
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 93 – 108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrated Requirement Selection and Scheduling for
the Release Planning of a Software Product

C. Li1, J.M. van den Akker2, S. Brinkkemper2, and G. Diepen2

1 University of Twente, The Netherlands

lic@ewi.utwente.nl
2 Utrecht University, The Netherlands

{j.m.vandenakker,s.brinkkemper,diepen}@cs.uu.nl

Abstract. This paper investigates two integer linear programming models that
integrate requirement scheduling into software release planning. The first model
can schedule the development of the requirements for the new release exactly in
time so that the project span is minimized and the resource and precedence con-
straints are satisfied. The second model is for combined requirement selection
and scheduling, which can not only maximize revenues but also calculates an
on-time-delivery project schedule simultaneously. Two simulations are pre-
sented to examine the influence of precedence constraints and compare the dif-
ferences of the traditional prioritization models and the two new ones. The
simulation results suggest that requirement dependency can significantly influ-
ence the project plan and the combined model for requirement selection and
scheduling is better in the sense of efficiency and on-time delivery.

Keywords: Requirement Selection, Requirement Scheduling, Release Planning,
Integer Linear Programming (ILP), Simulation.

1 Introduction

Determining requirements for the upcoming release is a complex process [24]. With the
evident pressure on time-to-market [22, 27] and limited available resources, usually
there are more requirements than can be actually implemented. The market-driven
requirement engineering processes [6] have a strong focus on requirement prioritiza-
tion [18]. The requirement list needs to fulfill the interests of various stakeholders and
takes many variables into consideration. Several scholars have presented lists of such
variables, including: importance or business value, stakeholder preference, cost of
development, requirement quality, development risk and requirement dependencies
[8, 13, 14, and 27].

In order to deal with this multi-aspect optimization problem, several techniques have
been applied. The analytical hierarchy process (AHP) [18, 22] assesses requirements by
examining all possible requirement pairs and matrix calculations to determine a
weighted list. Jung [17] extended the work of Karlsson and Ryan [18] by using integer
linear programming (ILP) to reduce the complexity of AHP to large amounts of re-
quirements. Carlshamre [8] used ILP too on which a release planning tool was built and
added requirement dependencies as an important aspect in release planning. Ruhe and

94 C. Li et al.

Saliu [25] describe a method based on ILP to include stakeholder’s opinions for release
planning. Van den Akker et al [2] further extended the ILP technique by including
some management steering mechanisms and ran a few simulations to test the influences
of each mechanism. Besides ILP techniques, the cumulative voting method [19] allows
different stakeholders to assign a fixed amount of units among all requirements, and an
average weighted requirement list is constructed; Ruhe and Saliu [25] provide a method
called EVOLVE to allocate requirements to incremental releases. Berander and
Andrews [4], provide an extensive list of requirement prioritization techniques.

The schedule of the requirements development is also suggested as an important
issue in this field [13]. Unfortunately, few prioritization methods have taken this into
account. Scheduling requirements is considered as a next step after requirement selec-
tion [8] and the selection and scheduling processes are often used iteratively to find a
group of requirements with an on-time delivery project plan [24]. Compared to the
extensive research on requirement selection, only few researches have been performed
for the scheduling part. Given the fact that 80% of software projects are late or over
budgeted [10], a precise project plan which synchronizes the development team is
needed. A traditional way of project planning would be to compute the critical path on
the bases of the precedence dependencies, commonly depicted in Gantt chart. How-
ever, then we do not guarantee that the team capacities or skills are respected. Different
types of dependencies [7], which describe the relationships between requirements, also
increase the complexity of making a project plan.

1.1 Example of Release Planning Problem

Table 1 depicts a simplified example representation of the release planning problem.
For nine requirements with estimated revenue (in euro) and cost (in man days), the
available resources in different teams (or skills) within the given period, and the

Table 1. Example requirements sheets of a release planning problem

Release Definition 5.1

Nr. Requirement Dependency Revenue
Total

man days
Team

A
Team

B
Team

C

12 Authorization on order cancellation and removal Imp 63, 25 24 50 5 45

34 Authorization on archiving service orders 12 12 2 5 5

63 Performance improvements order processing 20 15 15

25 Inclusion graphical plan board Com 66 100 70 10 10 50

43 Link with Acrobat reader for PDF files Imp 25 10 33 33

75
Optimizing interface with international Postal code
system

Imp 25 10 15 15

35 Adaptations in rental and systems 35 40 20 20

66 Symbol import 5 10 10

67 Comparison of services per department 10 34 9 25

Total 226 279 42 77 160

Available resources (number of developers) 3 1 1 1

Available team capacity for release 180 60 60 60

Release duration 60 days

 Integrated Requirement Selection and Scheduling for the Release Planning 95

interdependencies between the requirements, the best set of requirements for a next
release needs to be determined. Here we use the six types of dependencies suggested by
Carlshamre [7]. These are given by: 1) Combination: two requirements are to be im-
plemented jointly; 2) Implication: one requirement requires another one to function; 3)
Exclusion: two requirements are conflicting to each other. 4) Revenue-based and 5)
Cost-based dependency means one requirement influences the revenue / cost of an-
other. 6) Time-related dependency means one requirement needs to be implemented
after another.

