Skip to main content

Diversity and Evolution of Plastids and Their Genomes

  • Chapter
The Chloroplast

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 13))

Abstract

Plastids, the light-harvesting organelles of plants and algae, are the descendants of cyanobacterial endosymbionts that became permanent fixtures inside nonphotosynthetic eukaryotic host cells. This chapter provides an overview of the structural, functional and molecular diversity of plastids in the context of current views on the evolutionary relationships among the eukaryotic hosts in which they reside. Green algae, land plants, red algae and glaucophyte algae harbor double-membrane-bound plastids whose ancestry is generally believed to trace directly to the original cyanobacterial endosymbiont. In contrast, the plastids of many other algae, such as dinoflagellates, diatoms and euglenids, are usually bound by more than two membranes, suggesting that these were acquired indirectly via endosymbiotic mergers between nonphotosynthetic eukaryotic hosts and eukaryotic algal endosymbionts. An increasing amount of genomic data from diverse photosynthetic taxa has made it possible to test specific hypotheses about the evolution of photosynthesis in eukaryotes and, consequently, improve our understanding of the genomic and biochemical diversity of modern-day eukaryotic phototrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James T Y, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451 Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522

    PubMed  Google Scholar 

  • Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522

    Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    PubMed  CAS  Google Scholar 

  • Antia NJ, Cheng J Y, Foyle RAJ, Percival E (1979) Marine cryptomonad starch from autolysis of glycerol-grown Chroomonas salina. J Phycol 15:57–62

    CAS  Google Scholar 

  • Archibald JM (2006) Endosymbiosis: double-take on plastid origins. Curr Biol 16:R690– R692

    PubMed  CAS  Google Scholar 

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29:392–402

    PubMed  CAS  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584

    PubMed  CAS  Google Scholar 

  • Archibald JM, Keeling PJ (2004) Actin and ubiquitin protein sequences support a cercozoan/ foraminiferan ancestry for the plasmodiophorid plant pathogens. J Eukaryot Microbiol 51:113–118

    PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155:65–78

    PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Puerta MVS, Delwiche CF (2005) Chlorophyll c -containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22:1772–1782

    PubMed  CAS  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    PubMed  CAS  Google Scholar 

  • Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber APM (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae , reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137:460–474

    PubMed  CAS  Google Scholar 

  • Barbrook AC, Santucci N, Plenderleith LJ, Hiller RG, Howe CJ (2006) Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes. BMC Genomics 7:297

    PubMed  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    CAS  Google Scholar 

  • Belanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (2006) Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Mol Genet Genomics 276:464–477

    PubMed  CAS  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: The grand illusion. Plant Cell 16:1661–1666

    PubMed  CAS  Google Scholar 

  • Bergholtz T, Daugbjerg N, Moestrup O, Fernandez-Tejedor M (2006) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp nov (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193

    Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Archibald JM (2006) Response to Theissen and Martin. Curr Biol 16:R1017–R1018

    CAS  Google Scholar 

  • Blanchard JL, Hicks JS (1999) The non-photosynthetic plastid in malarial parasites and other api-complexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 46:367–375

    PubMed  CAS  Google Scholar 

  • Bodyl A (2005) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719

    Google Scholar 

  • Bodyl A, Moszczynski K (2006) Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur J Phycol 41:435–448

    Google Scholar 

  • Bodyl A, Mackiewicz P, Stiller JW (2007) The intracellular cyanobacteria of Paulinelia chromatophora : endosymbionts or organelles? Trends Microbiol 15:295–296

    PubMed  CAS  Google Scholar 

  • Breglia SA, Slamovits CH, Leander BS (2007) Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. J Eukaryot Microbiol 54:86–92

    PubMed  CAS  Google Scholar 

  • Brugerolle G (2002) Colpodella vorax: Ultrastructure, predation, life-cycle mitosis, and phylogenetic relationships. Eur J Protistol 38:113–125

    Google Scholar 

  • Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  CAS  Google Scholar 

  • Buleon A, Veronese G, Putaux JL (2007) Self-association and crystallization of amylose. Aust J Chem 60:706–718

    CAS  Google Scholar 

  • Bungard RA (2004) Photosynthetic evolution in parasitic plants: Insight from the chloroplast genome. Bioessays 26:235–247

    PubMed  CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2:e790

    PubMed  Google Scholar 

  • Busse I, Preisfeld A (2002) Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene 284:83–91

