Skip to main content

Inverse Modelling and Combined State-Source Estimation for Chemical Weather

  • Chapter
  • First Online:
Data Assimilation

Abstract

Air quality data assimilation aims to find a best estimate of the control parameters (see theory chapter) for those processes of the atmosphere which govern the chemical evolution of biologically relevant height levels, typically located in the the lowermost atmosphere. As in data assimilation (see theory chapters), we have to resort to numerical models to complement usually sparse observation networks; these models serve as system constraints. Several research groups are developing data assimilation methods similar to those applied to meteorological applications. Techniques range from nudging to advanced spatio–temporal methods such as four-dimensional variational (4D-Var) data assimilation and various simplifications of the Kalman filter (KF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benedetti, A. and M. Fisher, 2007. Background error statistics for aerosols. Q. J. R. Meteorol. Soc., 133, 391–405.

    Article  Google Scholar 

  • Bernhofer, C. and B. Köstner (ed.), 2005. Vertical Transport of Energy and Trace Gases at Anchor Stations and Their Spatial/Temporal Extrapolation under Complex Natural Conditions (VERTIKO): Project Summary, Vol 12, Tharandter Klimaprotokolle, Technische Universität Dresden.

    Google Scholar 

  • Bocquet, M., 2005a. Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory. Q. J. R. Meteorol. Soc., 131, 2191–2208.

    Article  Google Scholar 

  • Bocquet, M., 2005b. Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications. Q. J. R. Meteorol. Soc., 131, 2209–2223.

    Article  Google Scholar 

  • Bousquet, P., P. Ciais, P. Peylin, M. Ramonet and P. Monfray, 1999a. Inverse modeling of annual CO2 sources and sinks, 1. Method and control inversion. J. Geophys. Res., 104, 26161–26178.

    Article  Google Scholar 

  • Bousquet, P., P. Ciais, P. Peylin, M. Ramonet and P. Monfray, 1999b. Inverse modeling of annual CO2 sources and sinks, 2. Sensitivity study. J. Geophys. Res., 104, 26179–26193.

    Article  Google Scholar 

  • Carmichael, G.R. et al., 2003. Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment. J. Geophys. Res., 108, 8823.

    Article  Google Scholar 

  • Carmichael, G.R., A. Sandu, T. Chai, D.N. Daescu, E.M. Constantinescu and Y. Tang, 2007. Predicting air quality: Improvements through advanced methods to integrate models and measurements. J. Comp. Phys., 227, 3540–3571.

    Article  Google Scholar 

  • Chai, T.F., G.R. Carmichael, A. Sandu, Y.H. Tang and D.N. Daescu, 2006. Chemical data assimilation of transport and chemical evolution over the Pacific (TRACE-P) aircraft measurements. J. Geophys. Res., 111, doi:10.1029/2005JD005883.

    Google Scholar 

  • Collins, W., P. Rasch, B. Eaton, B. Khattatov, J.-F. Lamarque, and C. Zender, 2001. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.

    Article  Google Scholar 

  • Constantinescu, E.M., A. Sandu, T. Chai and G.R. Carmichael, 2007a. Ensemble based chemical data assimilation. I: General approach. Q. J. R. Meteorol. Soc., 133, 1229–1243.

    Article  Google Scholar 

  • Constantinescu, E.M., A. Sandu, T. Chai and G.R. Carmichael, 2007b. Ensemble based chemical data assimilation. II: Covariance localization. Q. J. R. Meteorol. Soc., 133, 1245–1256.

    Article  Google Scholar 

  • Deeter, M.N. et al., 2003. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res., 108, 4399.

    Article  Google Scholar 

  • Elbern, H. and H. Schmidt, 2001. Ozone episode analysis by four-dimensional variational chemistry data assimilation. J. Geophys. Res., D4, 3569–3590.

    Article  Google Scholar 

  • Elbern, H., H. Schmidt, O. Talagrand and A. Ebel, 2000. 4D.variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model Software, 15, 539–548.

    Article  Google Scholar 

  • Elbern, H., A. Strunk, H. Schmidt and O. Talagrand, 2007. Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys., 7, 1–59.

    Article  Google Scholar 

  • Engelen, R., E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A.P. McNally, J.N. Thépaut and P.D. Watts, 2004. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. J. Geophys. Res., 109, D19309, doi:10.1029/2004JD004777.

    Google Scholar 

  • Enting, I.G. and G.N. Newsam, 1990. Inverse problems in atmospheric constituent studies: II. Sources in the free atmosphere. Inverse Prob., 6, 349–362.

    Article  Google Scholar 

  • Enting, I.G., C.M. Trudinger and R.J. Francey, 1995. A synthesis inversion of the concentration and d13C of atmospheric CO2. Tellus, 47B, 35–52.

