Skip to main content

Apoptosis Regulator Genes Encoded by Poxviruses

  • Chapter
Viruses and Apoptosis

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 36))

Abstract

The Poxviridae family is a large family of double-stranded DNA viruses that infects both vertebrates (Chordopoxvirinae) and invertebrates (Entomopoxvirinae). The Chordopoxvirinae, which infect vertebrates, are subdivided into eight genera: Orthopoxvirus,Parapoxvirus, Avipoxvirus, Capripoxvirus, Leporipoxvirus, Suipoxvirus,Molluscipoxvirus, and Yatapoxvirus. The most famous member of the family is variola virus, a member of the Orthopoxvirus genus and the causative agent of smallpox disease (Smith and McFadden 2002). Smallpox was eradicated from the human population in 1977 through an aggressive vaccination program headed by the World Health Organization. Vaccinia virus, the prototypic member of the poxvirus family belonging to the Orthopoxvirus genus, was utilized in the vaccination program and is still widely studied today. Aside from variola virus, the only other member of the family that naturally elicits disease in humans is Molluscum contagiosum virus (MCV), which causes benign lesions on the skin of infected individuals (Epstein 1992). Other members of the family cause disease in a wide range of animals from rodents to birds to primates. Notable members include: ectromelia virus, which causes a lethal disease in mice; myxoma virus, the causative agent of myxomatosis in rabbits; swinepox virus; monkeypox virus; and fowlpox virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Afonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL (2000) The genome of fowlpox virus. J Virol 74: 3815–3831

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308 Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2: 401–409

    Google Scholar 

  • Barry M, McFadden G (1998) Apoptosis regulators from DNA viruses. Curr Opin Immunol 10: 422–430

    Article  PubMed  CAS  Google Scholar 

  • Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W, Moyer RW (2000) Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other pox-viruses. Virology 274: 120–139

    Article  PubMed  CAS  Google Scholar 

  • Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y, Banks S, Wang GH, Senkevich TG, Alnemri ES, Moss B, Lenardo MJ, Tomaselli KJ, Cohen JI (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas-and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 94: 1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis-inhibiting gene from a nuclear polyhe- drosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68: 2521–2528

    PubMed  CAS  Google Scholar 

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/ FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803815

    Google Scholar 

  • Boname JM, Stevenson PG (2001) MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15: 627–636

    Article  PubMed  CAS  Google Scholar 

  • Boshkov LK, Macen JL, McFadden G (1992) Virus-induced loss of class I MHC antigens from the surface of cells infected with myxoma virus and malignant rabbit fibroma virus. J Immunol 148: 881–887

    PubMed  CAS  Google Scholar 

  • Soya P, Roques B, Kroemer G (2001) New EMBO members’ review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. EMBO J 20: 4325–4331

    Google Scholar 

  • Brick DJ, Burke RD, Schiff L, Upton C (1998) Shope fibroma virus RING finger protein NIR binds DNA and inhibits apoptosis. Virology 249: 42–51

    Article  PubMed  CAS  Google Scholar 

  • Brick DJ, Burke RD, Minkley AA, Upton C (2000) Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV light-induced apoptosis. J Gen Virol 81:1087–1097 Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao JX, Macaulay C, Willer D, Evans D, McFadden

    Google Scholar 

  • G (1999) The complete DNA sequence of myxoma virus. Virology 264: 298–318

    Article  Google Scholar 

  • Clem RJ, Miller LK (1993) Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol 67: 3730–3738

    PubMed  CAS  Google Scholar 

  • Clem RJ, Miller LK (1994) Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 14: 5212–5222

    PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2000) Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci USA 97: 8051–8056

    Article  PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2001) A viral protein that selectively downregulates ICAM-1 and B7–2 and modulates T cell costimulation. J Clin Invest 107: 1599–1606

    Article  PubMed  CAS  Google Scholar 

  • Coscoy L, Sanchez DJ, Ganem D (2001) A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155: 1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67: 2168–2174

    PubMed  CAS  Google Scholar 

  • Cuconati A, White E (2002) Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16: 2465–2478

    Article  PubMed  CAS  Google Scholar 

  • Darmon AJ, Nicholson DW, Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377: 446–448

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13: 239252

    Google Scholar 

  • Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H, Marynen P (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(g21;g21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93: 3601–3609