    PubMed  CAS  Google Scholar 

  • Busse I, Patterson DJ, Preisfeld A (2003) Phylogeny of phagotrophic euglenids (Euglenozoa): a molecular approach based on culture material and environmental samples. J Phycol 39:828–836

    CAS  Google Scholar 

  • Cai XM, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella Gene 321:39–46

    CAS  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (1996) 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta). Phycologia 35:500–510

    Google Scholar 

  • Cavalier-Smith T, Chao EE, Thompson CE, Hourihane SL (1995/1996) Oikomonas , a distinctive zooflagellate related to chrysomonads. Arch Protistenkd 146:273–279

    Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll b and chlorophyll d light-harvesting systems. Mol Biol Evol 22:21–28

    PubMed  Google Scholar 

  • Chiovitti A, Ngoh JE, Wetherbee R (2006) 1,3-Beta- d -glucans from Haramonas dimorpha (Raphidophyceae). Bot Mar 49:360–362

    CAS  Google Scholar 

  • Chizhov AO, Dell A, Morris HR, Reason AJ, Haslam SM, McDowell RA, Chizhov OS, Usov AI (1998) Structural analysis of laminarans by MALDI and FAB mass spectrometry. Carbohydr Res 310:203–210

    CAS  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum : organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    PubMed  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1993) Group II and group III introns of twintrons: Potential relationships with nuclear premessenger RNA introns. Trends Biochem Sci 18:467–471

    PubMed  CAS  Google Scholar 

  • Coppin A, Varre JS, Lienard L, Dauvillee D, Guerardel Y, Soyer-Gobillard MO, Buleon A, Ball S, Tomavo S (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267

    PubMed  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    PubMed  CAS  Google Scholar 

  • Cunningham FX, Lee H, Gantt E (2007) Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell 6:533–545

    PubMed  CAS  Google Scholar 

  • Dammeyer T, Michaelsen K, Frankenberg-Dinkel N (2007) Biosynthesis of open-chain tetrapyr-roles in Prochlorococcus marinus. FEMS Microbiol Lett 271:251–257

    PubMed  CAS  Google Scholar 

  • Deane JA, Strachan IM, Saunders GW, Hill DRA, McFadden GI (2002) Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38: 1236–1244

    CAS  Google Scholar 

  • De Cambiaire JC, Otis C, Lemieux C, Turmel M (2006) The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 6:37

    PubMed  Google Scholar 

  • De Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp is highly reduced and structured. BMC Biol 4:12

    PubMed  Google Scholar 

  • De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583

    Google Scholar 

  • Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882

    PubMed  CAS  Google Scholar 

  • De Novoa PG, Williams KP (2004) The tmRNA website: Reductive evolution of tmRNA in plas-tids and other endosymbionts. Nucleic Acids Res 32:D104–D108

    Google Scholar 

  • Deschamps P, Haferkamp I, Dauvillee D, Haebel S, Steup M, Buleon A, Putaux JL, Colleoni C, d'Hulst C, Plancke C, Gould S, Maier U, Neuhaus HE, Ball S (2006) Nature of the periplas-tidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryot Cell 5:954–963

    PubMed  CAS  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    PubMed  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68

    PubMed  CAS  Google Scholar 

  • Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733

    PubMed  CAS  Google Scholar 

  • Fagan TF, Hastings JW (2002) Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 19:1203–1207

    PubMed  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    PubMed  CAS  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426

    PubMed  CAS  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor. Science 298:2155–2155

    PubMed  CAS  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2003) Response to comment on “A green algal apicoplast ancestor ” . Science 301:49b

    Google Scholar 

  • Funes S, Reyes-Prieto A, Perez-Martinez X, Gonzalez-Halphen D (2004) On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect 6:305–311

    PubMed  Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–208

    PubMed  CAS  Google Scholar 

  • Glockner G, Rosenthal A, Valentin K (2000) The structure and gene repertoire of an ancient redalgal plastid genome. J Mol Evol 51:382–390

    PubMed  CAS  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351

    PubMed  CAS  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351

    Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Granum E, Myklestad SM (2001) Mobilization of β -1,3-glucan and biosynthesis of amino acids induced by NH 4+ addition to N-limited cells of the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol 37:772–782

    CAS  Google Scholar 

  • Gray MW, Spencer DF (1996) Organellar evolution. In: Roberts DM, Sharp P, Alderson G Collins M (eds) Evolution of microbial life (Society for General Microbiology Symposium 54). Cambridge University Press, Cambridge, pp 109– 126