Such a type of release planning problem has been modeled as a multi-dimensional
knapsack problem [2, 8, 17, and 25]. Using ILP technique, five requirements are se-
lected (marked in grey) so that the total revenue is maximized against the available
resources. It is also possible to include requirement dependency and some management
steering mechanisms, like hiring external personnel, deadline extension, etc in the
model, we refer to van den Akker et al [2] for detail. To solve the ILP problem, we refer
to Wolsey [28] for a thorough presentation.

The next step is to schedule the selected requirement exactly in time. Here we have
to deal with dependencies that result in restrictions on time. For example, requirements
pertaining to foundational components often need to be implemented before others.
Similarly, certain capabilities (for example quality issues like safety and security) need
to be architected and built into the system rather than added on later during develop-
ment. Therefore, an optimal implementation order of the requirements is desired. In the
next section, we will illustrate how precedence constraint can influence the project
plan, the release date, as well as the requirement selection.

1.2 Problem Illustration

Here we first formally define precedence constraint. If requirement
*j

R can only start
after requirement

j
R is completely finished, then there is a precedence constraint

between
j

R and
*j

R , denoted as *j jR Rp . Usually, precedence constraints result from
dependencies. It is clear that the precedence constraint can influence the development
sequence of the requirements. However, the question is: as we have already selected the
requirements based on the available capacity, will the precedence constraint also in-
fluence the project deadline of the release?

When there are precedence constraints and different development teams, scheduling
requirements becomes a complex problem. Figure 1, provides an example of a
time-schedule for the release planning problem in Table 1.

Fig. 1. A numerical example of requirement scheduling problem

96 C. Li et al.

From Figure 1, it is clear that although the requirement selection does not exceed the
teams’ capacities, the project is delayed. The reason is that there is an implication de-
pendency and hence a precedence constraints between requirement 25 and 43. Although
team B finishes its task for R25 at day 10, it can not start to develop R43, which is de-
pendent on R25’s completion, because R25 is only available at day 50 when team C
finishes its job. So, between day 10 and day 50, team B only needs five days for R34 and
the rest 35 days are wasted on waiting team C. When R25 is finally available at day 50, it
takes team B another 33 days to develop R43, so the earliest date to finish the whole
project is at day 83 instead of the expected day 60. Obviously, the time wasted on
synchronization is not preferred. This raises an important issue how to design a schedule
which makes teams utilizing available time efficiently without waiting for others? Or in
case this problem can not be eliminated, how to minimize such waiting time and
minimize the total release project span as well? (Results are shown later in chapter 6).

Another issue is: if we need to spend too much time on waiting for others, is that
possible to re-select requirements so that the release plan fits a predetermined deadline?
For example, in the former case, if we still want to keep the 60 days as the deadline,
then we need to re-select the requirements so that the newly selected requirements can
be implemented within the time span. For this case, R43 has to be dropped to keep the
project on time.

In this paper, we will focus on solving the two problems mentioned above: under the
circumstances that there are both different development teams (or special skills) and
precedence constraints:

1. How should we schedule the requirements to minimize the project lead time, i.e.
the finishing time of the project?

2. How should we integrate the requirement selection and scheduling together so that
the revenue is maximized and the project plan is on schedule?

The focus of this paper is to provide mathematical models which can assist managers
to determine the requirement selection and scheduling for the coming release. Like any
planning, a careful estimation of the factors is the key to success. We are also fully
aware that in real world, many psychological, political and personality factors can in-
fluence the right choices. It can not be purely mathematical, but mathematical models
can be considered as a useful means of decision support.

The remaining of the paper is organized as follow. In Section 2, we first present the
relationship between precedence constraint and the requirement dependencies. Sec-
tions 3 and 4 provide ILP models for requirement scheduling and a combined method
for requirement selection and scheduling. We discuss the prototypes we developed in
Section 5. In Section 6, two simulations are presented to examine the influences of
precedence constraint on requirement scheduling and the differences between the
models. We conclude the paper and provide future research directions in Section 7.

