
Detection of Packet Forwarding Misbehavior
in Mobile Ad-Hoc Networks

Oscar F. Gonzalez1, Michael Howarth1, George Pavlou1

1 Center for Communications Systems Research, University of Surrey,
Guildford, UK

o.gonzalez-duque@surrey.ac.uk, m.howarth@surrey.ac.uk, g.pavlou@surrey.ac.uk

Abstract. Mobile Ad Hoc networks (MANETs) are susceptible to having their
effective operation compromised by a variety of security attacks. Nodes may
misbehave either because they are malicious and deliberately wish to disrupt the
network, or because they are selfish and wish to conserve their own limited
resources such as power, or for other reasons. In this paper, we present a
mechanism that enables the detection of nodes that exhibit packet forwarding
misbehavior. We present evaluation results that demonstrate the operation of
our algorithm in mobile ad hoc environments and show that it effectively
detects nodes that drop a significant fraction of packets.

Keywords: mobile ad hoc network, misbehavior detection, packet forwarding.

1. Introduction

The wireless nature and inherent features of mobile ad hoc networks makes them
vulnerable to a wide variety of attacks by misbehaving nodes. Such attacks range from
passive eavesdropping, where a node tries to obtain unauthorized access to data destined for
another node, to active interference where malicious nodes hinder network performance by
not obeying globally acceptable rules. For instance, a node can behave maliciously by not
forwarding packets on behalf of other peer nodes. However, when a node exhibits malicious
behavior it is not always because it intends to do so. A node may also misbehave because it
is overloaded, broken, compromised or congested in addition to intentionally being selfish or
malicious [3,11].

Misbehavior can be divided into two categories [3]: routing misbehavior (failure to
behave in accordance with a routing protocol) and packet forwarding misbehavior (failure to
correctly forward data packets in accordance with a data transfer protocol). In this paper we
focus on the latter. Our approach consists of an algorithm that enables packet forwarding
misbehavior detection through the principle of conservation of flow [25]. Our scheme is not
tightly coupled to any specific routing protocol and, therefore, it can operate regardless of the
routing strategy adopted. Our criterion for judging a node is the estimated percentage of
packets dropped, which is compared against a pre-established misbehavior threshold. Any
node dropping packets in excess of this threshold is deemed a misbehaving node while those
below the threshold are considered to be correctly behaving.

Our scheme detects misbehaving nodes (whether selfish, malicious or otherwise) capable
of launching two known attacks: the simplest of them is the black hole attack. In this attack a
misbehaving node drops all the packets that it receives instead of normally forwarding them.
A variation on this is a gray hole attack, in which nodes either drop packets selectively (e.g.
dropping all UDP packets while forwarding TCP packets) or drop packets in a statistical
manner (e.g. dropping 50% of the packets or dropping them with a probabilistic distribution).
Both types of gray hole attacks seek to disrupt the network without being detected by the
security measures in place.

In this paper we first present a framework and a relevant algorithm and protocol that deal
with this attack. We then demonstrate through simulations that an appropriate selection of
the misbehavior threshold allows for a good discrimination between misbehaved and well-
behaved nodes, as well as providing robustness against different degrees of node mobility in
a network that is affected by black hole and/or gray hole attacks.

The rest of this paper is organized as follows. Section II describes related work in the area
of MANET security. Section III specifies our assumptions on the network and security
models and clarifies the terminology adopted. Section IV describes our algorithm for packet
forwarding misbehavior detection, and Section V presents a performance evaluation. Finally,
the paper is concluded in Section VI.

2. Related Work

In this Section we initially look at ways of protecting routing protocols against misbehaving
nodes and then review work that attempts to detect misbehavior in data packet forwarding.

Some research effort has been focused on the development of new routing protocols
whose objective is to protect the network from security threats that were not addressed by
work preceding them. The Secure Routing Protocol (SRP) [7] and Authenticated Routing for
Ad hoc Networks (ARAN) [8] assume the existence of a priori relationships in a network: in
the case of SRP between the two communicating nodes, and for ARAN between each node
in the network and a certificate server. Both protocols perform an end-to-end authentication
and intermediate nodes are not allowed to reply to route requests even if they know a route to
the destination. However, a priori relationships in MANETs may not exist. These
approaches secure the path discovery and establishment functionality of routing protocols,
and our approach complements them by securing the data forwarding functionality.