    PubMed  CAS  Google Scholar 

  • Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, Armstrong RC (1998) Human IAP-like protein regulates programmed cell death downstream of Bc1-xL and cytochrome c. Mol Cell Biol 18: 608–615

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424

    Article  PubMed  CAS  Google Scholar 

  • Eberstadt M, Huang B, Chen Z, Meadows RP, Ng SC, Zheng L, Lenardo MJ, Fesik SW (1998) NMR structure and mutagenesis of the FADD (Mortl) death-effector domain. Nature 392:941–945 Epstein WL (1992) Molluscum contagiosum. Semin Dermatol 11: 184–189

    Google Scholar 

  • Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Microbiol 7: 160–165

    Article  PubMed  CAS  Google Scholar 

  • Everett H, McFadden G (2001) Viruses and apoptosis: meddling with mitochondria. Virology 288: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Everett H, Barry M, Lee SF, Sun X, Graham K, Stone J, Bleackley RC, McFadden G (2000) Mill,: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J Exp Med 191: 1487–1498

    Article  PubMed  CAS  Google Scholar 

  • Everett H, Barry M, Sun X, Lee SF, Frantz C, Berthiaume LG, McFadden G, Bleackley RC (2002) The myxoma poxvirus protein, M11L, prevents apoptosis by direct interaction with the mitochondrial permeability transition pore. J Exp Med 196: 1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Fruh K, Gruhler A, Krishna RM, Schoenhals GJ (1999) A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol Rev 168: 157–166

    Article  PubMed  CAS  Google Scholar 

  • Fruh K, Bartee E, Gouveia K, Mansouri M (2002) Immune evasion by a novel family of viral PHD/ LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Res 88: 55

    Article  PubMed  CAS  Google Scholar 

  • Garvey TL, Bertin J, Siegel RM, Wang GH, Lenardo MJ, Cohen JI (2002) Binding of FADD and caspase-8 to Molluscum contagiosum virus MC159 v-FLIP is not sufficient for its antiapoptotic function. J Virol 76: 697–706

    Article  PubMed  CAS  Google Scholar 

  • Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 179:247–266, 517–563

    Google Scholar 

  • Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES, Chittenden T (1999) A cytomega-

    Google Scholar 

  • lovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl2. Proc Natl Acad Sci USA 96:12536–12541

    Google Scholar 

  • Goyal L (2001) Cell death inhibition: keeping caspases in check. Cell 104:805–808 Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312

    Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Gubser C, Smith GL (2002) The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83: 855–872

    PubMed  CAS  Google Scholar 

  • Guerin JL, Gelfi J, Boullier S, Delverdier M, Bellanger FA, Bertagnoli S, Drexler I, Sutter G, Messud-Petit F (2002) Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins. J Virol 76: 2912–2923

    Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Hu FQ, Smith CA, Pickup DJ (1994) Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. Virology 204: 343–356

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Vincenz C, Buller M, Dixit VM (1997) A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-l-induced apoptosis. J Biol Chem 272: 9621–9624

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T (2000) The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 275: 26661–26664

    PubMed  CAS  Google Scholar 

  • Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, Johnson RP, Cohen GB, Jung JU (2000a) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5 protein. Immunity 13: 365–374

    Article  PubMed  CAS  Google Scholar 

  • Ishido S, Wang C, Lee BS, Cohen GB, Jung JU (2000b) Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74: 5300–5309

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cyto-chrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic Protease cascade. Cell 91: 479–489

    Article  PubMed  CAS  Google Scholar 

  • Li X, Yang Y, Ashwell JD (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416: 345–347

    Article  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Loparev VN, Parsons JM, Knight JC, Panus JF, Ray CA, Buller RM, Pickup DJ, Esposito JJ (1998) A third distinct tumor necrosis factor receptor of orthopoxviruses. Proc Natl Acad Sci USA 95: 3786–3791

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo ME, Jung JU, Ploegh HL (2002) Kaposi’s sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J Virol 76: 5522–5531

    Article  PubMed  CAS  Google Scholar 

  • Macen JL, Graham KA, Lee SF, Schreiber M, Boshkov LK, McFadden G (1996) Expression of the myxoma virus tumor necrosis factor receptor homologue and MI IL genes is required to prevent virus-induced apoptosis in infected rabbit T lymphocytes. Virology 218: 232–237