2 A First Analysis

2.1 Precedence Constraint and Requirement Dependency

Carlshamre et, al [7] identified six types of requirement interdependencies (listed in
Table 2) for the release planning, and the first five are suggested and modeled as

 Integrated Requirement Selection and Scheduling for the Release Planning 97

important factors for requirement selection [2, 8]. With respect to time, some of the
dependencies can not only influence the requirement selection, but will also influence
the requirement scheduling. For example, if requirement

*j
R requires

j
R to function,

it is normally better to start develop
*j

R after
j

R is finished; or if requirement jR in-
fluences the implementation cost of requirement

*j
R , it is also considered better to

implement jR first [8]. So, together with the explicitly mentioned time-related
dependency, also the implication and cost-related dependencies provide precedence
constraints. Hence, when scheduling the requirements, we should take three out of the
six types of requirement dependencies into consideration. Table 2 depicts the influence
of dependencies on requirement selection and scheduling.

Table 2. The influences of dependencies on requirement selection and scheduling

Dependency
group

Dependency
type

Influence
requirement

selection

Influence
requirement
scheduling

Combination
Implication

Functional
dependency

Exclusion
Revenue-based Value-related

dependency Cost-based
Time-related
dependency

Time-related

2.2 Scheduling Without Precedence Constraint

In Figure 1, we have illustrated the scheduling problem when there are precedence
constraints and team divisions. However, scheduling will not be a problem if there are
no precedence constraints between requirements. As each team works independently,
and no synchronization is needed, they just need to randomly give a permutation of all
the development tasks of the team, and perform them one after another. In this way,
scheduling is not a problem and the deadline will not be exceeded.

2.3 Scheduling Without Team Division

In case there are precedence constraints but no team or task division, scheduling the
activities is also not a difficult issue. We can first create a Directed Acyclic Graph
(DAG) by setting the requirements

j
R as vertexes and the precedence constraint

*j j
R Rp as a directed edge

*
(,)

j j
R R . Then any topological sort [9] of the directed

acyclic graph results in a feasible schedule. This sort provides a linear order of all the
vertices such that if G contains an edge *(,)j jR R , then

j
R appears before

*j
R . We can

compute this sort in ()O N E+ time where N equals the number of requirements and
E equals the number of dependencies. Because the development works continuously
without interruption, the release deadline can also be kept.

98 C. Li et al.

3 An ILP Model for Requirement Scheduling

To schedule the requirements exactly in time, there are two issues to consider: the
limited resources available and the existence of precedence constraints between the
requirements. Within scheduling theory, the problem can be characterized as a special
case of the Resource Constraint Project Scheduling Problem (RCPSP) [21]. It is special
because the resources all have capacity 1. RCPSP is an NP-Hard problem [5]. The
problem complexity inspired many scholars to develop heuristics method [3] or exact
algorithms [11]. Here, we present an ILP model of the RCPSP formulation of our
problem.

3.1 Problem Formulation

We are given a set of n requirements{ }1 2 nR R RL . Let m be the number of
teams iG (1, 2,)i m= K . The development activity in team

i
G for requirement

j
R is

considered as one individual job—each team works independently on one requirement
and there is no predefined time restriction for the jobs within a requirement. Let us
define a set 1 2(, , ,)kX J J J= K of all the jobs with positive development time and there
are k (k m n≤ ×) jobs in the set.

Because each job belongs to only one requirement, using this attribute, we can par-
tition the set X into n disjoint subsets { }1 2() () ()nX R X R X RL where

()jX R = { kJ | job kJ is for requirement
j

R }, (1, 2,)j n= K . Similarly, one job only
belongs to one team, so we can partition the set X into m disjoint subsets
{ }1 2() () ()nX G X G X GL where ()iX G = { kJ | job kJ is in team

i
G } (1, 2,)i m= K .

Each job () ()k j iJ X R X G∈ I is associated with a parameter ija as the amount of
man days needed for Requirement

j
R in team

i
G . Assume the number of developers in

team iG is
i

Q ; we can compute the development time
k

d for job kJ is ij ia Q . Here
we assume that as soon as a team starts working on a job, they will continue work on it
until the job is complete finished.

The Precedence Constraints
We can define a set { }* *

(,)
j j j j

A R R R R= p which contains all the precedence con-
straints. We define the set H to show the precedence relationship between jobs:

{ }* * * *(,) () , (), (,)k k k j k j j jH J J J X R J X R R R A= ∈ ∈ ∈
In this way, we set all the jobs of requirement

*j
R as the successors of the jobs of

requirement
j

R and we can make sure that any job for requirement
*j

R can only start
after all the jobs for requirement

j
R are finished.

We also need to introduce two virtual jobs, the start of the project and the end of the
project. The job START must start before starting the jobs in X , the job END can only
start when all the jobs X are finished. The processing time of these two virtual jobs is 0,
and the new job set with the two additional virtual jobs is X ′ .

If job kJ does not have any successor, then we add (,)kJ END to H . Or if job kJ
does not have any predecessor then we put (,)kSTART J in H .

The precedent relationships between jobs can be represented by a directed acyclic
graph (,)G X H′= .

 Integrated Requirement Selection and Scheduling for the Release Planning 99

The Upper Bound of the Project Span
Let

max
T be the upper bound of the project span. We can set the upper bound as

1

max(())
n

k k j
j

Jd X R
=

∈∑ . The upper bound corresponds to developing requirements
one after another, i.e. without any time overlap between different requirements.

The Earliest Start
k

es and the Latest Start
k

ls of each Job kJ

For each job kJ , we can compute
k

es (earliest possible start) and
k

ls (latest possible
start) as its time window to start. To compute the time interval, we first topologically
sort the jobs, so that job kJ is before job *kJ in the order if *(,)k kJ J H∈ .

We can use a longest path algorithm (forward recursion) to compute
k

es . First, set

0
START

es = , then we go through the jobs from START to END and set

()
(,)

max
k j j

j k H

es es d
∈

= + . Similarly, we can compute the latest start
k

ls using a longest
path algorithm (backward recursion). First, set

maxEND
ls T= then we go through the jobs

from END to START and set ()
(,)
min

j k j
j k H

ls ls d
∈

= − .

The (0,1) Integer Linear Programming Model
For the integer linear programming model we use a time-indexed formulation. This
formulation has successfully been applied for machine-scheduling problems and is
known to have a strong LP-relaxation lower bound (see e.g. [1] and [12]). We discretize
time and the integer time t represents the period of [), 1t t + . For each job kJ we de-
fine a group of variable

kt
ξ within the time interval[],

k k
es ls , where t is the possible

time for kJ to start. Now
kt

ξ is a binary variable which equals 1 if and only if kJ starts
at the beginning of period t . Then we can formulate the problem as follow:

 min
END

END

t ls

ENDt

t es

t ξ
=

=

⋅∑ (3.1)

Subject to:

1
k

k

t ls

kt

t es

ξ
=

=

=∑ , for all kJ X ′∈ (3.2)

*

*

*

k k

k k

t ls t ls

kt k k t

t es t es

t d tξ ξ
= =

= =

⋅ + ≤ ⋅∑ ∑ for all *(,)k kJ J H∈ (3.3)

() (,)

1
k i

t

k
J X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑ for ()
max

0,1,t T= K , 1, ,i m= K (3.4)

{ }0,1ktξ ∈ for all [],k kt es ls∈ , kJ X ′∈ (3.5)

where in constraint (3.4), (,) max(0, 1)
k

t k t dσ = − + . Constraint (3.1) shows the ob-

jective that we want to minimize the project span. Constraint (3.2) shows a job is started
exactly once. Constraint (3.3) is the precedence constraint—one requirement can only
start after its predecessor is finished. Constraint (3.4) means a development team can
only develop at most one job at one time.

100 C. Li et al.

4 A Combined Model for Requirement Selection and Scheduling

As we have seen, there is a risk that the selected set of requirements can not be sched-
uled in time. In most of the software development process models, the selection and
scheduling are performed iteratively until a good solution is found [24]. However,
doing it iteratively is not only difficult but also time-consuming because we need to
constantly repeat the following 3 steps:

1. Drop some requirements so that the project plan is fit.
2. Re-fill in some requirements to take up the freed capacity.
3. Re-make project plan for the new group of requirements.

Because of the complexities of the knapsack model and the RCPSP model (they are
both NP-Hard), without a proper search algorithm, it is very difficult to find a solution
that can fulfill the goals of maximizing revenue and on time delivery. Even if such
searching method is found, constantly calling these two NP-hard models will be very
time consuming. A better method is demanded to solve this problem.

In this section, we will present a new ILP model which enables us to achieve the
goals of maximizing revenue and on time delivery simultaneously. In the following
section, we will present a model for combined selection and scheduling of the re-
quirements when a fixed project deadline is given.

4.1 Formulating the ILP Model

We define the requirements jR , the teams iG , the jobs kJ and the dependency set A as
the in Section 3.1. In addition, each requirement

j
R is associated with an expected

revenue
j

v . And we denote our planning period by T and define ()d T as the number
of working days in the planning period.

The Precedence Constraints
We can handle the precedence constraints similarly to Section 3.1, only that we do not
need to introduce the two virtual jobs: START & END and do not need to link them to
the jobs in X . This is because which requirements will be in the schedule is still un-
certain and the release date is already fixed.

