Skip to main content

Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential

  • Chapter
Bioactive Molecules and Medicinal Plants

Abstract

Arabinogalactan proteins (AGPs) are high-molecular-weight transmembrane proteoglycans that are implicated in both the vegetative and reproductive stages of plant development. The bulk of an AGP molecule comprises of polysaccharide chains that are mostly anchored to the plasma membrane by glycosyl-phosphatidylinositol. AGP interacts specifically with a class of phenylazoglycoside dyes known as Yariv reagents; these dyes are thus used as histochemical probes to monitor the subcellular localization of AGPs in plant tissues. Arabinogalactans (AGs), a class of polysaccharides, have been reported to be present in a wide range of plant taxa and are prevalent in larch trees. Commercially, larch arabinogalactan (LAG) is used as dietary fiber and prebiotics, as well as in treatment of intestinal disorders. It also has the ability to enhance the activity of the human immune system by stimulating the cytotoxic activity of natural killer (NK) cells via the cytokine network against certain tumor cell lines. Ukonan C, an AG present in the rhizome of Curcuma longa, has the ability to activate reticuloendothelial cells; such stimulated cells with enhanced phagocytic activity can protect the human system from pathogenic foreign agents. Thus, AG acts as a strong activator for two cell types involved in the immune system, namely macrophages and NK cells. In addition, LAG has the ability to block the metastasis of liver tumor cells. Because of its numerous activities, LAG is being used as one of the nonconventional therapeutic agents for cancer treatment. On the other hand, AGPs are of considerable current interest due to their involvement in virtually all facets of plant development. In vitro studies have shown that AGPs play an important role in somatic embryogenesis, which suggests that AGP exhibits plant growth-hormone-like activity. The abiotic stress-protective role of AGP has also been demonstrated. Tissue- and organ-specific expression patterns have already been elucidated for this class of biomolecules, indicating that a specific AGP could be used as a marker for cellular differentiation and as a fate determinant of cultured cells during in vitro differentiation. Due to its immense potentiality, it is considered to be a promising biomolecule, which could resolve several of the hurdles that generally delay the process of crop improvement through biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Majewska-Sawka A, Nothnagel EA (2000) Plant Physiol 122:3

    CAS  Google Scholar 

  2. Showalter AM (2001) Cell Mol Life Sci 58:1399

    CAS  Google Scholar 

  3. Showalter AM (1993) Plant Cell 5:9

    CAS  Google Scholar 

  4. Gasper Y, Johnson K, McKenna JA, Bacic A, Schultz CJ (2001) Plant Mol Biol 47:161

    Google Scholar 

  5. Svetek J, Yadav MP, Nothnagel EA (1999) J Biol Chem 274:14724

    CAS  Google Scholar 

  6. Schultz C, Rumsewich MP, Johnson KL, Jones BJ, Gasper YM, Bacic A (2002) Plant Physiol 129:1448

    CAS  Google Scholar 

  7. Loopstra CA, Sederoff RR (1995) Plant Mol Biol 27:277

    CAS  Google Scholar 

  8. Loopstra CA, Puryear JD, No EG (2000) Planta 210:686

    CAS  Google Scholar 

  9. Zhang Y, Sederoff RR, Allona I (2000) Tree Physiol 20:457

    Google Scholar 

  10. Lafarguette F, Leplé JC, Déjardin A, Laurans F, Costa G, Lesage-Descauses M-C, Pilate G (2004) New Phytol 164:107

    CAS  Google Scholar 

  11. Yariv JH, Rapport MM, Graf L (1962) Biochem J 85:383

    CAS  Google Scholar 

  12. Yariv JH, Lis E, Katachalski E (1967) Biochem J 105:1c

    CAS  Google Scholar 

  13. Clarke AE, Anderson RL, Stone BA (1979) Phytochemistry 18:521

    CAS  Google Scholar 

  14. Schopfer P (1991) Planta 183:139

    CAS  Google Scholar 

  15. Du H, Simpson RJ, Moritz RL, Clarke AE, Bacic A (1994) Plant Cell 6:1643

    CAS  Google Scholar 

  16. Knox JP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Plant J 1:317

    CAS  Google Scholar 

  17. Stacey N, Roberts K, Knox JP (1990) Planta 180:185

    Google Scholar 

  18. Yates EA, Valdor J-F, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Glycobiology 6:131

    CAS  Google Scholar 

  19. Knox JP (1997) Int Rev Cytol 171:79

    CAS  Google Scholar 

  20. Toonen MAJ, de Vries SC (1996) Initiation of somatic embryos from single cells. In: Wang TL, Cuming A (eds) Embryogenesis: The Generation of a Plant. Bios Scientific Publishers, UK, pp 173–189