    Article  PubMed  CAS  Google Scholar 

  • Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2: 6367

    Article  Google Scholar 

  • Messud-Petit F, Gelfi J, Delverdier M, Amardeilh MF, Py R, Sutter G, Bertagnoli S (1998) Serp2, an inhibitor of the interleukin-lbeta-converting enzyme, is critical in the pathobiology of myxoma virus. J Virol 72: 7830–7839

    PubMed  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remade J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17: 235248

    Google Scholar 

  • Miura M, Friedlander RM, Yuan J (1995) Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc Natl Acad Sci USA 92: 8318–8322

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Nash P, Barrett J, Cao JX, Hota-Mitchell S, Lalani AS, Everett H, Xu XM, Robichaud J, Hnatiuk S, Ainslie C, Seet BT, McFadden G (1999) Immunomodulation by viruses: the myxoma virus story. Immunol Rev 168: 103–120

    Article  PubMed  CAS  Google Scholar 

  • Nogal ML, Gonzalez de Buitrago G, Rodriguez C, Cub elos B, Carrascosa AL, Salas ML, Revilla Y (2001) African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75: 2535–2543

    Article  PubMed  CAS  Google Scholar 

  • Panus JF, Smith CA, Ray CA, Smith TD, Patel DD, Pickup DJ (2002) Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue. Proc Natl Acad Sci USA 99: 8348–8353

    Article  PubMed  CAS  Google Scholar 

  • Petit F, Bertagnoli S, Gelfi J, Fassy F, Boucraut-Baralon C, Milon A (1996) Characterization of a myxoma virus-encoded serpin-like protein with activity against interleukin-1 beta-converting enzyme. J Virol 70: 5860–5866

    PubMed  CAS  Google Scholar 

  • Pickup DJ, Ink BS, Hu W, Ray CA, Joklik WK (1986) Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proc Natl Acad Sci USA 83: 7698–7702

    Article  PubMed  CAS  Google Scholar 

  • Quan LT, Caputo A, Bleackley RC, Pickup DJ, Salvesen GS (1995) Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J Biol Chem 270: 10377–10379

    Article  PubMed  CAS  Google Scholar 

  • Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Reading PC, Khanna A, Smith GL (2002) Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 292: 285298

    Google Scholar 

  • Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53: 577628

    Google Scholar 

  • Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S Besner-Johnston A, Lefebvre C, Kang X, et al. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370 Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell

    Google Scholar 

  • Biol 3:401–410

    Google Scholar 

  • Saraiva M, Alcami A (2001) CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol 75: 226–233

    Article  PubMed  CAS  Google Scholar 

  • Saraiva M, Smith P, Fallon PG, Alcami A (2002) Inhibition of type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J Exp Med 196: 829–839

    Article  PubMed  CAS  Google Scholar 

  • Schreiber M, McFadden G (1994) The myxoma virus TNF-receptor homologue ( T2) inhibits tumor necrosis factor-alpha in a species-specific fashion. Virology 204: 692–705

    Google Scholar 

  • Schreiber M, Rajarathnam K, McFadden G (1996) Myxoma virus T2 protein, a tumor necrosis factor ( TNF) receptor homolog, is secreted as a monomer and dimer that each bind rabbit TNFalpha, but the dimer is a more potent TNF inhibitor. J Biol Chem 271: 13333–13341

    Google Scholar 

  • Schreiber M, Sedger L, McFadden G (1997) Distinct domains of M-T2, the myxoma virus tumor necrosis factor ( TNF) receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition. J Virol 71: 2171–2181

    Google Scholar 

  • Searles RP, Bergquam EP, Axthelm MK, Wong SW (1999) Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi’s sarcoma-associated herpesvirus/ human herpesvirus 8. J Virol 73: 3040–3053

    PubMed  CAS  Google Scholar 

  • Senkevich TG, Koonin EV, Buller RM (1994) A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology 198: 118–128

    Article  PubMed  CAS  Google Scholar 

  • Senkevich TG, Wolffe EJ, Buller RM (1995) Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol 69: 4103–4111

    PubMed  CAS  Google Scholar 

  • Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G, Moss B (1996) Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 273: 813–816