The Earliest Start
k

es and the Latest Start
k

ls of each Job kJ

For the earliest start
k

es , we can also use the longest path algorithm from Section 3.1.
The only difference is since we do not have the virtual job START any more, we need to
set the earliest start 0

k
es = for all the jobs which do not have predecessor. We can

apply this lower bound because a requirement can only be selected and developed when
all its predecessors are selected and developed.

For the latest start
k

ls , it equals ()
k

d T d− . Please note that the method to compute

k
ls is significantly different from the scheduling model. We can not lower this upper
bound because we do not know whether the successors of a job will be selected.

It is possible that k kls es< for a certain job kJ . It then means the job can not fit in
the project time span. So the requirement

j
R which contains this job will also not be a

 Integrated Requirement Selection and Scheduling for the Release Planning 101

candidate of the next release. Hence, we can eliminate these requirements beforehand
and define a set X ′′ which contains only the feasible ones.

The (0,1) Integer Linear Programming Model
Like in [2], for each requirement jR , we define a binary decision variable

j
x associated

to it, where 1
j

x = if and only if requirement
j

R is selected. Moreover, for each job

kJ X ′′∈ , we define a group of binary decision variable
kt

ξ within its possible time
interval [,]

k k
t es ls∈ , where 1

kt
ξ = if and only if job kJ starts at time t .

We can now model the combined selection and scheduling problem as follows:

1

max
n

j j
j

v x
=
∑ (4.1)

Subject to

k

k

t ls

kt j
t es

xξ
=

=
=∑ for all ()k jJ X R∈ , 1, ,j n= K (4.2)

*j jx x≤ for all *(,)j jR R A∈ (4.3)

*

*

* *(1) ()
k k

k k

t ls t ls

kt k k t j
t es t es

t d t x d Tξ ξ
= =

= =
⋅ + ≤ ⋅ + − ⋅∑ ∑

 for all *(,)k kJ J H∈ , *()k jJ X R′ ∈ (4.4)

() (,)

1
i

t

k
k X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑ for ()max0,1,t T= K , 1, ,i m= K (4.5)

{ }, 0,1kt jxξ ∈ for all [],k kt es ls∈ , kJ X ′′∈ ,

 1, ,j n= K (4.6)

where in constraint 3.5, (,) max(0, 1)
k

t k t dσ = − + . The objective function (4.1)

shows that we want to maximize the revenue. Constraint (4.2) means that a requirement
is selected if and only if all its jobs are planned. Constraints (4.3) and (4.4) deal with the
precedence constraints. Constraint (4.3) means a requirement is only selected when its
predecessor is selected. Constraint (4.4) means the jobs for the successor requirement
can only start after all the jobs for its precedent requirements are finished. Please note,
that this constraint is different with the precedence constraint modeled in section 3.1,
because the successor job is not guaranteed to be selected. (4.5) is the resource con-
straint that one team is only able to develop one requirement at a time. Constraint (4.6)
is the binary constraint for all the variables.

Note that if we ignore the precedence constraints (4.3) and (4.4), it is another way to
represent the multi-dimensional Knapsack problem.

4.2 Extensions of the Model

Using the combined model, it is possible to model all the six types of requirement
dependency listed in Table 2. Combination, implication, exclusion and revenue-based
can be modeled the same way as in the knapsack model. Only the cost-based

102 C. Li et al.

dependency is modeled differently. It is also possible to model the conditions when
team

i
G is only available for a certain time interval instead of the whole period, or

there are holiday seasons within the period. For reasons of brevity, we refer to [20] for
details.

5 Prototype

We have implemented three Java prototypes for requirement selection & scheduling
based on the models available so far—the knapsack model, the scheduling model, and
the combined model. These prototypes run in Linux environment and make use of the
callable library of ILOG CPLEX [16] for solving the ILP problem. CPLEX is one of the
best known packages for integer linear programming.

Fig. 2. Screen shot of the scheduling prototypes

Figure 2 shows a screenshot of the prototype for the combined model. The re-
quirements are managed and stored in the database with estimated revenue, cost and
dependency. This screenshot shows the interface of the model for combined require-
ment selection and scheduling. Based on the data attributes of the requirements and the
expected release date, the requirements selection and a project plan for the next release
are calculated simultaneously.

6 Simulation Tests

In Section 1.3 we have shown that when there are different development teams and
precedence constraints, the problem of synchronization can possibly delay the whole

 Integrated Requirement Selection and Scheduling for the Release Planning 103

project. However, the size of this influence is still unknown. In addition, although the
combined model for requirement selection and scheduling can guarantee on time de-
livery, the additional constraints will possibly cause a loss of revenue. The trade off
between the time saving and the additional cost is also not clear. These concerns lead us
to investigate the following questions through simulation tests:

Simulation 1: What is the relationship between the number of time-related de-
pendencies and the possibility of running out of time in the project planning?