    Google Scholar 

  21. Odonmazig P, Ebringerova A, Machova E, Alfoldi J (1994) Carbohydr Res 252:317

    CAS  Google Scholar 

  22. Egert D, Beuscer N (1992) Planta Med 58:163

    CAS  Google Scholar 

  23. Thude S, Classen B (2005) Phytochemistry 66:1026

    CAS  Google Scholar 

  24. Gonda R, Tomoda M, Ohara N, Takada K (1993) Biol Pharm Bull 16:235

    CAS  Google Scholar 

  25. Kiyohara H, Cyong JC, Yamada H (1989) Carbohydr Res 193:193

    CAS  Google Scholar 

  26. Kelly GS (1994) Alternative Med Rev 4:96

    Google Scholar 

  27. Hauer J, Anderer FA (1993) Cancer Immunol Immunother 36:237

    CAS  Google Scholar 

  28. Fincher GB, Stone BA, Clarke AE (1983) Ann Rev Plant Physiol 34:47

    CAS  Google Scholar 

  29. Bacic A, Churms SC, Stephen AM, Cohen PB, Fincher GB (1987) Carbohyd Res 162:85

    CAS  Google Scholar 

  30. Knox JP (1999) Trends Plant Sci 4:123

    Google Scholar 

  31. Anderson RI, Clarke AE, Jermyn MA, Know RB, Stone BA (1977) Aust J Plant Physiol 4:143

    CAS  Google Scholar 

  32. Pennell RI, Knox JP, Scofield GN, Selvendran RR, Roberts K (1989) J Cell Biol 108:1967

    CAS  Google Scholar 

  33. Pennell RI, Robert K (1990) Nature 344:547

    Google Scholar 

  34. Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Plant Cell 3:1317

    CAS  Google Scholar 

  35. No E-G, Loopstra CA (2000) Physiol Plant 110:524

    CAS  Google Scholar 

  36. Pal A, Das S (2006) Proc Natl Acad Sci India 76 B-IV:312–320

    Google Scholar 

  37. Willats WG, Knox JP (1996) Plant J 9:919

    CAS  Google Scholar 

  38. Ding I, Zhu JK (1997) Planta 203:289

    CAS  Google Scholar 

  39. Casero PJ, Casimiro I, Knox JP (1998) Planta 204:252

    CAS  Google Scholar 

  40. van Hengel AJ, Roberts K (2002) Plant J 32:105

    Google Scholar 

  41. van Hengel AJ, Roberts K (2003) Plant J 36:256

    Google Scholar 

  42. Gens JS, Fujiki M, Pickard BG (2000) Protoplasma 212:115

    CAS  Google Scholar 

  43. Lally D, Ingmire P, Tong H-Y, He Z-H (2001) Plant Cell 13:1317

    CAS  Google Scholar 

  44. Wagner TA, Kohorn BD (2001) Plant Cell 13:303

    CAS  Google Scholar 

  45. Park MH, Suzuki Y, Chono M, Knox JP, Yamaguchi I (2003) Plant Physiol 131:1450

    CAS  Google Scholar 

  46. Suzuki Y, Kitagawa M, Knox JP, Yamaguchi I (2002) Plant J 29:733

    CAS  Google Scholar 

  47. Kreuger M, van Holst G-J (1996) Plant Mol Biol 30:1077

    CAS  Google Scholar 

  48. Kreuger M, van Holst G-J (1993) Planta 189:243

    CAS  Google Scholar 

  49. Das S, Pal A (2004) J Plant Biochem Biotech 13:101

    CAS  Google Scholar 

  50. Letarte J, Simion E, Miner M, Kasha KJ (2006) Plant Cell Rep 24:691

    CAS  Google Scholar 

  51. Majewska-Sawka A, Munster A (2003) Plant Cell Rep 21:946

    CAS  Google Scholar 

  52. van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A (2001) Plant Physiol 125:1880

    Google Scholar 

  53. Dyachok J, Wiweger M, Kenne L, van Arnold S (2002) Plant Physiol 128:1

    Google Scholar 

  54. Wendt dos Santos AL, Wietholter N, Gueddani NEE and Moerschbacher BM (2006) Physiol Plant 127:138

    Google Scholar 

  55. Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Planta 211:305

    CAS  Google Scholar 

  56. Tang X-C, He Y-O, Wang Y, Sun M-X (2006) J Expt Bot 57:2639

    CAS  Google Scholar 

  57. Sommer-Knudsen J, Clarke AE, Bacic A (1996) Plant J 9:71

    CAS  Google Scholar 

  58. Sommer-Knudsen J, Clarke AE, Bacic A (1997) Sex Plant Reprod 10:253

    CAS  Google Scholar 

  59. Park BS, Kim JS, Kim SH, Park YD (2005) Plant Cell Rep 24:663

    CAS  Google Scholar 

  60. Cheung AY, Wang, H, Wu HM (1995) Cell 82:383

    CAS  Google Scholar 

  61. Wu H, Wang H, Cheung AY (1995) Cell 82:395

    CAS  Google Scholar 

  62. Jauh GY, Lord EM (1996) Planta 199:251

    CAS  Google Scholar 

  63. Roy S, Jauh GY, Hepler PK, Lord EM (1998) Planta 204:450

    CAS  Google Scholar 

  64. Pereira LG, Coimbra S, Oliveira H, Monteiro L, Sottomayor M (2006) Planta 223:374

    CAS  Google Scholar 

  65. Acosta-Garcia G, Vielle-Calzada JP (2004) Plant Cell 16:2614

    CAS  Google Scholar 

  66. Butikofer P, Brodbeck U (1993) J Biol Chem 268:17794

    CAS  Google Scholar 

  67. Selleck SB (2000) Trends Genet 16:206

    CAS  Google Scholar 

  68. Schultz C, Gilson P, Oxley D, Youl J, Bacic A (1998) Trends Plant Sci 3:426

    Google Scholar 

  69. Zajchowski LD, Robbins SM (2002) Eur J Biochem 269:737

    CAS  Google Scholar 

  70. Munnick T, Irvine RF, Musgrave A (1998) Biochim Biophys Acta 1389:222

    Google Scholar 

  71. Udenfriend S, Kodukula K (1995) Ann Rev Biochem 64:563

    CAS  Google Scholar 

  72. Sardar HS, Yang J, Showalter AM (2006) Plant Physiol 142:1469

    CAS  Google Scholar 

  73. Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) Proc Natl Acad Sci U S A 92:3903

    CAS  Google Scholar 

  74. Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Plant J 34:47

    CAS  Google Scholar 

  75. Kim YJ, Kim JE, Lee JH, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim WT (2004) FEBS Lett 556:127

    CAS  Google Scholar 

  76. Yamada A, Ozeki Y, Akatsuka S (2006) Japanese Patent- WO/2006/013807

    Google Scholar 

  77. Li S-X, Showalter AM (1996) Plant Mol Biol 32:641

    CAS  Google Scholar 

  78. Serpe MD, Nothnagel EA (1999) Adv Bot Res 30:2027

    Google Scholar 

  79. Langan KJ, Nothnagel EA (1997) Protoplasma 196:785

    Google Scholar 

  80. Showalter AM, Gao M, Kieliszewski MJ, Lamport DTA (2000) Characterization and localization of a novel tomato arabinogalactan-protein (LeAGP-1) and the involvement of arabinogalactan proteins in programmed cell death. In: Nothnagel EA, Bacic A, Clarke AE (eds) Cell and Developmental Biology of Arabinogalactan-Proteins. Kluwer Academic/Plenum, UK, pp 61–70

    Google Scholar 

  81. Mc Cabe PF, Levine A, Meijer P-J, Tapon NA, Pennell RI (1997) Plant J 12:267

    CAS  Google Scholar 

  82. Yadav MP, Manuel IJ, Yan Y, Nothnagel EA (2007) Food Hydrocolloid 21:297

    CAS  Google Scholar 

  83. Vince AJ, McNeil NI, Wager JD, Wrong OM (1990) Br J Nutr 63:17

    CAS  Google Scholar 

  84. Crociani F, Alessandrini A, Mucci MM, Biavati B (1994) Int J Food Microbiol 24:199

    CAS  Google Scholar 

  85. Tsao D, Shi Z, Wong A, Kim YS (1983) Cancer Res 43:1217

    CAS  Google Scholar 

  86. Robinson R, Feirtag J, Slavin J (2001) J Am Coll Nutr 20:279

    CAS  Google Scholar 

  87. Groman EV, Enriquez PM, Jung C, Josephson L (1994) Bioconjug Chem 5:547

    CAS  Google Scholar 

  88. Englyst HN, Hay S, Macfarlane GT (1987) FEMS Microbiol Ecol 95:163

    Google Scholar 

  89. D’Adamo P (1996a) J Naturopath Med 6:33

    Google Scholar 

  90. Hagmar B, Ryd W, Skomedal H (1991) Invasion Metastasis 11:348

    CAS  Google Scholar 

  91. Beuth J, Ko HL, Oette K, Pulverer G, Roszkowski K, Uhlenbruck G (1987) J Cancer Res Clin Oncol 113:51

    CAS  Google Scholar 

  92. Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G (1988) Clin Exp Metastasis 6:115

    CAS  Google Scholar 

  93. Levine PH, Whiteside TL, Friberg D, Bryant J, Colclough G, Herberman RG (1998) Clin Immunol Immunopathol 88:96

    CAS  Google Scholar 

  94. Corado J, Toro F, Rivera H, Bianco NE, Deibis L, De Sanctis JB (1997) Clin Exp Immunol 109:451

    CAS  Google Scholar 

  95. D’Adamo P (1996b) Larch arabinogalactan is a novel immune modulator. Townsend Letter for Doctors and Patients 156:42

    Google Scholar 

  96. Kastrukoff LF, Morgan NG, Zecchini D, White R, Petkau AJ,. Satoh J, Paty DW (1998) J Neuroimmunology 86:123

    CAS  Google Scholar 

  97. Kim LS, Waters RF, Burkholder PM (2002) Altern Med Rev 7:149

    CAS  Google Scholar 

  98. DeFelice SL (2002) FIM Rationale and Proposed Guidelines for the Nutraceutical Research Education Act – NREA, November 10, 2002. Foundation for Innovation in Medicine. Available at:http://www.fimdefelice.org/archives/arc.researchact.html

    Google Scholar 

  99. Brewer V (1998) Nat Biotechnol 16:728

    Google Scholar 

  100. Melchart D, Linde K, Worku F, Sarkady L, Horzmann M, Jurcic K, Wagner H (1995) J Altern Complem Med 1:145

    CAS  Google Scholar 

  101. See DM, Broumand N, Sahl L, Tilles JG (1997) Immunopharmacology 35:229

    CAS  Google Scholar 

  102. Roesler J, Steinmuller C, Kiderlen A, Emmendorffer A, Wagner H, Lohmann-Matthes ML (1991) Int J Immunopharmacol 13:27

    CAS  Google Scholar 

  103. Roesler J, Emmendorffer A, Steinmuller C, Leuttig B, Wagner H, Lohmann-Matthes ML (1991) Int J Immunopharmacol 13:931

    CAS  Google Scholar 

  104. Steinmuller C, Roesler J, Grottrup E, Franke G, Wagner H, Lohmann-Matthes ML (1993) Int J Immunopharmacol 15:605

    CAS  Google Scholar 

  105. Miller SC (2005) Evid-Based Compl Alt Med 2:309

    Google Scholar 

  106. Leuttig B, Steinmuller C, Gifford GE, Wagner H, Lohmann-Matthes ML (1989) J Natl Cancer Inst 81:669

    Google Scholar 

  107. Mucalo MR, Bullen CR, Manley-Harris M, McIntire TM (2002) J Mater Sci 37:493

    CAS  Google Scholar 

  108. Bamezai A, Goldmacher V, Reiser H, Rock KL (1989) J Immunol.143:3107

    Google Scholar 

  109. Drake SL, Klein DJ, Mickelson DJ, Oegema TR, Furcht LT, McCarthy JB (1992) J Cell Biol 117:1331

    CAS  Google Scholar 

  110. Robinson PJ (1997) Signal transduction via GPI-anchored membrane proteins. In: F Haag, F Koch-Nolte (eds) ADP-Ribosylation in Animal Tissues. Plenum, New York, pp 365–370

    Google Scholar 

  111. Alexandersson E, Saalbach G, Larsson C, Kjellbom P (2004) Plant Cell Physiol 45:1543

    CAS  Google Scholar 

  112. Youl JJ, Basic A, Oxley D (1998) Proc Natl Acad Sci U S A 95:7921

    CAS  Google Scholar 

  113. Sherrier DJ, Prime TA, Dupree P (1999) Electrophoresis 20:2027

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pal, A. (2008). Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential. In: Ramawat, K., Merillon, J. (eds) Bioactive Molecules and Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74603-4_13

Download citation

Publish with us

Policies and ethics