The routing protocol proposed in [16] offers resilience to diruption or degradation of the
routing service by an algorithm that allows the detection of a malicious link after log n faults
have occurred on a path, where n is the hop length of the path. In [19] each node is able to
detect signs of intrusion locally and neighboring nodes collaborate to further investigate
malicious behavior. In both these approaches a node uses its own data to identify another
node as an intruder. In contrast, in our approach a node detects anomalies in packet
forwarding based on data acquired by other nodes in the network as well as on its own data,
thus potentially obtaining a more balanced evaluation of a node’s behavior.

Secure routing protocols have also been proposed based on existing ad hoc routing
protocols. These eliminate some of the optimizations introduced in the original routing
protocols because they can be exploited to launch different types of attacks. Examples of
such protocols are the secure efficient distance vector (SEAD) routing [6] which is based on

the destination sequenced distance vector (DSDV) [12], the secure ad-hoc on-demand
distance vector (SAODV) routing protocol [9, 10] based on AODV [13, 14], and the secure
on-demand routing protocol for ad hoc networks (Ariadne) [2] based on the dynamic source
routing (DSR) protocol [15] and the timed efficient stream loss-tolerant authentication
(TESLA) protocol proposed in [17]. A second work extending DSR to provide it with
security mechanisms is CONFIDANT (Cooperation Of Nodes: Fairness In Dynamic Ad-hoc
NeTworks) [18]. As with SRP and ARAN these protocols can be coupled with our
approach, which is not routing protocol dependent, to offer an improved security solution.

Attack patterns have also been the object of research. In [4] and [5] the authors propose a
framework for misuse detection which divides the nodes in a network into two categories:
insiders and outsiders. Insiders are always well-behaved nodes in charge of performing
network tasks. Such nodes belong to trusted users. Outsiders only communicate using the
network and are always invigilated by a subset. Unfortunately, this framework assumes the
existence of trust relationships prior to a MANET formation, which goes against their
dynamic and spontaneous nature. In this regard, our protocol does not assume prior
relationships between nodes in a network and it only evaluates their behavior after the
MANET has been formed and the packet transmission has commenced.

Other work has tried to protect security mechanisms against attacks, such as [11] where
the authors distinguish between two types of threats: threats to the basic mechanisms of ad
hoc networks, such as routing, and threats to the security mechanisms such as key
establishment and management. Their proposed algorithm uses certificates stored in
repositories to find a certificate chain between the communicating nodes. Although
simulations show an acceptable performance, this method requires a considerable amount of
memory in every node in the network.

There has also been some work that aims to protect data packet forwarding against
malicious attacks in order to provide reliable network connectivity. The final part of this
section describes some approaches that detect malicious behavior in the data forwarding
phase. WATCHERS (Watching for Anomalies in Transit Conservation: a Heuristic for
Ensuring Router Security) [25] is a protocol designed to detect disruptive routers in fixed
networks through analysis of the number of packets entering and exiting a router. Although
WATCHERS is based on the principle of conservation of flow in a network in the same way
as our proposed algorithm, its design focuses only on fixed networks and is not applicable to
mobile ad hoc networks.

The Secure Message Transmission (SMT) and Secure Single Path (SSP) protocols are
both introduced in [20]. In SMT a message that is to be sent towards a destination is first
divided in N parts and then sent by N independent paths. Each part carries a limited amount
of redundancy in such a way that only M parts, where M<N, are needed at the destination to
recover the whole message. In SSP one path is used at a time and the source tries a different
path each time the communication is not successful. However, SMT is very bandwidth-
intensive, and these protocols do not attempt to find the source of the packet loss. Our
protocol, on the contrary, identifies any source(s) that appear to be causing packet losses,
allowing for their isolation at a later stage if necessary.

In [24] the authors look at traffic transmission patterns between any two communicating
nodes in order to facilitate verification by a receiver. Such traffic patterns can be analyzed,
and a misbehaving node can be found, if they are used in concert with suboptimal techniques
at the medium access control (MAC) layer that preserve the statistical regularity from hop to

hop. This work, however, has a very narrow scope of application due to its MAC layer
assumptions to preserve statistical regularity, and thus it is very unlikely for it to be useful in
scenarios other than military applications.

