Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdellaoui, M. and Gaffet, E. (1996) The physics of mechanical alloying in a modified horizontal rod mill: mathematical treatment. Acta Materialia 44, 725–734.

    Article  CAS  Google Scholar 

  • Aiken III, J.D., Lin, Y. and Finke, R.G. (1996) A perspective on nanocluster catalysis: polyoxoanion and (n-C4H9)4N+ stabilized Ir(0) ∼300 SD nanocluster soluble heterogeneous catalysts. Journal of Molecular Catalysis A: Chemical 114, 29–51.

    Article  Google Scholar 

  • Avvakumov, E.G. (1986) Mechanical Methods of Chemical Processes Activation. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Bachmann, D. (1940) Über den Einfluss des Mahlvorganges auf die Eigenschaften von Hochpolymeren Zellulose und Polystyrol. Verfahrenstechnik Zeitschrift, VDI-Beiheft 2, 43–55.

    Google Scholar 

  • Baláž, P. (1981) Intensification of Chalcopyrite Oxidative Leaching. PhD. Thesis, Mining Institute of Slovak Academy of Sciences, Košice.

    Google Scholar 

  • Baláž, P. (2000) Extractive Metallurgy of Activated Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Baláž, P., Godočíková, E., Kril’ová, L., Lobotka, P. and Gock, E. (2004) Preparation of nanocrystalline materials by high-energy milling. Materials Science Engineering A386, 442–446.

    Google Scholar 

  • Baláž, P., Godočíková, E., Takacs. L. and Gock, E. (2005) Mechanochemical preparation of metal/sulphide nanocomposite particles. International Journal of Materials Products Technology 23, 26–41.

    Google Scholar 

  • Beenken, W., Gock, E. and Kurrer, K.E. (1996) The outer mechanics of the eccentric vibration mill. International Journal of Minerals Processing 44–45, 437–446.

    Article  Google Scholar 

  • Beke, B. (1984) Considerations about the energetic effectivity of fine grinding. In: K. Iinoya, J.K. Beddow and G. Gimbo (Eds.) Proc. Int. Symp. on Powder Technology. Kyoto, 1981, Hemisphere Publishing Corporation, Washington, pp. 373–379.

    Google Scholar 

  • Benjamin, J.S. (1970) Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions 1, 2943–2951.

    CAS  Google Scholar 

  • Bernhardt, C. and Heegn, H.P. (1976a) Contribution to the investigation of the mechanical activation in fine grinding mills. In: H. Rumpf and K. Schönert (Eds.) Proc. IVth European Symp. on Comminution. Nürnberg 1975, Dechema Monographien, Bd. 79, Verlag Chemie, Frankfurt am Main, pp. 213–225 (in German).

    Google Scholar 

  • Bernhardt, C. and Heegn, H.P. (1976b) Zur mechanischen Aktivierung von Ton. Folia Montana, extraordinary number 296–307.

    Google Scholar 

  • Bernotat, S. and Schönert, K. (1998) Size reduction. In: Ullmann’s Encyclopedia of Industrial Chemistry. VCH Verlagsgesellschaft, Weinheim, Vol. B2, pp. 5.1–5.39.

    Google Scholar 

  • Boldyrev, V.V. (1983) Experimental Methods in Mechanochemistry of Solid Inorganic Materials. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Boldyrev, V.V. (1986) Mechanochemistry of inorganic solids. Proceedings of Indian National Science Academy 52, 400–417.

    Google Scholar 

  • Boldyrev, V.V. and Tkáčová, K. (2001) Mechanochemistry of solids: past, present and prospects. Journal of Materials Synthesis 8, 121–132.

    Article  Google Scholar 

  • Bond, F.C. (1952) The third theory of comminution. Transactions of AIME, Minerals Engineering 193, 484–494.

    Google Scholar 

  • Calka, A. (1991) Formation of titanium and zirconium nitrides by mechanical alloying. Applied Physics Letters 59, 1568–1569.

    Article  CAS  Google Scholar 

  • Calka, A. and Radlinski, A.P. (1991) Universal high performance ball milling device and its application for mechanical alloying. Materials Science and Engineering A, 134, 1350–1353.

    Article  Google Scholar 

  • Calka, A. and Wexler, D. (2002) Mechanical milling assisted by electrical discharge. Nature 419, 147–151.

    Article  CAS  Google Scholar 

  • Campbell, S.J. and Kaczmarek, W.A. (1996) Mössbauer effect studies of materials prepared by mechanochemical methods. In: G.J. Long and F. Grandjean (Eds.) Mössbauer Spectroscopy Applied to Materials and Magnetism. Plenum Press, New York Vol. 2, pp. 273–330.

    Google Scholar 

  • Charles, R.J. (1957) Energy-size reduction relationships in comminution. Transactions of AIME 208, 80–88.