    Article  PubMed  CAS  Google Scholar 

  • Senkevich TG, Koonin EV, Bugert JJ, Darai G, Moss B (1997) The genome of Molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233: 19–42

    Article  PubMed  CAS  Google Scholar 

  • Shchelkunov SN, Safronov PF, Totmenin AV, Petrov NA, Ryazankina OI, Gutorov VV, Kotwal GJ (1998) The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243: 432–460

    Google Scholar 

  • Shisler JL, Moss B (2001) Molluscum contagiosum virus inhibitors of apoptosis: the MC159 v-FLIP protein blocks Fas-induced activation of procaspases and degradation of the related MC160 protein. Virology 282: 14–25

    Google Scholar 

  • Shisler JL, Senkevich TG, Berry MJ, Moss B (1998) Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. Science 279: 102–105

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Hu FQ, Smith TD, Richards CL, Smolak P, Goodwin RG, Pickup DJ (1996) Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT alpha. Virology 223: 132–147

    Article  PubMed  CAS  Google Scholar 

  • Smith GL, Symons JA, Alcami A (1999) Immune modulation by proteins secreted from cells infected by vaccinia virus. Arch Virol Suppl 15: 111–129

    PubMed  CAS  Google Scholar 

  • Smith GL, McFadden G (2002) Smallpox: anything to declare ? Nat Rev Immunol 2:521–527 Smith GL, Symons JA, Khanna A, Vanderplasschen A, Alcami A (1997) Vaccinia virus immune evasion. Immunol Rev 159: 137–154

    Google Scholar 

  • Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98: 8662–8667

    Article  PubMed  CAS  Google Scholar 

  • Tewari M, Dixit VM (1995) Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem 270: 3255–3260

    Article  PubMed  CAS  Google Scholar 

  • Tewari M, Telford WG, Miller RA, Dixit VM (1995) CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J Biol Chem 270: 22705–22708

    Article  PubMed  CAS  Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICEinhibitory proteins ( FLIPs) prevent apoptosis induced by death receptors. Nature 386: 517–521

    Google Scholar 

  • Thome M, Tschopp J (2001) Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 1: 50–58

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18: 861–926

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45: 491–503

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Thome M, Hofmann K, Meinl E (1998) The fight of viruses against apoptosis. Curr Opin Genet Dev 8: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Tsukumo SI, Yonehara S (1999) Requirement of cooperative functions of two repeated death effector domains in caspase-8 and in MC159 for induction and inhibition of apoptosis, respectively. Genes Cells 4: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Turner PC, Sancho MC, Thoennes SR, Caputo A, Bleackley RC, Moyer RW (1999) Myxoma virus Serp2 is a weak inhibitor of granzyme B and interleukin-lbeta-converting enzyme in vitro and unlike CrmA cannot block apoptosis in cowpox virus-infected cells. J Virol 73: 63946404

    Google Scholar 

  • Upton C, Macen JL, Schreiber M, McFadden G (1991) Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology 184: 370–382

    Article  PubMed  CAS  Google Scholar 

  • Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17: 331–367

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15: 2922–2933

    PubMed  CAS  Google Scholar 

  • Wasilenko ST, Meyers AF, Vander Helm K, Barry M (2001) Vaccinia virus infection disarms the mitochondrion-mediated pathway of the apoptotic cascade by modulating the permeability transition pore. J Virol 75: 11437–11448

    Article  PubMed  CAS  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitination. Nat Rev Mol Cell Biol 2:169–178 Xu Q, Reed JC (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1: 337–346

    Google Scholar 

  • Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288: 874877

    Google Scholar 

  • Zhou Q, Snipas S, Orth K, Muzio M, Dixit VM, Salvesen GS (1997) Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem 272: 7797–7800

    Google Scholar 

  • Zuniga MC, Wang H, Barry M, McFadden G (1999) Endosomal/lysosomal retention and degradation of major histocompatibility complex class I molecules is induced by myxoma virus. Virology 261: 180–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barry, M., Wasilenko, S.T., Stewart, T.L., Taylor, J.M. (2004). Apoptosis Regulator Genes Encoded by Poxviruses. In: Alonso, C. (eds) Viruses and Apoptosis. Progress in Molecular and Subcellular Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74264-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74264-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74263-0

  • Online ISBN: 978-3-540-74264-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics