Skip to main content

Noninvasive Cell Tracking

  • Chapter
Molecular Imaging II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/2))

Abstract

Cell-based therapies may gain future importance in defeating different kinds of diseases, including cancer, immunological disorders, neurodegenerative diseases, cardiac infarction and stroke. In this context, the noninvasive localization of the transplanted cells and the monitoring of their migration can facilitate basic research on the underlying mechanism and improve clinical translation.

In this chapter, different ways to label and track cells in vivo are described. The oldest and only clinically established method is leukocyte scintigraphy, which enables a (semi)quantitative assessment of cell assemblies and, thus, the localization of inflammation foci. Noninvasive imaging of fewer or even single cells succeeds with MRI after labeling of the cells with (ultrasmall) superparamagentic iron oxide particles (SPIO and USPIO). However, in order to gain an acceptable signal-to-noise ratio, at a sufficiently high spatial resolution of the MR sequence to visualize a small amount of cells, experimental MR scanners working at high magnetic fields are usually required. Nevertheless, feasibility of clinical translation has been achieved by showing the localization of USPIO-labeled dendritic cells in cervical lymph nodes of patients by clinical MRI.

Cell-tracking approaches using optical methods are important for preclinical research. Here, cells are labeled either with fluorescent dyes or quantum dots, or transfected with plasmids coding for fluorescent proteins such as green fluorescent protein (GFP) or red fluorescent protein (RFP). The advantage of the latter approach is that the label does not get lost during cell division and, thus, makes imaging of proliferating transplanted cells (e.g., tumor cells) possible.

In summary, there are several promising options for noninvasive cell tracking, which have different strengths and limitations that should be considered when planning cell-tracking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens ET, Feili-Hariri M, Xu H et al (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49:1006–1013

    Article  PubMed  Google Scholar 

  • Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987

    Article  PubMed  Google Scholar 

  • Anderson SA, Shukaliak-Quandt J, Jordan EK et al (2004) Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 55:654–659

    Article  PubMed  Google Scholar 

  • Arbab AS, Pandit SD, Anderson SA et al (2006) MRI and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24:671–678

    Article  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  Google Scholar 

  • Beckmann N, Cannet C, Fringeli-Tanner M et al (2003) Macrophage labeling by SPIO as an early marker of allograft chronic rejection in a rat model of kidney transplantation. Magn Reson Med 49:459–467

    Article  PubMed  Google Scholar 

  • Billotey C, Wilhelm C, Devaud M et al (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654

    Article  PubMed  Google Scholar 

  • Bulte JWM, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labeled oligodendrocytes progenitors: MR tracking of cell migration and myelination. Proc Natl Acad Sci U S A 96:15256–15261

    Article  PubMed  Google Scholar 

  • Bulte JWM, Douglas T, van Gelderen P et al (2001a). Cellular imaging using magnetodendrimers: application to human stem cells and neoplastic cells in vivo. Proc Int Soc Magn Reson Med 9:52

    Google Scholar 

  • Bulte JWM, Lu J, Zywicke H et al (2001b) 3D MR tracking of magnetically labeled embryonic stem cells transplanted in the contusion injured rat spinal cord. Proc Int Soc Magn Reson Med 9:130

    Google Scholar 

  • Bulte JWM, Douglas T, Witwer B et al (2001c) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  Google Scholar 

  • Bulte JWM, Ben-Hur T, Miller BR et al (2003) MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 50:201–205

    Article  PubMed  Google Scholar 

  • Brenner W, Aicher A, Eckey T et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518

    PubMed  Google Scholar 

  • Cahill KS, Silver X, Gaidosh G et al (2003) Noninvasive monitoring and tracking of muscle stem cells. Proc Int Soc Magn Reson Med 11:368

    Google Scholar 

  • Chapon C, Franconi F, Lemaire L et al (2003) High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent rat myocardial infarction. Invest Radiol 38:141–146

    Article  PubMed  Google Scholar 

  • Contag CH, Jenkins D, Contag PR et al (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    Article  PubMed  Google Scholar 

  • Daldrup-Link HE, Rudelius M, Oostendorp RAJ et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  PubMed  Google Scholar 

  • Daldrup-Link HE, Rudelius M, Metz S et al (2004) Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31:1312–1321

    Article  PubMed  Google Scholar 

  • De Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 4:11–18

    Article  Google Scholar 

  • Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    PubMed  Google Scholar 

  • Foster-Gareau P, Heyn C, Alejski A et al (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49:968–971

    Article  PubMed  Google Scholar 

  • Frank JA, Zywicke H, Jordan EK, et al. (2002). Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9 Suppl 2:484–487

    Article  Google Scholar 

  • Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  • Franklin RJ, Blaschuk KL, Bearchell MC et al (1999) Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 10:3961–3965

    Article  PubMed  Google Scholar 

  • Fleige G, Seeberger F, Laux D et al (2002) In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol 37:482–488

    Article  PubMed  Google Scholar 

  • Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  Google Scholar 

  • Hakumaki JM, Savitt JM, Gearhart JD et al (2001) MRI detection of labeled neural progenitor cells in a mouse model of Parkinson’s disease. Dev Brain Res 132:43–44

    Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  • Hill JM, Dick AJ, Raman VK et al (2005) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  Google Scholar 

  • Hoehn M, Kuestermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99:16267–16272

    Article  PubMed  Google Scholar 

  • Hughes DK (2003) Nuclear medicine and infection detection: the relative effectiveness of imaging with 111In-oxine-, 99mTc-HMPAO-, and 99mTc-stannous fluoride colloid-labelled leucocytes and with 67Ga-citrate. J Nucl Med Technol 31:196–201