    Google Scholar 

  • Chen, Y., Fitzgerald, J., Williams, J.S. and Willis, P. (1990) Mechanochemical synthesis of boron nitride nanotubes. Journal of Metastable and Nanocrystalline Materials 2, 375–380.

    Google Scholar 

  • Chen, Y., Li, Z.L. and Williams, J.S. (1995) The evolution of hydriding and nitriding reactions during ball milling of titanium in ammonia. Journal of Materials Science Letters 14, 542–544.

    Article  CAS  Google Scholar 

  • Chodakov, G.S. (1972) Physics of Milling. Nauka, Moscow (in Russian).

    Google Scholar 

  • Cottrell, A.M. (1958) Intercrystalline creep fracture. Transactions of AIME 212, 192–203.

    CAS  Google Scholar 

  • Davis, R.M. and Koch, C.C. (1987) Mechanical alloying of brittle components: silicon and germanium. Scripta Metallurgica 21, 305–310.

    Article  CAS  Google Scholar 

  • Dutta, J. and Hofmann, H. (2004) Self organization of colloidal nanoparticles. In: H.S. Salva (Ed.) Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, California, Vol. 9, pp. 617–640.

    Google Scholar 

  • El-Shall, H. and Somasundaran, P. (1984) Physico-chemical aspects of grinding: a review of use of additives. Powder Technology 38, 275–293.

    Article  CAS  Google Scholar 

  • Fokina, E.L., Budim, N.I., Kochnev, V.G. and Chernik, G.G. (2004) Planetary ball mills of periodic and continuous action. Journal of Materials Science 39, 5217–5222.

    Article  CAS  Google Scholar 

  • Gock, E. and. Kurrer, K.E. (1996) Eccentric vibratory mill-a new energy-efficient way for pulverisation. Erzmetall 49, 434–442.

    CAS  Google Scholar 

  • Gock, E. and Kurrer, K.E. (1998) Increased efficiency of the vibratory milling process with the eccentric vibratory mill. Aufbereitung-Technik 39, 103–111.

    CAS  Google Scholar 

  • Gock, E. and Kurrer, K.E. (1999) Eccentric vibratory mills-theory and practice. Powder Technology 105, 302–310.

    Article  CAS  Google Scholar 

  • Godočíková, E., Baláž, P., Criado, J.M., Real, C. and Gock, E. (2006) Thermal behaviour of mechanochemically synthesized nanocrystalline CuS. Thermochimica Acta 440, 19–22.

    Article  CAS  Google Scholar 

  • Golosov, S.J. (1971) Introduction to Ultrafine Milling in Planetary Mills. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Griffith, A.A. (1920) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society (London) A 221, 163–198.

    Article  Google Scholar 

  • Heegn, H.P., Bernhardt, C., Gottschalk, J. and Hussemann, K. (1974) Activation effects on the comminution of quartz and calcite in various laboratory mills. Chemische Technik (Leipzig) 26, 696–701.

    Google Scholar 

  • Heegn, H.P, Bernhardt, C. and Ludwig, G. (1980) Zur Feinstmahlung von Strontiumferrit. Folia Montana, extraordinary number, 195–200.

    Google Scholar 

  • Heegn, H.P. (1989) On the connection between ultrafine grinding and mechanical activation of minerals. Chemie Ingenieur Technik 62, 458–464.

    Article  Google Scholar 

  • Heinicke, G. (1984) Tribochemistry. Akademie-Verlag, Berlin.

    Google Scholar 

  • Holmes, J.A. (1957) A contribution to the study of comminution: a modified form of Kick’s law. Transactions of Institute Chemical Engineers (London) 35, 125–138.

    Google Scholar 

  • http://www.fritsch.com

  • http://www.netzsch.com

  • http://www.nishineng.com

  • http://www.siebtechnik.com

  • http://www.ttd.spb.ru

  • http://www.unionprocess.com

  • http://www.utk.edu

  • http://www.zoz.com

  • Hukki, R.T. (1961) Proposal for a Solomonic settlement between the theories of von Rittinger, Kick and Bond. Transactions of AIME 220, 403–408.

    Google Scholar 

  • Hunter, R.J. (1987) Foundations of Colloid Science, Vol. 1. Oxford University Press, New York.

    Google Scholar 

  • Husemann, K., Wolf, R., Hermann, R. and Hoffmann, B. (1976) Erhöhung der Effektivität trockener Feinstmahlprozesse durch grenzflächenaktive Zusätze. Aufbereitungstechnik 35, 393–403.

    Google Scholar 

  • Hüttig, G. (1943) Intermediate steps at solid-state reactions and their significance in catalysis. In: G.M. Schwab (Ed.) Handbook of Catalysis. Springer Verlag, Wien, Vol. 4, pp. 318–577 (in German).

    Google Scholar 

  • Jimbo, G., Zhao, Q.Q., Yokoyana, T. and Taniyana, Y. (1990) The grinding limit and the negative grinding phenomenon. In: Proc. IInd World Congress Particle Technology, Society of Powder Technology, Kyoto, Part II, pp. 305–312.

    Google Scholar 

  • Juhász, A.Z. and Opoczky, L. (1990) Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles. Ellis Horwood, Chichester.

    Google Scholar 

  • Kick, F. (1883) A critique of industrial methods of measurement of strength. Dinglers Polytechnik Journal 247, 1–15.

    Google Scholar 

  • Kirpičev, V.L. (1874) Similarity in elastic phenomena. Žurnal Russkogo Fiziko-chimičeskogo Obščestva, čast’ fizičeskaja IX, 152–158 (in Russian).

    Google Scholar 

  • Klimpel, R.R. (1997) Introduction to the Principles of Size Reduction of Particles by Mechanical Means. Engineering Research Center at the University of Florida, Gainesville, pp. 1–41.

    Google Scholar 

  • Koch, C.C. (1993) The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostructured Materials 2, 109–129.

    Article  CAS  Google Scholar 

  • Koch, C.C. (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostructured Materials 9, 13–22.

    Article  CAS  Google Scholar 

  • Kochnev, V.G. (1992) Planetary mill. Russian Patent 1358990.

    Google Scholar 

  • Kochnev, V.G. and Simakin, S.A. (1994) Planetary mill feeder. Russian Patent 2094120.

    Google Scholar 

  • Krupp, H. (1967) Particle adhesion theory and experiment. Journal of Colloid Interface Science 1, 111–239.

    Article  CAS  Google Scholar 

  • Kurrer, K.E. and Gock, E. (1997) Eccentric vibratory mills for ultrafine comminution. Zement-Kalk-Gips International 50, 362–373.

    CAS  Google Scholar 

  • Lai, M.O. and Lu, L. (1998) Mechanical Alloying. Boston, Kluwer Academic Publishers.

    Google Scholar 

  • Mana, L., Scher, E.C. and Alivisatos, A.P. (2002) Shape control of colloidal semiconductor nanocrystals. Journal of Cluster Science 13, 521–532.

    Article  Google Scholar 

  • Miani, F. and Maurigh, F. (2004) Mechanosynthesis of nanophase powders. In: J.A. Schwarz, C.J. Contescu and K. Putyera (Eds.) Dekker Encyclopedia of Nanoscience and Nanotechnology. Marcel Dekker, New York, pp. 1787–1795.

    Google Scholar 

  • Molčanov, V.I. and Jusupov, T.S. (1981) Physical and Chemical Properties of Fine Milled Minerals. Nedra, Moscow (in Russian).

    Google Scholar 

  • Molčanov, V.I., Selezneva, O.G. and Žirnov, E.N. (1988) Activation of Minerals by Milling. Nedra, Moscow (in Russian).

    Google Scholar 

  • Murty, B.S. and Ranganathan, S. (1998) Novel materials synthesis by mechanical alloying/mixing. International Materials Review 43, 101–143.

    CAS  Google Scholar 

  • Netzsch Feinmahltechnik GmbH-Technical Information FT 002, 1974. Zirkulationsmühle System ZETA.

    Google Scholar 

  • Ogino, Y., Yamasaki, T., Atzumi, N. and Yoshioka, K. (1993) Nitriding of transition metal powders by ball milling in nitrogen gas. Materials Transactions JIM 34, 1212–1216.

    CAS  Google Scholar 

  • Opoczky, L. (1977) Fine grinding and agglomeration of silicates. Powder Technology 17, 1–7.

    Article  CAS  Google Scholar 

  • Overbeeck, J.T.G. (1981) Colloidal Dispersions. Royal Society of Chemistry, London.

    Google Scholar 

  • Pietsch, W.B. (1972) Über Grenzflächenvorgänge in der Agglomerationstechnik. CZ Chemie-Technik 1, 116–119.

    Google Scholar 

  • Pietsch, W.B. (1984) Agglomerate bonding and strength. In: N.E. Fayed and L. Otten (Eds.) Handbook of Powder Science and Technology. Van Nostrand, New York, pp. 231–251.

    Google Scholar 

  • Pileni, M.P. (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials 2, 145–150.

    Article  CAS  Google Scholar 

  • Puntes, F., Krishnan, K.M. and Alivisatos, A.P. (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117.

    Article  CAS  Google Scholar 

  • Püpke, I. (1971) Construction and operating method of an attrition mill in powder metallurgy. Powder Metallurgy International 3, 94–96.

    Google Scholar 

  • Rebinder, P.A. and Kalinovskaja, N.A. (1932) Lowering of strength of solid surface layers at surfactants adsorption. Žurnal techničeskoj fiziki 2, 286–302.

    Google Scholar 

  • Rhodes, M. (1998) Introduction to Particle Technology. John Wiley and Sons, Chichester.

    Google Scholar 

  • Rittinger, P.R. (1867) Lehrbuch der Aufbereitungskunde. Ernst und Korn, Berlin.

    Google Scholar 

  • Rose, H.E. and Sullivan, R.M. (1961) Vibration Mills and Vibration Milling. Constable and Company Ltd., London.

    Google Scholar 

  • Rose, H.E. (1962) Hochleistungsschwingmühlen. Chemie Ingenieur Technik 34, 414–417.

    Article  Google Scholar 

  • Rumpf, H. (1961) Problemstellungen und neuere Ergebnisse der Bruchtheorie. Materialprüfung 3, 253–265.

    Google Scholar 

  • Rumpf, H. (1962) The Strength of granules and agglomerates. In: W.A. Knepper (Ed.) Agglomeration. John Wiley, New York, pp. 379–418.

    Google Scholar 

  • Rumpf, H. (1966) Struktur der Zerkleinerungswissenschaft. Aufbereitungstechnik 7, 421–435.

    Google Scholar 

  • Rumpf, H. and Herrmann, H. (1970) Eigenschaften Bindugsmechanismen und Festigkeit von Agglomeraten. Aufbereitungstechnik 11, 117–127.

    Google Scholar 

  • Rumpf, H. (1972) Haftung und Festigkeit von Agglomeraten Vergleich zwischen Modellrechnung und Experiment. Die Pharmaceutische Industrie 34, 270–281.

    CAS  Google Scholar 

  • Rumpf, H. (1973) Physical aspects of comminution-a new formulation of a law of comminution. Powder Technology 7, 148–159.

    Article  Google Scholar 

  • Rumpf, H. (1974) Die Wissenschaft des Agglomerierens. Chemie Ingenieur Technik 46, 1–11.

    Article  Google Scholar 

  • Smekal, A. (1922) Technische Festigkeit und molekuläre Festigkeit. Naturwissenschaften 10, 799–804.

    Article  CAS  Google Scholar 

  • Smekal, A. (1936) Bruchtheorie spröder Körper. Zeitschrift für Physik 103, 495–525.

    Article  Google Scholar 

  • Schönert, K. and Weichert, A. (1969) Die Wärmetönung des Bruches in Eisen und ihre Abhängigkeit von der Ausbreitungsgeschwindigkeit. Chemie Ingenieur Technik 41, 295–300.

    Article  Google Scholar 

  • Schönert, K. and Steier, K. (1971) Die Grenze der Zerkleinerung bei kleinen Korngrössen. Chemie Ingenieur Technik 43, 773–777.

    Article  Google Scholar 

  • Schönert, K. (1974) Über die Eigenschaften von Bruchflächen. Chemie Ingenieur Technik 46, 711–715.

    Article  Google Scholar 

  • Schubert, H. (1989) Aufbereitung fester mineralischer Rohstoffe. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Band I.

    Google Scholar 

  • Schulz, R., Boily, S., Zaluski, L., Zaluska, A. and Ström-Olsen, J.O. (1995) Nanocrystalline Mg-based hydrides: hydrogen storage for the zero-emission vehicle. Innovations in Metallic Materials, 529–535.

    Google Scholar 

  • Suryanarayana, C. (2001) Mechanical alloying and milling. Progress in Materials Science 46, 1–184.

    Article  CAS  Google Scholar 

  • Suryanarayana, C., Ivanov, E. and Boldyrev, V.V. (2001) The science and technology of mechanical alloying. Materials Science and Engineering A, 304–306, 151–158.

    Article  Google Scholar 

  • Takacs, L. and Pardavi-Horvath, M. (1994) Magnetic properties of nanocomposites prepared by mechanical milling. In: R.D. Shull and J.M. Sanchez (Eds.)Nanophases and Nanocrystalline Structures. Warrendale, Pa, pp. 135–144.

    Google Scholar 

  • Takacs, L. and McHenry, J.S. (2006). Temperature of the milling balls in shaker and planetary mills. Journal of Materials Science 41, 5246–5249.

    Article  CAS  Google Scholar 

  • Tanaka, T. (1958) Staub 18, 157–168.

    Google Scholar 

  • Tkáčová, K. (1989) Mechanical Activation of Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Tkáčová, K., Heegn, H.P. and Števulová, N. (1993) Energy transfer and conversion during comminution and mechanical activation. International Journal of Mineral Processing 40, 17–31.

    Article  Google Scholar 

  • Welch, A.J.E. (1953) The reaction of crystal lattice discontinuities to mineral dressing. In: Developments in Mineral Dressing. The Institution of Mining and Metallurgy, London, pp. 387–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baláž, P. (2008). High-Energy Milling. In: Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74855-7_2

Download citation

Publish with us

Policies and ethics