    Google Scholar 

  • Green BR (2005) Lateral gene transfer in the cyanobacteria: Chlorophylls, proteins, and scraps of ribosomal RNA. J Phycol 41:449–452

    CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    PubMed  CAS  Google Scholar 

  • Griffiths DJ (2006) Chlorophyll b-containing oxygenic photosynthetic prokaryotes: Oxychlorobacteria (prochlorophytes). Bot Rev 72:330–366

    Google Scholar 

  • Grzebyk D, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR, Falkowski PG (2004) Response to comment on “ The evolution of modern eukaryotic phytoplankton ” . Science 306:2191c

    Google Scholar 

  • Guillou L, Chretiennot-Dinet MJ, Boulben S, Moon-van der Staay S Y, Vaulot D (1999) Symbiomonas scintillans gen. et sp nov and Picophagus flagellatus gen. et sp nov (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150:383–398

    PubMed  CAS  Google Scholar 

  • Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflag-ellate. Curr Biol 14:213–218

    PubMed  CAS  Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates. Mol Biol Evol 24:1702–1713

    PubMed  CAS  Google Scholar 

  • Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477

    PubMed  CAS  Google Scholar 

  • Hansen G, Botes L, De Salas M (2007) Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov (= Gymnodinium chlorophorum). Phycol Res 55:25–41

    CAS  Google Scholar 

  • Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730

    PubMed  CAS  Google Scholar 

  • Harris JR, Adrian M, Petry F (2004) Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Parasitol 128:269–282

    CAS  Google Scholar 

  • Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol Biol 7:159

    PubMed  Google Scholar 

  • Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    PubMed  CAS  Google Scholar 

  • Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391

    PubMed  CAS  Google Scholar 

  • Hess WR, Steglich C, Lichtle C, Partensky F (1999) Phycoerythrins of the oxyphotobacterium Prochlorococcus marinus are associated to the thylakoid membrane and are encoded by a single large gene cluster. Plant Mol Biol 40:507–521

    PubMed  CAS  Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus : insights through comparative genomics. Photosynth Res 70:53–71

    PubMed  CAS  Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330

    Google Scholar 

  • Hirokawa Y, Fujiwara S, Suzuki M, Akiyama T, Sakamoto M, Kobayashi S, Tsuzuki M (2007) Structural and physiological studies on the storage β -polyglucan of haptophyte Pleurochrysis haptonemofera. Planta 227:589–599

    PubMed  Google Scholar 

  • Hoef-Emden K, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371–409

    PubMed  CAS  Google Scholar 

  • Hoef-Emden K, Marin B, Melkonian M (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55:161–179

    PubMed  CAS  Google Scholar 

  • Hopkins J, Fowler R, Krishna S, Wilson I, Mitchell G, Bannister L (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150:283–295

    PubMed  CAS  Google Scholar 

  • Horiguchi T, Takano Y (2006) Serial replacement of a diatom endosymbiont in the marine dino-flagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). Phycol Res 54:193–200

    Google Scholar 

  • Imanian B, Keeling PJ (2007) The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct line ages. BMC Evol Biol 7:172

    PubMed  Google Scholar 

  • Inagaki Y, Simpson AGB, Dacks JB, Roger AJ (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593

    PubMed  Google Scholar 

  • Ishida K, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99:9294–9299

    PubMed  CAS  Google Scholar 

  • Janse I, Van Rijssel M, Van Hall PJ, Gerwig GJ, Gottschal JC, Prins RA (1996) The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells. J Phycol 32:382–387

    CAS  Google Scholar 

  • Jarvis P, Soll M (2001) Toc, Tic, and chloroplast protein import. Biochim Biophys Acta 1541:64–79

    PubMed  CAS  Google Scholar 

  • Joyce PBM, Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res 17:5461–5476

    PubMed  CAS  Google Scholar 

  • Karpov SA, Sogin ML, Silberman JD (2001) Rootlet homology, taxonomy, and phylogeny of bicosoecids based on 18S rRNA gene sequences. Protistology 2:34–47

    Google Scholar 

  • Katz ME, Finkel Z V, Grzebyk D, Knoll AH, Falkowski PG (2004) Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu Rev Ecol Evol Syst 35:523–556