    PubMed  Google Scholar 

  • Inoue H, Ohsawa I, Murakami T et al (2005). Development of new inbred transgenic strains of rats with LacZ or GFP. Biochem Biophys Res Commun 329:288–295

    Article  PubMed  Google Scholar 

  • Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191

    Article  PubMed  Google Scholar 

  • Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63:6838–6846

    PubMed  Google Scholar 

  • Kleinschnitz C, Bendszus M, Frank M (2003) In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging. J Cereb Blood Flow Metab 23:1356–1361

    Article  PubMed  Google Scholar 

  • Kuestermann E, Roell W, Breitbach M et al (2005) Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation. NMR Biomed 18:362–370

    Article  Google Scholar 

  • Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  • Lee I-H, Bulte JWM, Schweinhardt P et al (2004). In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516

    Article  PubMed  Google Scholar 

  • Lin WC, Pretlow TP, Pretlow TG et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817

    PubMed  Google Scholar 

  • Lindvall O, Hagell P (2000) Clinical observation after neural transplantation in Parkinson’s disease. Prog Brain Res 127:299–320

    Article  PubMed  Google Scholar 

  • Lindvall O, Bjoerklund A (2004) Cell Therapy in Parkinson’s Disease. NeuroRx 1:382–393

    Article  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2004) Recovery and rehabilitation in stroke: stem cells. Stroke 35: 2691–2694

    Article  PubMed  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  Google Scholar 

  • Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell based therapies. Circulation 109:2692–2697

    Article  PubMed  Google Scholar 

  • McAfee JG, Subramanian G, Gagne G (1984) Techniques of leukocyte harvesting and labelling: problems and perspectives. Semin Nucl Med 2:83–106

    Article  Google Scholar 

  • Mothe AJ, Kulbatski I, van Bendegem RL et al (2005). Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 53:1215–1226

    Article  PubMed  Google Scholar 

  • Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextrancoated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145

    Article  PubMed  Google Scholar 

  • Nitin N, LaConte LEW, Zurkiya O et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent J Biol Inorg Chem 9:706–712

    Article  PubMed  Google Scholar 

  • Onifer SM, White LA, Whitenmore SR et al (1993) In vitro labeling strategies for identifying primary neural tissue and a neuronal cell line after transplantation in the CNS. Cell Transplant 2:131–149

    PubMed  Google Scholar 

  • Paczesny S, Ueno H, Fay J et al (2003) Dendritic cells as vectors for immunotherapy of cancer. Semin Cancer Biol 13:439–447

    Article  PubMed  Google Scholar 

  • Parmiami G, Castelli C, Rivoltini L et al (2003) Immunotherapy of melanoma. Semin Cancer Biol 13:391–400

    Article  Google Scholar 

  • Schulz RB, Ripoll J, Ntziachristos V (2004). Experimental fluorescence tomography of tissues with noncontact measurements. IEEE Transact Med Imaging 23:492–500

    Article  Google Scholar 

  • Shapiro EM, Skrtic S, Koretsky A P (2005) Sizing it up: cellular MRI using micro-sized iron oxide particles. Magn Reson Med 53:329–338

    Article  PubMed  Google Scholar 

  • Shichinohe H, Kuroda S, Lee JB (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Prot 13:166–175

    Article  Google Scholar 

  • Sun R, Dittrich J, Le-Huu M et al (2005) Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 40:504–513

    Article  PubMed  Google Scholar 

  • Takahashi M, Hakamata Y, Murakami T et al (2003) Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochem Biophys Res Commun 305:904–908

    Article  PubMed  Google Scholar 

  • Takusaburo E, Ogama N, Shimanuki H et al (2001) Effector mechanism and clinical response of BAK (BRM-activated killer) immuno-cell therapy for maintaining satisfactory QOL of advanced cancer patients utilizing CD56-positive NIE (neuro-immune-endocrine) cells. Microbiol Immunol 45:403–411

    Google Scholar 

  • Taupitz M, Schmitz S, Hamm B (2003) Superparamagnetic iron oxide particles: current state and future development. Rofo 175:752–765

    PubMed  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10: 993–998

    Article  PubMed  Google Scholar 

  • Vroemen M, Aigner L, Winkler J et al (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci 18:743–751

    Article  PubMed  Google Scholar 

  • Vuu K, Xie J, McDonald MA et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16:995–999

    Article  PubMed  Google Scholar 

  • Walter GA, Cahill KS, Huard J et al (2004) Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 51:273–277

    Article  PubMed  Google Scholar 

  • Weissleder R, Ntziachristos (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493

    PubMed  Google Scholar 

  • Weissleder R, Cheng HC, Bogdanova A et al (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  PubMed  Google Scholar 

  • Yamamoto N, Jiang P, Yang M, et al. (2004). Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasic fluorescent-protein expression. Cancer Res 64:4251–4256

    Article  PubMed  Google Scholar 

  • Wilhelm C, Billotey C, Roger J et al (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    Article  PubMed  Google Scholar 

  • Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252

    Article  PubMed  Google Scholar 

  • Yeh TC, Zhang W, Ildstad ST et al (1993) Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30:617–625

    Article  PubMed  Google Scholar 

  • Zelivyanskaya ML, Nelson JA, Poluektova L et al (2003) Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 73: 284–295

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiessling, F. (2008). Noninvasive Cell Tracking. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging II. Handbook of Experimental Pharmacology, vol 185/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77496-9_13

Download citation

Publish with us

Policies and ethics