Simulation 2: What are the differences when we select and schedule requirements
at the same time, and when we select and schedule sequentially?

For testing the programs and comparing the models, two types of datasets were used
(available online [15] for research purpose). They were:

 Small: 9 requirements and 3 teams, release duration 60 days.
 Master: 99 requirements and 17 teams, release duration 30 days.

The Small dataset was the example dataset provide in Table 1. The Master dataset was
generated from larger real life datasets originated from a large software vender. All
team values were kept the same, but the team capacities and revenues were modified
for confidentiality reasons.

In order to make the model not case specific, we randomly generated dependencies.
We guaranteed that no cycle occurs within the dependencies. This is important because
the requirements in the cycle would be inter-waiting others’ completion and cause a
deadlock. For the small dataset, we examine the situation with 1, 2, 3 and 4 depend-
encies, while for the master dataset, we check the situation with 0.5%, 1%, 2%, and 5%
of the maximal number of possible dependencies (every two requirements are inter-
dependent. This equals 2 (1) / 2

n
C n n= ⋅ −). Note that here we mentioned the number of

dependencies we explicitly generated. There may also be some additional dependencies
induced by the generated dependencies, e.g. if Ri has to precede Ri and Rj has to precede
Rk , then also Ri has to precede Rk. For every number of dependencies, we randomly
generate 100 groups of dependencies and run 100 times.

6.1 Results of the Simulation 1: The Influence of Dependencies on Project Plan

In this simulation, we want to exam how much precedence constraint can influence the
project span. Given the small and master dataset, we first select requirement using the
knapsack model, then we randomly generate a certain amount of dependencies and
call the scheduling model to make a project plan. We then find the maximal, minimal
and average make-span, i.e. duration of the project and count how many times the
project is delayed within the 100 runs. At last, we compare the results with the lower
bound. The lower bound is the maximum value of the project make-span without
precedence constraints and the result of longest path algorithm, which relaxed the
constraint on team difference (i.e. ENDes in Section 3.1). Table 3 shows the results of
the 100 runs each row.

104 C. Li et al.

Table 3. Schedule results of the first simulation

The project span
The difference between

lower bound
Data Set

Dep
ratio

No.
Dep Max

days
Min
days

Average
days

Times of
delay

Max diff
Min
diff

Average
diff

10% 1 83 55 58.80 16 0.00% 0.00% 0.00%
20% 2 93 55 63.70 40 27.27% 0.00% 0.93%
30% 3 103 55 70.42 62 27.27% 0.00% 2.64%

Small-result
(5 Reqs, 60

days)
40% 4 108 55 75.32 76 14.55% 0.00% 2.12%

0.5% 14 40 30 30.93 33 30.00% 0.00% 2.70%
1% 29 46 30 31.38 27 8.57% 0.00% 0.22%
2% 57 69 30 36.92 76 22.58% 0.00% 2.13%

Master-result
(76 Reqs, 30

days)
5% 142 84 38 56.15 100 19.23% 0.00% 3.47%

To visualize the results, we plot the result of master data set in the following chart.
The result of small dataset keeps the same trend as the master one.

Fig. 3. Schedule results based on the master dataset

In figure 3, the left chart shows the dependency’s influence on project span and the
right chats shows the ratio of the delayed cases and on-time cases. Although the re-
quirements selected using knapsack model are expected to finish within 30 days, the
results vary a lot. When there are 0.5% or 1% of possible dependencies, the results of
the 100 runs range within a few days, the average project span is close to the release
date and the number of over-time cases is still low. The result starts to explode after 2%.
Then the project span varies a lot based on different dependencies and is on average
much higher than expected. Especially when there are 5% of possible dependencies, the
minimal case requires 38 days which means none of the 100 run are on time.

It is not difficult to conclude that precedence constraints play an important role for
release scheduling. When there are just a few dependencies, they can already greatly
influence the project span. And as the number of dependencies grows, the project span
also grows significantly. Based on the complexity of the system, the exact number of
dependencies may vary a lot, but a former survey [8] has suggested that there are at
least 80% of requirements are interdependent and most of them are implications and

 Integrated Requirement Selection and Scheduling for the Release Planning 105

cost-based, then we can assume that the exact number of dependency is at least higher
than the second row of the small and master dataset.

6.2 Results of the Simulation 2: Model Comparison

In this simulation, we compare the differences between applying the knapsack and
scheduling model subsequently (k&s), and the combined model (comb). We take the
following three steps to compare the models. Step 1, based on the small and the master
datasets, we randomly generate a group of dependencies. Step 2, we then use the
knapsack model to select the requirements and record down the dependencies within
the selected requirements, and we call the scheduling model to schedule the activities
exactly in time. Step 3, for the same dataset and dependencies we call the combined
model to select and schedule the requirement at the same time. Step 4, we compare the
revenue difference between the knapsack model and the combined model; the time
difference between the scheduling model and release date (which is the schedule result
of the combined model) and the times of delay.

 When analyzing the results, we found that when the combined model and the
knapsack model select the same requirements, the scheduling model can always find a
timely schedule. The result is not surprising but also of no interest since everything is
the same. So we decided to also make a statistics only for the delayed cases. The
computational results are shown in Table 4.

Table 4. Simulation results of model comparison

Statistics for the 100 runs Statistics only for the delayed cases

Data
Set

Dep
ratio

No.
of

Dep
Average
revenue
(comb)

Average
revenue
(k&s)

Average
project
span
(k&s)

Average
project
span

No. of
delay
(k&s)

Average
revenue
(comb)

Average
revenue
(k&s)

Average
time

(k&s)

Average
revenue

diff diff

3% 1 139.17 141.27 56.62 9 123.67 147 73 15.87% 21.67%
10% 3 128.06 132.53 58.15 17 110.53 136.82 76 19.15% 26.67%
15% 5 114.81 121.45 59.25 22 99.27 129.45 76.59 22.92% 27.65%

Small
(9 Reqs
60 days)

20% 7 105.59 110.87 57.72 24 104.02 126.14 76.07 16.84% 26.78%
0.5% 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13% 9.41%
1% 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15% 19.41%
2% 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11% 31.42%

Master
(99 Reqs
30 days)

5% 242 26947.7 29127.3 45.61 95 26804.5 29098.8 46.43 7.84% 54.77%

The results prove again that precedence constraints play an important role for re-
quirement selection and scheduling. As the number of constraint increase, the average
revenue of the two models decrease and the average project plan as well as the possi-
bility of delay increase. To compare the models, we plot the computational results of
master dataset in the Figure 4.

In Figure 4, the left chart shows the average revenue difference and cost difference
for the delayed cases and the right chart shows ratio of on-time cases and delayed cases.
It is clear that the combined model can not only guarantee on time delivery but also gain
more efficiency. When follow the select and then schedule process, the project stand a
high change of being delayed and this possibility grows larger and larger as the number

106 C. Li et al.

Fig. 4. Model comparison result based on master dataset

of dependencies increases. The simulation result also suggests that it is more efficient
to take the project plan issues into account when selecting the requirements, because
even if we ignore the influence on missing the deadline, the revenue loss of the com-
bined model is significantly less than the additional development time.

7 Conclusion and Future Research

The contributions of this paper are: first, we applied the RCPSP model to solve the
release planning problem based on the precedence dependencies between requirements
and the resources/skills constraints in the company. Second, we presented a new ILP
model which can combine the requirement selection and scheduling together and pro-
vide a requirement selection and on-time-delivery project plan simultaneously. At last,
we implemented the models and launched two simulations to demonstrate the appli-
cation of the models. The results indicate that the model for combined requirement
selection and scheduling can not only keep on-time-delivery but also be more efficient
than the traditional knapsack model.

The results looks very promising, but some more works still needs to be done. The
second simulation results show convincing figures to combine the requirement selec-
tion and scheduling together. More work is needed to evaluate this process improve-
ment opportunity. The first simulation results also suggest that the optimal schedule
found by integer linear programming is not far away from the critical path lower bound.
It can be interesting to investigate if there are faster algorithms for scheduling that can
get rather close to the optimum. The scalability of the models is so far unknown, more
research is needed to test it and make it applicable for larger dataset.

References

1. van den, A.J.M., van Hoesel, C.P.M., Savelsbergh, M.W.P.: A Polyhedral Approach to
Single-Machine Scheduling Problems. Mathematical Programming 85(3), 541–572 (1999)

2. van den, A.J.M., Brinkkemper, S., Diepen, G., Versendaal, J.M.: Flexible Release Planning
Using Integer Linear Programming. In: Kamsties, E., Gervasi, v., Sawyer, P. (eds.) Pro-
ceedings of the 11th International Workshop on Requirements Engineering for Software
Quality (REFSQ’05), pp. 247–262 (2005)

 Integrated Requirement Selection and Scheduling for the Release Planning 107

3. Balakrishnan, R., Leon, W.J.: Quality and Adaptability of Problem-Space Based
Neighborhoods for Resource Constrained Scheduling. In: OR Spectrum, pp. 173–182.
Springer, Heidelberg (1995)

4. Berander, P., Andrews, A.: Requirements Prioritization. Engineering and Managing Soft-
ware Requirements. In: Aurum, A., Wohlin, C. (eds.) Berlin, Germany, Springer Verlag
(2005)

5. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling Projects Subject to Resource
Constraints: Classification and Complexity. Discrete Applied Mathematics 5, 11–24 (1983)

6. Carlshamre, P., Regnell, B.: Requirements Lifecycle Management and Release Planning in
Market-Driven Requirements Engineering Processes. International Workshop on the Re-
quirements Engineering Process: Innovative Techniques, Models, and Tools to support the
RE Process, 6th-8th of September, Greenwich, UK, the DEXA Conference (2000)

7. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An industrial
survey of requirements interdependencies in software release planning. In: Proceedings of
the 5th IEEE international symposium on requirements engineering, pp. 84–91 (2001)

8. Carlshamre, P.: Release Planning in Market-Driven Software Product Development: Pro-
voking an Understanding. Requirements Engineering 7(3), 139–151 (2002)

9. Cormen, T.H., Leiserson, C.E., Riverst, R.L., Stein, C.: Introduction to algorithms, 2nd edn.
pp. 549–551. MIT Press, Cambridge (2001)

10. Cusumano, M.A.: The Business of Software. Free Press (2004)
11. Demeulemeester, E., Herroelen, W.: A Branch and Bound Procedure for the Multiple Re-

source-Constrained Project Scheduling Problem. Management Science 38, 1803–1818
(1992)

12. Dyer, M., Wolsey, L.: Formulating the Single Machine Sequencing Problem with Release
Dates as a Mixed Integer Program. Discrete Applied Mathematics 26, 255–270 (1990)

13. Firesmith, D.: Prioritizing Requirements. Journal of Object Technology 3(8), 35–47 (2004)
14. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach.

Information and Software Technology 46, 243–253 (2004)
15. http://www.cs.uu.nl/ diepen/ReqMan
16. ILOG CPLEX, http://www.ilog.com/products/cplex
17. Jung, H.-W.: Optimizing Value and Cost in Requirements Analysis, IEEE Software, pp.

74–78 (July/August 1998)
18. Karlsson, J., Ryan, K.: A cost-Value Approach for Prioritizing Requirements, IEEE Soft-

ware, pp. 67–74 (1997)
19. Leffingwell, D., Widrig, D.: Managing Software Requirements – A Unified Approach.

Addison-Wesly, Upper Saddle River, NJ (2000)
20. Li, C.: An Integer Linear Programming Approach to Product Software Release Planning and

Scheduling. Master Thesis Business Informatics of Utrecht University, pp. 22–71 (2006)
21. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An Exact Algorithm for the Re-

source-Constrained Project Scheduling Problem Based on a New Mathematical Formula-
tion. Management Science 44(5), 714–729 (1998)

22. Novorita, R., Grube, G.: Benefits of Structured Requirements Methods for Market-Based
Enterprises. In: Proceedings of International Council on Systems Engineering Sixth Annual
International Symposium on Systems Engineering: Practice and Tools (INCOSE’96),
Boston, USA (1998)

23. Regnell, B., Höst, M., Natt och Dag, J., Beremark, P., Hjelm, T.: An Industrial Case Study
on Distributed Prioritisation in Market-Driven Requirements Engineering for Packaged
Software. Requirement Engineering 6(1), 51–62 (2001)

108 C. Li et al.

24. Regnell, B., Brinkkemper, S.: Market-Driven Requirements Engineering for Software
Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 287–308. Springer, Berlin (2005)

25. Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE Soft-
ware 22(6), 47–53 (2005)

26. Sawyer, P., Sommerville, I., Kotonya, G.: Improving Market-Driven RE Processes. In:
Proceedings of International Conference on Product Focused Software Process Improve-
ment (PROFES’99), Oulu Finland (June 1999)

27. Weerd, I., van de Brinkkemper, S., Nieuwenhuis, R., Versendaal, J.M., Bijlsma, A.: To-
wards a Reference Framework for Software Product Management. In: Glinz, M., Lutz, R.R.
(eds.) 14th IEEE International Requirements Engineering Conference, Minneapolis/St.
Paul, Minnesota, pp. 319–322. IEEE Computer Society, Washington (2006)

28. Wolsey, L.A.: Integer Programming. Wiley-Interscience Series. In: Discrete Mathematics
and Optimization (1998)

	Introduction
	Example of Release Planning Problem
	Problem Illustration

	A First Analysis
	Precedence Constraint and Requirement Dependency
	Scheduling Without Precedence Constraint
	Scheduling Without Team Division

	An ILP Model for Requirement Scheduling
	Problem Formulation

	A Combined Model for Requirement Selection and Scheduling
	Formulating the ILP Model
	Extensions of the Model

	Prototype
	Simulation Tests
	Results of the Simulation 1: The Influence of Dependencies on Project Plan
	Results of the Simulation 2: Model Comparison

	Conclusion and Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