    Article  Google Scholar 

  • Eskes, H.J. and K.F. Boersma, 2003. Averaging kernels for DOAS total-column satellite retrievals. Atmos. Chem. Phys., 3, 1285–1291.

    Article  Google Scholar 

  • Fan, S.M., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi and P. Tans, 1998. A large terrestrial carbon sink in North America implied by atmospheric data and oceanic carbon dioxide data and models. Science, 282, 442–446.

    Article  Google Scholar 

  • Fedorov, V., 1998. Kriging and other estimators of spatial field characteristics (with special reference to environmental studies). Atmos. Environ., 23, 174–184.

    Google Scholar 

  • Gloor, M., S.M. Fan, S. Pacala, J. Sarmiento and M. Ramonet, 1999. A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substance like CO2 on a continental scale. J. Geophys. Res., 104, 14245–14260.

    Article  Google Scholar 

  • Gurney, K.R., 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415, 626–630.

    Article  Google Scholar 

  • Hamill, T.M., 2006. Ensemble-based atmospheric data assimilation. In Predictability of Weather and Climate, Palmer, T.N. and R. Hagedorn (eds.), Cambridge University Press, Cambridge, pp. 124–156.

    Chapter  Google Scholar 

  • Hanea, R.G., G.J.M. Velders and A. Heemink, 2004. Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport. J. Geophys. Res., 109, D10302, doi:10.1029/2003JD004283.

    Google Scholar 

  • Hanna, S.R., J.C. Chang and M.E. Fernau, 1998. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos. Environ., 32, 3619–3628.

    Article  Google Scholar 

  • Hanna, S.R., Z.G. Lu, H.C. Frey, N. Wheeler, J. Vukovich, S. Arunachalam, M. Fernau and D.A. Hansen, 2001. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July1995 OTAG domain. Atmos. Environ., 35, 891–903.

    Article  Google Scholar 

  • Henze, D., J.H. Seinfeld, W. Liao, A. Sandu and G.R. Carmichael, 2004. Inverse modeling of aerosol dynamics: Condensational growth. J. Geophys. Res., 109, D14201, doi: 10.1029/2004JD004593.

    Google Scholar 

  • Heue, K.P., A. Richter, M. Bruns, J.P. Burrows, C. von Friedeburg, U. Platt, I. Pundt, P. Wang and T. Wagner, 2005. Validation of SCIAMACHY tropospheric NO2-columns with AMAXDOAS measurements. Atmos. Chem. Phys., 5, 1039–1051.

    Article  Google Scholar 

  • Holzer-Popp, T., M. Schroedter and G. Gesell, 2002. Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description. J. Geophys. Res., 107, 4578, doi: 10.1029/2001JD002013.

    Article  Google Scholar 

  • Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld and M. Heimann, 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res., 104, 26137–26160.

    Article  Google Scholar 

  • Issartel, J.P., 2003. Rebuilding sources of linear tracers after atmospheric concentration measurements. Atmos. Chem. Phys., 3, 2111–2125.

    Article  Google Scholar 

  • Kaminski, T., M. Heimann and R. Giering, 1999a. A coarse grid three-dimensional global inverse model of the atmospheric transport: 1. Adjoint model and Jacobian matrix. J. Geophys. Res., 104, 18535–18553.

    Article  Google Scholar 

  • Kaminski, T., M. Heimann and R. Giering, 1999b. A coarse grid three-dimensional global inverse model of the atmospheric transport: 2. Inversion of the transport of CO2 in the 1980s. J. Geophys. Res., 104, 18555–18581.

    Article  Google Scholar 

  • Kaminski, T., W. Knorr, P.J. Rayner and M. Heimann, 2002. Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Glob. Biogeochem. Cycles, 16, doi:10.1029/2001GB001463.

    Google Scholar 

  • Lahoz, W.A., A.J. Geer, S. Bekki, N. Bormann, S. Ceccherini, H. Elbern, Q. Errera, H.J. Eskes, D. Fonteyn, D.R.J.B.K.S. Massart, V.-H. Peuch, S. Rharmili, M. Ridolfi, A. Segers, O. Talagrand, H. T. A. F. Vik and T. von Clarmann, 2007. The Assimilation of Envisat data (ASSET) project. Atmos. Chem. Phys., 7, 1773–1796.

    Article  Google Scholar 

  • Marenco, A. et al., 1998. Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview. J. Geophys. Res., 103, 25631–25642.

    Article  Google Scholar 

  • Muller, J.F. and T. Stavrakou, 2005. Inversion of CO and NOx emissions using the adjoint of the IMAGES model. Atmos. Chem. Phys., 5, 1157–1186.

    Article  Google Scholar 

  • Müller, M.D., A.K. Kaifel, M. Weber, S. Tellmann, J.P. Burrows and D. Loyola, 2003. Ozone profile retrievel from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)). J. Geophys. Res., 108, 4497, doi:10.1029/2002JD002784.

    Google Scholar 

  • Newsam, G.N. and I.G. Enting, 1988. Inverse problems in atmospheric constituent studies: I. Determination of surface sources under a diffusive transport approximation. Inverse Prob., 4, 1037–1054.

    Article  Google Scholar 

  • Nieradzik, L.P. and H. Elbern, 2006. Variational assimilation of combined satellite retrieved and in situ aerosol data in an advanced chemistry transport model. In Proceedings of the ESA Atmospheric Science Conference, ESA, ESA-ESRIN, Frascati.

    Google Scholar 

  • Quélo, D., V. Mallet and B. Sportisse, 2005. Inverse modeling of nox emissions at regional scale over northern france. preliminary investigation of the second-order sensitivity. J. Geophys. Res., 110, D24310, doi:10.1029/2005JD006151.

    Google Scholar 

  • Robertson, L. and J. Langner, 1992. Source function estimate by means of variational data assimilation applied to the ETEX-I tracer experiment. Atmos. Environ., 32, 4219–4225.

    Article  Google Scholar 

  • Sander, R., A. Kerkweg, P. Jöckel and J. Lelieveld, 2005. Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys., 5, 445–450.

    Article  Google Scholar 

  • Schmidt, H. and D. Martin, 2003. Adjoint sensitivity of episodic ozone in the Paris area to emissions on the continental scale. J. Geophys. Res., 108, 8561, doi:10.1029/2001JD001583.

    Google Scholar 

  • Talagrand, O., 1998. A posteriori evaluation and veri_cation of analysis and assimilation algorithms. In Proceedings of the Workshop on Diagnosis of Data Assimilation Systems, European Centre for Medium-range Weather Forecasts, Reading, England, 2–4 November.

    Google Scholar 

  • Talbot, R. et al., 2003. Reactive nitrogen in asian continental outflow over the western pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission. J. Geophys. Res., 108, 8803, doi: 10.1029/2002JD003129.

    Article  Google Scholar 

  • Thouret, V., J. Cho, R. Newell, A. Marenco and H. Smit, 2000. General characteristics of tropospheric trace constituent layers observed in the mozaic program. J. Geophys. Res., 105, 17379–17392.

    Article  Google Scholar 

  • van Loon, M., P.J.H. Builtjes and A.J. Segers, 2000. Data assimilation of ozone in the atmospheric transport chemistry model LOTOS. Environ. Model Software, 15, 603–609.

    Article  Google Scholar 

  • Verlaan, M. and A.W. Heemink, 1995. Reduced rank square root filters for large scale data assimilation problems. In 2 nd International Symposium on Assimilation of Observations in Meteorology and Oceanography, Tokyo, Japan.

    Google Scholar 

  • Volz-Thomas, A., H. Geiss, A. Hofzumahaus and K.H. Becker, 2003. Introduction to special section: Photochemistry experiment in BERLIOZ. J. Geophys. Res., 108, 8252, doi: 10.1029/2001JD002029.

    Article  Google Scholar 

  • Yumimoto, K., I. Uno, N. Sugimoto, A. Shimizu, Z. Liu and D. M. Winker, 2008. Adjoint inversion modeling of Asian dust emission using lidar observations. Atmos. Chem. Phys., 8, 2869–2884.

    Article  Google Scholar 

  • Zhang, S., J.E. Penner and O. Torres, 2005. Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997. J. Geophys. Res., 110, D21306, doi: 10.1029/2004JD005738.

    Google Scholar 

  • Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker and E.J. Hyer, 2008. A system for operational aerosol optical depth data assimilation over global oceans. J. Geophys. Res., 113, D10208, doi: 10.1029/2007JD009065.

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to the BERLIOZ and VERTIKO project members for measurement data, and to Dr. A. Richter (IFE University of Bremen) and Dr. H. Eskes (KNMI) for satellite retrievals. The work was mainly supported from the German Ministry for Research and Technology in the frame of the AFO2000 project SATEC4D. Computing facilities were granted by ZAM, the Research Centre Jülich, on a Cray T3E and IBM Power 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Elbern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elbern, H., Strunk, A., Nieradzik, L. (2010). Inverse Modelling and Combined State-Source Estimation for Chemical Weather. In: Lahoz, W., Khattatov, B., Menard, R. (eds) Data Assimilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74703-1_19

Download citation

Publish with us

Policies and ethics