    Google Scholar 

  • Armstrong DE, Chesters G, Harris RF (1967) Atrazine hydrolysis in soil. Soil Sci Soc Am Proc 31:61–66

    Google Scholar 

  • Atlas R (1995) Bioremediation{Bioremediation}. Chem Eng News (April 3, 1995) 32–42

    Google Scholar 

  • Bakker DP, Postmus BR, Busscher HJ, van der Mei HC (2004) Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. Appl Environ Microbiol 70:3758-3760

    Article  Google Scholar 

  • Berry DF, Francis AJ, Bollag J-M (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Micorbiol Rev 51:43-59

    Google Scholar 

  • Berry DF, Gu J-D, Reneau RB, Jr. (1991) Biodegradation of heterocyclic aromatic based pesticides and related chemicals under anaerobic conditions. Adv Agron 1:93-95

    Google Scholar 

  • Bollag J-M, Liu S-Y (1990) Biological transformation processes of pesticides. In: Cheng HH (ed) Pesticides in the soil environment: processes, Impacts and Modeling. Soil Science Society of America, Madison, Wisconsin, pp 169-211.

    Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007-1019

    Article  Google Scholar 

  • Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274-4282

    Article  Google Scholar 

  • Carvalho MF, Alves CCT, Ferreira MIM, De Marco P, Castro PML (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68:102-105

    Article  Google Scholar 

  • Cheung KH, Gu J-D (2005) Reduction of chromate (CrO4 2-) by a Bacillus magnetarium isolated from marine. World J Microbiol Biotechnol 21: 213-219

    Article  Google Scholar 

  • Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeter Biodegr 59:8–15

    Article  Google Scholar 

  • Cheung KH, Lai HY, Gu J-D (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855-862

    Google Scholar 

  • Christensen BB, Haagensen JAJ, Heydorn A, Molin S (2002) Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495-2502

    Article  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax Strain. Appl Environ Microbiol 69:1532-1541

    Article  Google Scholar 

  • de Souza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ, Wackett LP (1998) Molecular basis of a bacterial consortium:interspecies catabolism of atrazine. Appl Environ Microbiol 64:178-184

    Google Scholar 

  • De Souza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ, Wackett LP (2000) Molecular basis of a bacterial consortium:interspecies catabolism of atrazine. Appl Environ Microbiol 66:1252

    Google Scholar 

  • Diao HF, Li XY, Gu JD, Shi HC, Xie ZM (2004) Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem 39:1421-1426

    Article  Google Scholar 

  • Dilly O, loemJ B, Vos A, Munch JC (2004) Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol 70:468-474

    Article  Google Scholar 

  • Dizdaroglu M (1991) Chemical determination of free radical-induced damage to DNA. Free Radical Biol Med 10:225-242

    Article  Google Scholar 

  • Eaton RW, Ribbons DW (1982) Metabolism of dimethylphthalate by Micrococcus sp. strain 12B. J Bacteriol 151:465–467

    Google Scholar 

  • El-Fantroussi S (2000) Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl Environ Microbiol 66:5110-5115

    Article  Google Scholar 

  • Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89-99

    Article  Google Scholar 

  • Fan Y, Wang Y, Qian P, Gu J-D (2004) Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modeling degradation. Int Biodeterior Biodegrad 53:57-63

    Article  Google Scholar 

  • Ficker M, Krastel K, Orlicky S, Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol 65:5576-5585

    Google Scholar 

  • Ganji SH, Karigar CS, Pujar BG (1995) Metabolism of dimethylterephthalate by Aspergillus niger. Biodegrad 6:61-66

    Article  Google Scholar 

  • Glaeser J, Overmann J (2003) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739-3750

    Article  Google Scholar 

  • Gross RA, Gu J-D, Eberiel D, McCarthy SP (1995) Laboratory scale composting test methods to determine polymer biodegradability:model studies on cellulose acetate. J Macromol Sci–Pure Appl Chem A 32:613-628