SCAN (self-organized network layer security in mobile ad hoc networks) [3] focuses on
securing packet delivery. SCAN nodes monitor their neighbors by listening to packets that
are forwarded to them. The SCAN node maintains a copy of the neighbor’s routing table
and determines the next-hop node to which the neighbor should forward the packet; if the
packet is not overheard as being forwarded, it is considered to have been dropped. In
contrast, in our algorithm nodes do not need to overhear transmissions to and from any
neighbor in order to detect misbehavior. In SCAN each node must possess a valid token to
be able to interact with the network. SCAN develops this idea from [21] where tokens are
used to give a valid key to a new node entering the network. Similar techniques have also
been studied in various papers such as [22], where they are used to achieve distribution of
trust throughout a network.

Finally, in [23] a system that can mitigate the effects of packet dropping is proposed. This
is composed of two mechanisms that are kept in all network nodes: a watchdog and a
pathrater. The watchdog mechanism identifies any misbehaving nodes by promiscuously
listening to the next node in the packet’s path. If such a node drops more than a predefined
threshold of packets the source of the communication is notified. The pathrater mechanism
keeps a rate for every other node in the network it knows about. A node’s rate is decreased
each time a notification of its misbehavior is received. Then, nodes’ rates are used to
determine the most reliable path towards a destination. However, the watchdog might not
detect a misbehaving node in the presence of ambiguous collisions, receiver collisions or
nodes capable of controlling their transmission power. Such weaknesses are the result of
using promiscuous listening to determine whether a node has forwarded a packet or not. Our
approach does not have these same weaknesses since it is based on metrics obtained from
nodes that are actually sending and receiving packets to and from the node whose behavior is
under evaluation, as explained in section IV.A.

3. Model Assumptions

The physical layer of a wireless network is often vulnerable to denial of service (DoS)
attacks such as frequency jamming. Spread spectrum and frequency hopping are examples
of techniques that have been studied as means of preventing this type of attacks. The link
layer is also subject to attacks where nodes gain unfair access to the medium or where they
disrupt communications, for example by dropping packets related to typical handshake
processes. We disregard attacks aimed at the physical and link layers.

We assume bidirectional communication symmetry in every direct link between a pair of
nodes. This means that if a node v2 receives a packet from node v1, v1 can also receive a
packet from v2. This is a sensible assumption since our approach needs MAC protocols with
collision avoidance mechanisms to work properly, such as the extensively deployed IEEE
802.11, MACA (Multiple Access with Collision Avoidance) [26] and MACAW (MACA
for Wireless LANs) [1], which require bidirectional communication for reliable
transmission.

We assume the MAC layer protocol to be reliable (e.g. IEEE 802.11). This is required to
provide confidence that a data packet has been successfully transmitted to the next-hop node,
and enables us to apply the principle of flow conservation (see Section IV.A).

4. Detecting Packet Forwarding Misbehavior

Our work provides a novel methodology to secure the data forwarding functionality in
mobile ad hoc networks. We propose an approach that takes advantage of the principle of
flow conservation in a network. This states that all bytes/packets sent to a node, and not
destined for that node, are expected to exit the node. In this Section we first present, from a
theoretical point of view, how this principle works assuming it is implemented in an ideal
network, and then we demonstrate that by making some reasonable assumptions and
adaptations, our algorithm can cope with the practical problems that are encountered in real
MANETs.

4.1. The Principle of Flow Conservation

We now formally introduce the principle of flow conservation over an ideal static
network model:
• Let vj be a node such that vj ∈ V, where V = {v1, v2, v3 … vN} is the set of all

nodes in the network, N is the total number of nodes in the network, and j= 1, 2,
3 … N.

• Let Uj be the subset of nodes in the network which are neighbors of vj, i.e. Uj is
the neighborhood of vj. It follows that vj ∉ Uj and also Uj ⊂ V.

• Let Δt be the period of time elapsed between two points in time t0 and t1 such that
Δt = t1 – t0.