    Article  Google Scholar 

  • Grossart H-P, Ki⊝rboe T, Tang K, Ploug H (2003) Bacterial colonization of particles:growth and interactions. Appl Environ Microbiol 69:3500-3509

    Article  Google Scholar 

  • Gschwend PM, MacFarlane JK, Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1033–1035

    Article  Google Scholar 

  • Gu J-D, Berry DF (1991) Degradation of substituted indole{indole}s by an indole-degrading methanogenic consortium. Appl Environ Microbiol 57:2622-2627

    Google Scholar 

  • Gu J-D, Berry DF (1992) Metabolism of 3-methylindole{indole} by a methanogenic consortium. Appl Environl Microbiol 58:2667-2669

    Google Scholar 

  • Gu J-D, Berry DF, Taraban RH, Martens DC, Walker, Jr HL, Edmonds WJ (1992) Biodegradability of Atrazine, Cyanazine, and Dicamba in wetland soils. Virginia Water Resource Research Center, Bulletin No 172, Virginia Tech, Blacksburg, Virginia. 72 pp

    Google Scholar 

  • Gu J-D, Eberiel DT, McCarthy SP, Gross RA (1993a) Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. J Environ Polym Degr 1:143-153

    Article  Google Scholar 

  • Gu J-D, Eberiel D, McCarthy SP, Gross RA (1993b) Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments. J Environ Polym Degr 1:281-291

    Article  Google Scholar 

  • Gu J-D, Coulter S, Eberiel D, McCarthy SP, Gross RA (1993c) A respirometric method to measure mineralization of polymeric materials in a matured compost environment. J Environ Polym Degr 1:293-299

    Article  Google Scholar 

  • Gu J-D, Yang S, Welton R, Eberiel D, McCarthy SP, Gross RA (1994) Effects of environmental parameters on degradability of polymer films. J Environ Polym Degr 2:129-135

    Article  Google Scholar 

  • Gu J-D, Mitchell R (1995) Microbiological influenced corrosion of metal, degradation and deterioration of materials of space applications. Chin J Mater Res 9 (suppl.):473-489

    Google Scholar 

  • Gu J-D, Belay B, Mitchell R (2001) Protection of catheter surfaces from adhesion of Pseudomonas aeruginosa by a combination of silver ions and lectins. World J Microbiol Biotech 17:173–179

    Article  Google Scholar 

  • Gu J-D, Fan Y, Shi H (2002) Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms. Mar Poll Bull 45:379-384

    Article  Google Scholar 

  • Gu J, Fan Y, Gu J-D (2003a) Biodegradability of atrazine, cyanzine and dicamba under methanogenic conditions in three soils of China. Chemosphere 52:1515-1521

    Google Scholar 

  • Gu J-G, Qiao C, Gu J-D (2003b) Biodegradation of the herbicides atrazine, cyanazine and dicamba by methanogenic enrichment cultures from selective soils of China. Bull Environ Contam Toxicol 71:924-932

    Google Scholar 

  • Gu J-D, Li J, Wang Y (2004) Degradation of the endocrine-disrupting dimethyl phthalate ester isomers by aerobic microorganisms isolated from mangrove sediment. In:Verstraete WAA (ed) European symposium on environmental biotechnology, ESEB 2004. Balkema Publishers, London, pp 557-561.

    Google Scholar 

  • Gu J-D, Li J, Wang Y (2005) Biochemical pathway and degradation of phthalate ester isomers by bacteria. Wat Sci Technol 52(8):241-248

    Google Scholar 

  • Haggblom MM, Young LY (1995) Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl Environ Microbiol 61:1546-1550

    Google Scholar 

  • Hashizume K, Nanya J, Toda C, Yasui T, Nagano H, Kojima N (2002) Phthalate esters detected in various water samples and biodegradation of the phthlates by microbes isolated from river water. Biol Pharm Bull 25:209–214

    Article  Google Scholar 

  • Hoigné J (1990) Formulation and calibration of environmental reaction kinetics:oxidations by aqueous photooxidants as an example. In:Stumm W (ed), Aquatic chemical kinetics:reaction rates of processes in natural waters. Wiley, New York, pp 43–70

    Google Scholar 

  • Jhanson R, Ackerman CE, Scow KM (1999) Biodegradation{degradation} of methyl tert-butyl ether{methyl tert-butyl ether} by a bacterial pure culture. Appl Environ Microbiol 65:4788-4792

    Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[$a$]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205-4211

    Article  Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2002)Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826-5833

    Article  Google Scholar 

  • Keyser P, BG Pujar, RW Eaton (1976) Biodegradation of the phthalates and their esters by bacteria. Environ Health Persp 18:159-166

    Article  Google Scholar 

  • Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531-3542

    Article  Google Scholar 

  • Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukui M, Urushigawa Y, Stahl DA (2002) Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl Environ Microbiol 68:3215-3225

    Article  Google Scholar 

  • Kuo C, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62:2317-2323

    Google Scholar 

  • Lepine F, Bisaillon J, Milot S, Khalid TH, Beaudet R, Villemur R (1996) Transformation of phenol into phenylalanine by a methanogenic consortium. Appl Environ Microbiol 62:809-814

    Google Scholar 

  • Li K, Gu J-D (2004) Biodegradation of di-n-butyl phthalate by mangrove microorganism Rhodococcus rubber 1 K. Chin J Appl Ecol 16:1566–1568 (in Chinese)

    Google Scholar 

  • Li J, Gu J-D (2006) Biodegradation of dimethyl terephthalate by Pasteurella multocidaSaPasteurella multocidaSa follows a novel biochemical pathway. Ecotoxicol 15:391–397

    Article  Google Scholar 

  • Li J, Gu J-D (2007) Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilium Sr isolated from wetland sediment. Sci Total Environ 380:181–187

    Article  Google Scholar 

  • Li J, Gu J-D, Pan L (2005a) Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processes using the modified Gompertz model. Int Biodeterior Biodegrad 55:223-232

    Google Scholar 

  • Li J, Gu J-D, Yao J-H (2005b) Degradation of dimethyl terephthalate by Pasteurella multocida SaPasteurella multocidaSa and Sphingomonas paucimobilis Sy isolated from mangrove sediment. Int Biodeterior Biodegrad 56:158-165

    Article  Google Scholar 

  • Lin C, Gu J-G, Qiao C, Gu J-D (2006) Degradation of the herbicides atrazine, cyanazine and dicamba in sediment of Pearl River delta of Southern China under methanogenic conditions. Biol Fertil Soils 42:395–401

    Article  Google Scholar 

  • Lünsdorf H, Erb RW, Abraham W-R, Timmis KN (2000) ’Clay hutches’:a novel interaction between bacteria and clay minerals. Environ Microbiol 2:161-168

    Article  Google Scholar 

  • McBride MB (1987). Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Sci Soc Am J 52:985-993

    Google Scholar 

  • McBride MB, Sikora F., Wesselink LG (1988) Complexation and catalyzed oxidative polymerization of catechol by aluminum in acidic solution. Soil Sci Soc Am J 51:1466-1472

    Google Scholar 

  • McGill WB, Hunt HW, Woodmansee RG, Reuss JO (1981) Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils. In:Clark FE, Rosswall T (eds), Terrestrial nitrogen cycles. Ecological Bulletin (Stockholm) 33:49-115

    Google Scholar 

  • Middeldorp PJM, De Wolf J, Zehnder AJB, Schraa G (1997) Enrichment and properties of a 1,2,4-trichlorobenzene-dechlorinating methanogenic microbial consortium. Appl Environ Microbiol 63:1225-1229

    Google Scholar 

  • Miller ME, Alexander M (1991) Kinetics of bacterial degradation{degradation} of benzylamine in a montmorillonite suspension. Environ Sci Technol 25:240-245

    Article  Google Scholar 

  • Montville R, Schaffner DW (2003) Inoculum size influences bacterial cross contamination between surfaces. Appl Environ Microbiol 69:7188-7193

    Article  Google Scholar 

  • Mortland, MM (1970) Clay-organic complexes and interactions. Advances in Agronomy 22:75-117

    Google Scholar 

  • Mueller RF, Nielsen PH (1996) Characterization of thermophilic consortia from tTwo souring oil reservoirs. Appl Environ Microbiol 62:3083-3087

    Google Scholar 

  • Niazi JH, Prasad DT, Karegoudar TB (2001) Initial degradation of dimethylphthalate by esterases from Bacillus species. FEMS Microbiol Lett 196:201-205

    Article  Google Scholar 

  • Obst M, Krug A, Luftmann H, Steinbüchel A (2005) Degradation of cyanophycin by Sedimentibacter hongkongensis strain KI and Citrobacter amalonaticus strain G isolated from an anaerobic bacterial consortium. Appl Environ Microbiol 71:3642-3652

    Article  Google Scholar 

  • Pancost RD, Damsté JSS, de Lint S, van der Maarel MJEC, Gottschal JC, The Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in mediterranean sediments by a consortium of methanogenic{methanogenic} archaea and bacteria. Appl Environ Microbiol 66:1126-1132

    Google Scholar 

  • Patel DS, Desai AJ, Desai JD (1998) Biodegradation{degradation} of dimethylterephthalate by Comamonas acidovorans D-4. Indian J Exper Biol 36:321-324

    Google Scholar 

  • Pelizzetti E., Maurino V, Minero C, Carlin V, Pramauro E, Zerbinati O, Tosato ML (1990) Photocatalytic degradation of atrazine and other s-triazine herbicides. Environ Sci Technol 24:1559-1565

    Article  Google Scholar 

  • Rooney D, Kennedy N, Deering L, Gleeson D, Clipson N (2006) Effect of sheep urine deposition on the bacterial community structure in an acidic upland grassland soil. Appl Environ Microbiol 72:7231-7237

    Article  Google Scholar 

  • Schwarzenbach RP, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ Sci Technol 15:1360-1367

    Article  Google Scholar 

  • Sivamurthy K, Wamy BM, Pujar BG (1991) Transformation of dimethylterephthalate by the fungus Sclerotium rolfsii. FEMS Microbiol Lett 79:37-40

    Article  Google Scholar 

  • Skipper HD, Gilmour CM, Furtick WR (1967) Microbial versus chemical degradation of atrazine in soils. Soil Sci Soc Am Proc 31:653-656

    Google Scholar 

  • Sliwinski MK, Goodman RM (2004) Comparison of crenarchaeal consortia inhabiting the rhizosphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol 70:1821-1826

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996). Aquatic chemistry – chemical equlibrium and rates in Natural Waters (3rd edn). Wiley, New York

    Google Scholar 

  • Vega D, Bastide J (2003) Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere 51:663-668

    Article  Google Scholar 

  • Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation:Microbial Transformation of Organic Compounds. ASM, Washington DC

    Google Scholar 

  • Wang TSC, Huang PM, Chou C-H, Chen J-H (1986) The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In:Huang PM and Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Science Society of America, Madison, Wisconsin, pp 252-281

    Google Scholar 

  • Wang Y, Fan Y, Gu J-D (2003a) Microbial degradation{degradation} of the endocrine-disrupting chemicals phthalic acid and dimethyl phthalate ester under aerobic conditions. Bull Environ Contam Toxicol 71:810-818

    Google Scholar 

  • Wang Y, Fan Y, Gu J-D (2003b) Aerobic degradation of phthalic acid by Comamonas acidovoranfy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations. World J Microbiol Biotechnol 19:811-815

    Article  Google Scholar 

  • Wang Y, Fan Y, Gu J-D (2004) Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia. Int Biodeterior Biodegrad 53:93-101

    Article  Google Scholar 

  • Wang Y, Gu J-D (2006) Degradation of dimethyl isophthalate by Viarovorax paradoxusT4 isolated from deep-ocean sediment of South China Sea. J Human Ecol Risk Assess 12:236–247