• Let Tij be the number of packets that node vi has successfully sent to node vj for vj
to forward to a further node; vi ∈ Uj, vj ∈ Ui, i ≠ j and Tij(t0) = 0.

• Let Rij be the number of packets that node vi has successfully received from node
vj that did not originate at vj; vi ∈ Uj, vj ∈ Ui, i ≠ j and Rij(t0) = 0.

If all nodes vj ∈ V remain static for a period of time Δt during which no collisions occur in

any of the transmissions over an ideal (noiseless) wireless channel, then for a node vj:
∑∑

∈∀∈∀

=
jiji Uvi
ij

Uvi
ij tTtR

|
1

|
1)()((1)

Equation (1) states the fundamental premise of the flow conservation principle in an ideal

static network applied to packets rather than raw bytes. It states that if all neighbors of a node
vj are queried for i) the amount of packets sent to vj to forward and ii) the amount of packets
forwarded by vj to them, the total amount of packets sent to and received from vj must be
equal.

In practice networks exhibit conditions that are far from ideal. First of all, the wireless
channel is error prone and packets get lost while in transit. Secondly, collisions happen when
the network uses protocols where nodes have to compete for the medium, such as when the

link layer protocol is based on the distributed coordination function (contention period) of the
IEEE 802.11 a/b standard. In order to allow equation (1) to hold we propose to use a reliable
MAC protocol such as IEEE 802.11, MACA or MACAW.

The use of a reliable MAC protocol in conjunction with the conservation of flow principle
means that we are not susceptible to problems that arise when overhearing other nodes’
transmissions. Thus, problems such as ambiguous collisions, receiver collisions, and the
ability of a node to control its transmission power do not exist in our approach. Ambiguous
collisions occur when a node v1 is trying to determine if another node v2 is properly
forwarding a packet. It may happen that node v2 forwards the packet to a further node v3,
which is out of the transmission range of v1, while a second transmission prevents v1 from
overhearing the forwarded packet, thus v1 will not know if the packet was forwarded. On the
other hand, in the receiver collision problem v2 forwards the packet to v3 at which point a
collision occurs. Node v1 is unaware of such a collision and assumes that the packet was
forwarded even if v2 does not attempt a retransmission. Another problem is caused by nodes
capable of controlling their transmission power. Thus, v2 can transmit with enough power for
v1 to overhear but not enough power for v3 to receive it, leaving v2 unaware of the situation.
All these weaknesses are due to the fact that overhearing is used by nodes to check for
misbehavior. In our algorithm the nodes that maintain statistics that are used to determine
whether the forwarding was properly made are the nodes actively involved in the
transmission process, i.e. the transmitter and the receiver of each transmission.

However, a node may exhibit malicious behavior even if it is not purposefully doing so.
For example, an overloaded node may lack the CPU cycles, buffer space or bandwidth to
forward packets. For these reasons equation (1) cannot be applied in a rigorous manner and a
threshold needs to be established to account for packets dropped by a node through no fault
of its own. Equation (2), which holds for well behaved nodes, reflects this change.

The αthreshold factor can take values between 0 and 1 and as we shall see plays an important
role in the detection power of our proposed algorithm, i.e. the capability of the algorithm to
detect misbehaving nodes. The lower αthreshold is the more likely it is that our algorithm
detects any malicious behavior. However, it also means that the probability of a false
detection increases, as it can be inferred from our simulations (Section V). A false detection
occurs when the result of a single evaluation of a node mistakenly determines that the node
appears to be misbehaving. Therefore, fine tuning is required to reach a fair point in this
tradeoff.

∑∑
∈∀∈∀

≤−
jiji Uvi
ij

Uvi
ijthreshold tTtR

|
1

|
1)()()1(α (2)

4.2. Adapting Conservation of Flow to Mobile Networks

In MANETs the neighborhood Uj of a node vj changes dynamically over time, making it
difficult to determine those nodes that have transmitted or received packets to or from a node
vj. Our scheme overcomes this problem by means of a limited broadcast that tracks down
nodes that have been in contact with node vj as explained in this section.

The core parts of our algorithm are detailed in the pseudocode shown in figure 1. A node
vi maintains a table with two metrics Tij and Rij, which contains an entry for each node vj to
which vi has respectively transmitted packets to or received packets from. Node vi increments

Tij on successful transmission of a packet to vj for vj to forward to another node, and
increments Rij on successful receipt of a packet forwarded by vj that did not originate at vj.

All nodes in the network continuously monitor their neighbors and update the list of those
they have heard recently (Fig. 1.a). If the ID of an overheard node is not included in the table
of overheard nodes a new entry is created. Otherwise, the existing entry is updated with a
timestamp corresponding to the time the node was last overheard. Upon the creation of a
new entry, a node schedules a task/event to check the behavior of the node whose ID has
been saved in the new entry. Nodes randomly select a period of time between Tmin and Tmax
to schedule the behavior checking task.

Figure 1. Our algorithm pseudocode.

When a scheduled task is triggered in node vk to check vj’s behavior (Fig. 1.b), node vk
broadcasts a metrics request packet (MREQ) with TTL = 1 in the IP header. An MREQ
includes the ID of the node emitting the request (SRC_ID), the ID of the node whose
behavior is to be checked (CHK_ID), an MREQ_ID and a timestamp indicating the time at
which the task was triggered. If a node sees an MREQ that has the same MREQ_ID and
SRC_ID of a packet seen before, the MREQ is dropped. This technique prevents flooding
packets from traversing a zone of the network more than once. The timestamp, on the other
hand, is used to resolve conflicts when two nodes start a behavior check on the same node at
almost the same time. In such cases, nodes can see which of the packets corresponds to the
earlier triggered task and disregard the other. This does not require accurate synchronization
of the nodes’ clocks; approximate synchronization is all that need be assumed. Finally, after
the MREQ packet is broadcast, a task is scheduled to be triggered a period of time Tmax
(maximum elapsed period of time without checking an active node’s behavior) later. This

means it is highly unlikely that the same node will originate two successive checks of
another node, and gives other nodes a chance to perform the behavior check.

The handling of requests (Fig. 1.c) is the heart of our limited broadcast algorithm. When a
node receives an MREQ it first checks if the CHK_ID is in its table of overheard nodes; if it
is not the node ignores the MREQ and discards the check. However, if the CHK_ID appears
in its table then it rebroadcasts the MREQ with TTL = 1 in the IP header. Thus, every
MREQ travels only one hop at a time, and is then analyzed and rebroadcast if the protocol so
determines. By following this algorithm, our protocol is capable of tracking down nodes that
have been in contact with the checked node, as illustrated in Figure 2. In the Figure, node v7
is first in position a where it can be overheard by nodes v1, v2, v3, v6, v8, v11, v12 and v13. Each
of these nodes makes an entry in their table of overheard nodes when v7 first transmits and
each of them schedules a task to check its behavior. At some point in time, v7 decides to
move following the path depicted in Figure 2 coming in contact with nodes v14, v17, v18, v19,
v20, v23, v24 and v25. It finally stops in position b. In the Figure the scheduled behavior check
initiation task (Fig. 1.b) in v8 is the first to be triggered and the limited broadcast commences.
All nodes that have overheard node v7 re-broadcast the MREQ, whereas nodes such as v4, v9
and v15 also receive the MREQ but ignore it because they have not overheard node v7.

Figure 2. Example of limited broadcast to track down nodes that have overheard node v7.

Once a node has decided whether to continue or not broadcasting a MREQ, it reschedules
any pending task to check the behavior of the checked node specified in the CHK_ID field of
the MREQ. The new behavior checking task is scheduled in the same way as when a new
entry is made in the table of overheard nodes, i.e. a period of time is randomly selected
between Tmin and Tmax. In this way if the random selection is uniformly distributed the
average frequency with which an active node’s behavior is checked is:

)(
2

2/)(
1_

maxminmaxmin TTTT
freqavg

+
=

+
= (3)

The last task a node performs when it receives a MREQ is to check if it has any metrics
(Rij or Tij) relating to the node being checked. If any of the metrics has a value other than

zero the node returns a metrics reply packet (MREP) (Fig. 1.c) containing the metrics, but if
the value of both metrics is zero then the node does not send back any response. In our
scheme a metrics reply packet is returned to the node that originated the MREQ following
the reverse of the MREQ’s path. This approach avoids the high overhead produced by
reactive routing protocols when they perform route discovery for many MREP packets.

Reply handling is executed in the node that initiated the MREQ. This node, v8 in Fig. 2,
waits for a period of time in order to give all nodes with metrics about the checked node the
opportunity of replying. When the time expires, the node checks the behavior of the analyzed
node by verifying that equation (2) holds (Fig. 1.d). If it does not, it flags the checked node as
a misbehaving one; this is a detection. Using a single detection to accuse a node is not
sufficient since such an algorithm may lead to false accusations against correctly behaving
nodes. A scheme in which multiple detections by different nodes are necessary to accuse a
node is fairer to well-behaved nodes, while keeping a high probability of correctly accusing
misbehaving nodes. Thus, a system whose goal is to accuse misbehaving nodes could use an
approach similar to the distributed consensus mechanism proposed in SCAN [3].

5. Evaluation

We perform our simulations using the GloMoSim simulation package. The results presented
for each value are the average of 10 simulation runs. Unless explicitly stated otherwise, our
simulation parameters take the following values: i) nodes move according to the random
waypoint mobility model with a mean node speed of 5ms-1 and a standard deviation of
2.89ms-1, ii) the mean pause time is 30 seconds, iii) the wireless transmission range is 100
meters, iv) the link capacity is 2 Mbps, v) the MAC layer protocol is the IEEE 802.11 DCF,
vi) the underlying routing protocol is AODV, and vii) the simulation time is 1200 seconds.
The network was set-up with 40% of nodes misbehaving. Nodes check the behavior of
active nodes within a period chosen uniformly between 40 and 60 seconds, and keep any
overheard node in their tables for 120 seconds. The principal metrics in our tests are the
percentage of detections and the network traffic overhead. These metrics are assessed in
terms of misbehavior threshold and node speed.

We initially consider our misbehavior detection algorithm in terms of the misbehavior
threshold, which is the parameter αthreshold in equation (2), i.e. the maximum percentage of
packets that a node is allowed to drop without being detected as a misbehaving node. In
order to see the effect of the misbehavior threshold on nodes, simulations were carried out
with networks containing 20 and 60 nodes, and areas of 40 000m2 (200m*200m) and
120 000m2 (346.41m*346.41m) respectively. We varied both the packet drop probability of
misbehaving nodes and the misbehavior threshold between 0% and 100%.

Figures 3 and 4 show the percentage of detections as a function of the misbehavior
threshold for nodes exhibiting different probabilities of misbehavior for networks with 20
and 60 nodes respectively. The lower the threshold is the more packets nodes need to
forward to be considered well-behaved. However, since characteristics inherent to MANETs
such as mobility and the noisy wireless medium can cause some packets to be lost (including
packets of our own protocol), it also means that an increasing number of correctly behaving
nodes can be falsely detected as misbehaving ones. Finally, it can also be seen from Fig. 3
and Fig. 4 that selecting a misbehavior threshold equal to a node’s misbehaving probability

prevents our approach from identifying misbehaving nodes with certainty, i.e. the probability
of detection is approximately 50%. These occurrences are all contained in the zone between
40% and 60% probability of detection in the figures.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Increasing Misbehavior Threshold, αthreshold

Pe
rc

en
ta

ge
 o

f D
et

ec
tio

ns

80% Misbehavior Drop (d = 0.8)
50% Misbehavior Drop (d = 0.5)
20% Misbehavior Drop (d = 0.2)
10% Misbehavior Drop (d = 0.1)
Non Misbehaving Nodes (d = 0)

Figure 3. Percentage of positive detections as a
function of the increasing misbehavior threshold

(20 node network).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Increasing Misbehavior Threshold, α threshold

Pe
rc

en
ta

ge
 o

f D
et

ec
tio

ns

80% Misbehavior Drop (d = 0.8)
50% Misbehavior Drop (d = 0.5)
20% Misbehavior Drop (d = 0.2)
10% Misbehavior Drop (d = 0.1)
Non Misbehaving Nodes (d = 0)

Figure 4. Percentage of positive detections as a
function of the increasing misbehavior threshold

(60 node network).