    Article  Google Scholar 

  • Wang Y, Leung PC, Qian P, Gu J-D (2006) Antibiotic resistance and plasmid profile of environmental isolates of Vibriospecies from Mai Po Nature Reserve, Hong Kong. Ecotoxicol 15:371–378

    Article  Google Scholar 

  • Whiteley AS, Bailey MJ (2000) Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol 66:2400-2407

    Article  Google Scholar 

  • Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, Jackson PJ (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64:1006-1012

    Google Scholar 

  • Wu Q, Sowers KR, May HD (2000) Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. Appl Environ Microbiol 66:49-53

    Article  Google Scholar 

  • Xu X-R, Zhao Z-Y, Li X-Y, Gu J-D (2004) Chemical oxidative degradation{degradation} of mehyl tert-butyl ether in aqueous solution by Fenton’s reagent. Chemosphere 55:73-79

    Article  Google Scholar 

  • Xu XR, Gu J-D (2004) Elucidation of methyl tert-butyl ethertert-butyl degradation with Fe2+/H2O2 by purge-and-trap gas chromatography-mass spectrometry. Microchem J 77:71-77

    Article  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2005a) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. Int Biodeterior Biodegrad 55:9-15

    Article  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2005b) Degradation of $n$-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from mangrove sediment. J Microbiol Biotechnol 15:946-951

    Google Scholar 

  • Xu XR, Li HB, Gu JD (2006) Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process. Chemosphere 63:254–260

    Article  Google Scholar 

  • Yin B, Gu J-D, Wan N (2005) Degradation of indole by enrichment culture and Pseudonmonas aeruginosa Gs isolated from mangrove sediment. Int Biodeterior Biodegrad 56:243-248

    Article  Google Scholar 

  • Yin B, Gu J-D, Huang L (2006) Aerobic degradation of 3-methylindole by Pseudomonas aeruginosa isolated from mangrove sediment. J Human Ecol Risk Assess 12:248-258

    Article  Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361-4365

    Article  Google Scholar 

  • Yu C-P, Ahuja R, Sayler G, Chu K-H (2005) Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl Environ Microbiol 71:1433-1444

    Article  Google Scholar 

  • Yu, XZ, Gu J-D (2006) Uptake, metabolism, and toxicity of methyl tert-butyl ethertert-butyl (MTBE) in weeping willows. J Hardz Mat B 137:1417-1423

    Google Scholar 

  • Yu, XZ, Gu J-D (2007a) Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal. Ecotoxicol Environ Saf 67:254–259

    Google Scholar 

  • Yu, XZ, Gu J-D (2007b) Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudanaKoidz × albaL.) metabolism. Arch Environ Contam Toxicol 52:503–511

    Google Scholar 

  • Yu, XZ, Gu J-D (2007c) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res 14:510–517

    Google Scholar 

  • Yu, XZ, Gu J-D (2007d) Effects of available nitrogen on the uptake and assimilation of ferrocyanide and ferricyanide complexes in weeping willows. J Hazard Mater doi:10.1016/j.jhazmat.2007.12.020

    Google Scholar 

  • Yu, XZ, Gu J-D, Liu S (2007a) Biotransformation and metabolic response of cyanide in weeping willows. J Hazard Mater 147:838–844

    Google Scholar 

  • Yu, XZ, Gu J-D, Huang S-Z (2007b) Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicol 16:299–309

    Google Scholar 

  • Zeng F, Cui K, Li X, Fu J, Sheng G (2004) Biodegradation kinetics of phthalate esters by Pseudomonas fluorescences FS1. Process Biochem 39:1125-1129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, JD. (2008). Microbial Transformation of Organic Chemicals in Natural Environments: Fate of Chemicals and Substantiation of Microbial Involvement through Enrichment Culturing Techniques. In: Huang, Q., Huang, P.M., Violante, A. (eds) Soil Mineral Microbe-Organic Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77686-4_7

Download citation

Publish with us

Policies and ethics