Selecting an acceptable or tolerable level of misbehavior x in a network is a policy
decision. This policy then allows a value of αthreshold to be set depending on the desired
detection probability. For example, for a detection probability of >90% our results suggest
that αthreshold should then be set at approximately x-0.1 for the 20 node network and x-0.15 for
the 60 node network.

The final set of results assesses the network overhead generated by our misbehavior
detection algorithm. In this set of simulations misbehaving nodes drop packets with a 50%
probability (d=0.5), the misbehavior threshold αthreshold is 40%, the node speed varies
between 0ms-1 (a static network) and 20ms-1 giving a standard deviation of 0.58ms-1. Fig. 5
displays the mean number of packets sent over each link per behavior check. The network
resources are calculated by adding one each time a packet crosses a different link: thus a
MREQ packet broadcast that traverses three hops (links) contributes three packet-links to the
total. Results are displayed for networks containing 20, 40 and 60 nodes, which are
distributed over areas of 40 000m2 (200m*200m), 80 000m2 (282.84m*282.84m), and
120 000m2 (346.41m*346.41m) respectively.

The network overhead per behavior check shown in Fig. 5 is the sum of the overhead
produced by the MREQ, MREP and MACK packets per behavior check. It is least when the
nodes are stationary and increases with the mean node speed. Whereas this increment is
moderate for the 20 and 40 node networks, it is very significant for the 60 node network.
This can be explained as follows. First of all, the bigger the network is and the faster a node
moves the more nodes it comes in contact with. This means that it is more probable that a
MREQ is rebroadcast by a greater number of nodes. On top of this, in a dynamic large
network it is more likely that a node that rebroadcasts a MREQ moves out of the wireless
range of nodes that need to send back a MREP through it towards the node that originated
the MREQ. This causes MREP retransmissions which introduces more overhead into the
network.

0
30

60
90

120
150

180
210

240
270

0 2 4 6 8 10 12 14 16 18 20
Mean Node Speed [m/sec]

M
ea

n
N

um
be

r o
f P

ac
ke

ts
 p

er
 B

eh
av

io
r

C
he

ck
 [P

ac
ke

ts
 x

 L
in

ks
]

60 Node Network
40 Node Network
20 Node Network

Figure 5. Network overhead as a function of the increasing mean node speed.

6. Conclusions

The self-regulating nature of MANETs requires that they be able to monitor the behavior of
the network. Limited resources mean that there is an incentive for nodes to misbehave by not
correctly forwarding packets (selfish nodes); nodes may also misbehave for other reasons.

In this paper we have presented an algorithm that is capable of detecting misbehavior.
The algorithm does not require high density networks in which many nodes can overhear
each others’ received and transmitted packets, but instead uses statistics accumulated by each
node as it transmits to and receives data from its neighbors.

We have shown that we can detect nodes that misbehave by dropping a significant
percentage of packets. Detection is successful in spite of inherent packet losses in MANETs
caused by noisy links, mobility, and packet losses due to routing protocol behavior. To avoid
falsely accusing correctly behaved nodes of misbehavior, a collaborative consensus
mechanism such as that described in [3] can be used. This will be considered in future work.

7. References
[1] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A Media Access Protocol for

Wireless LANs,” Proceedings of the ACM SIGCOMM Conference on Communications
Architectures, Protocols and Applications, vol. 24, issue 4, pp. 212-225, 1994.

[2] Y. C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand routing protocol for ad hoc
networks,” Proceedings of the 8th ACM International Conference on Mobile Computing and
Networking, pp. 12-23, September 2002.

[3] H. Yang, J. Shu, X. Meng, and S. Lu, “SCAN: Self-organized network-layer security in mobile ad hoc
networks,” IEEE Journal on Selected Areas in Communications, vol. 24, issue 2, pp. 261-273,
February 2006.

[4] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A framework for misuse detection in ad hoc networks
– part I,” IEEE Journal on Selected Areas in Communications, vol. 24, pp. 274-289, February 2006.

[5] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A framework for misuse detection in ad hoc networks
– part II,” IEEE Journal on Selected Areas in Communications, vol. 24, , pp. 290-304, February 2006.

[6] Y. C. Hu, D. B. Johnson, and A. Perrig, “SEAD: secure efficient distance vector routing for mobile
wireless ad hoc networks,” Proceedings of the 4th IEEE workshop on Mobile Computing Systems &
Applications, pp. 3-13, June 2002.

[7] P. Papadimitratos, and Z. J. Haas, “Secure routing for mobile ad hoc networks,” Proceedings of the
SCS Communication Networks and Distributed Systems Modeling and Simulation Conference, pp.
193-204, January 2002.

[8] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer, “A secure routing protocol
for ad hoc networks,” Proceedings of the 10th IEEE International Conference on Network Protocols,
pp. 78-87, November 2002.

[9] M. Guerrero-Zapata, and N. Asokan, “Securing ad hoc routing protocols,” Proceedings of the 3rd
ACM Workshop on Wireless Security, pp. 1-10, 2002.

[10] M. Guerrero-Zapata, “Secure ad hoc on-demand distance vector (SAODV) routing,” Internet Draft,
IETF Mobile Ad Hoc Networking Working Group, February 2005, draft-guerrero-manet-saodv-05.txt

[11] J. P. Hubaux, L. Buttyán, and S. Čapkun, “The quest for security in mobile ad hoc networks,”
Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing,
pp. 146-155, 2001.

[12] C. E. Perkins, and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers,” Proceedings of the ACM SIGCOMM Conference on
Communications Architectures, Protocols and Applications, vol. 24, issue 4, pp. 234-244, 1994.

[13] C. E. Perkins, and E. M. Royer, “Ad-hoc on-demand distance vector routing,” Proceedings of the 2nd
IEEE Workshop on Mobile Computer Systems & Applications, pp. 90-100, 1999.

[14] C. E. Perkins, “Ad hoc on-demand distance vector (AODV) routing,” Request For Comments (RFC)
3561, July 2003, available at: http://www.ietf.org/rfc/rfc3561.txt

[15] D. B. Johnson, D. A Maltz, and Y. C. Hu, “The dynamic source routing protocol for mobile ad hoc
networks,” Internet Draft, IETF MANET Working Group, July 2004, draft-ietf-manet-dsr-10.txt

[16] B. Awerbuch, D. Holmes, C. Nita-Rotaru, and H. Rubens, “An on-demand secure routing protocol
resilient to Byzantine failures,” Proceedings of the 3rd ACM Workshop on Wireless Security, pp. 21-
30, 2002.

[17] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication and signing of multicast
streams over lossy channels,” Proceedings of the IEEE Symposium on Security and Privacy, pp. 56-
73, May 2000.

[18] S. Buchegger, and J. Le Boudec, “Performance analysis of the CONFIDANT protocol,” Proceedings
of the 3rd ACM Symposium on Mobile Ad Hoc Networking & Computing, pp. 226-236, 2002.

[19] Y. Zhang, and W. Lee, “Intrusion detection in wireless ad-hoc networks,” Proceedings of the 6th ACM
International Conference on Mobile Computing and Networking, pp. 275-283, August 2000.

[20] P. Papadimitratos, and Z. Haas, “Secure data communication in mobile ad hoc networks,” IEEE
Journal on Selected Areas in Communications, vol. 24, issue 2, pp. 343-356, February 2006.

[21] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and ubiquitous security support
for mobile ad-hoc networks,” Proceedings of the 9th IEEE International Conference on Network
Protocols, pp. 251-260, November 2001.

[22] L. Zhou, and Z. Haas, “Securing ad hoc networks,” IEEE Network Magazine, vol. 13, issue 6,
November/December 1999.

[23] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in Mobile ad hoc
networks,” Proceedings of the 6th ACM International Conference on Mobile Computing and
Networking, pp. 255-265, August 2000.

[24] R. Rao, and G. Kesidis, “Detecting malicious packet dropping using statistically regular traffic
patterns in multihop wireless networks that are not bandwidth limited,” Proceedings of the 2003 IEEE
Global Telecommunications Conference, vol.5, pp. 2957-2961, 2003.

[25] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson, “Detecting disruptive routers:
a distributed network monitoring approach,” Proceedings of the 1998 Symposium on Security and
Privacy, pp. 115-124, May 1998.

[26] P. Karn, “MACA – a new channel access method for packet radio,” ARRL/CRRL Amateur Radio 9th
Computer Networking Conference, pp 134-240, September 1990.