    Google Scholar 

  • Keeling PJ, Archibald JM, Fast NM, Palmer JD (2004) Comment on “ The evolution of modern eukaryotic phytoplankton”. Science 306:2191b

    Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    PubMed  Google Scholar 

  • Khan H, Archibald JM (2008) Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res 36:3043–3053

    PubMed  CAS  Google Scholar 

  • Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842

    PubMed  CAS  Google Scholar 

  • Kim E, Simpson AGB, Graham LE (2006) Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23:2455–2466

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Triemer RE (1988) A comparative study of the storage carbohydrate granules from Euglena (Euglenida) and Pavlova (Prymnesiida). J Protozool 35:237–241

    Google Scholar 

  • Kiss JZ, Vasconcelos AC, Triemer RE (1986) Paramylon synthesis and chloroplast structure associated with nutrient levels in Euglena (Euglenophyceae). J Phycol 22:327–333

    CAS  Google Scholar 

  • Kiss JZ, Vasconcelos AC, Triemer RE (1987) Structure of the euglenoid storage carbohydrate, paramylon. Am J Bot 74:877–882

    CAS  Google Scholar 

  • Kiss JZ, Roberts EM, Brown RM, Triemer RE (1988) X-ray and dissolution studies of paramylon storage granules from Euglena. Protoplasma 146:150–156

    Google Scholar 

  • Kohler S (2005) Multi-membrane-bound structures of Apicomplexa: I. The architecture of the Toxoplasma gondii apicoplast. Parasitol Res 96:258–272

    PubMed  Google Scholar 

  • Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    PubMed  CAS  Google Scholar 

  • Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M, Koike K, Ogata T (2005) A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist 156:225–237

    PubMed  CAS  Google Scholar 

  • Kroth PG, Schroers Y, Kilian O (2005) The peculiar distribution of class I and class II aldolases in diatoms and in red algae. Curr Genet 48:389–400

    PubMed  CAS  Google Scholar 

  • Kuhn S, Medlin L, Eller G (2004) Phylogenetic position of the parasitoid nanoflagellate pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155: 143–156

    PubMed  Google Scholar 

  • La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR (1996) Independent evolution of the prochloro-phyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248

    PubMed  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    PubMed  CAS  Google Scholar 

  • Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG (1994) Light-harvesting chlorophyll c -like pigment in Prochloron. Proc Natl Acad Sci USA 91:679–683

    PubMed  CAS  Google Scholar 

  • Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195

    PubMed  CAS  Google Scholar 

  • Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12:251–258

    PubMed  CAS  Google Scholar 

  • Leander BS, Keeling PJ (2003) Morphostasis in alveolate evolution. Trends Ecol Evol 18:395–402

    Google Scholar 

  • Leander BS, Kuvardina ON, Aleshin V V, Mylnikov AP, Keeling PJ (2003) Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans. J Eukaryot Microbiol 50:334–340

    PubMed  Google Scholar 

  • Lee JJ, Leedale GF, Bradbury P (2000) The illustrated guide to the protozoa. Society of Protozoologists, Lawrence

    Google Scholar 

  • Lee RE, Kugrens P (1991) Katablepharis ovalis , a colorless flagellate with interesting cytological characteristics. J Phycol 27:505–513

    Google Scholar 

  • Lohan AJ, Wolfe KH (1998) A subset of conserved tRNA genes in plastid DNA of nongreen plants. Genet 150:425–433

    CAS  Google Scholar 

  • Lukavsky J, Cepak V (1992) DAPI fluorescent staining of DNA material in cyanelles of the rhizo-pod Paulinella chromatophora Lauterb. Arch Protistenkd 142:207–212 Maier UG, Fraunholz M, Zauner S, Penny S, Douglas S (2000) A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators. Mol Biol Evol 17:576–583

    Google Scholar 

  • Maier UG, Fraunholz M, Zauner S, Penny S, Douglas S (2000) A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators. Mol Biol Evol 17:576–583

    PubMed  CAS  Google Scholar 

  • Marchessault RH, Deslandes Y (1979) Fine structure of (1– 3) β -D-glucans: Curdlan and paramylon. Carbohydr Res 75:231–242

    CAS  Google Scholar 

  • Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: primary endosymbiosis. Protist 156:425–432

    PubMed  CAS  Google Scholar 

  • Marin B, Nowack ECM, Glockner G, Melkonian M (2007) The ancestor of the Paulinella chro-matophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7:85

    PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis , cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    PubMed  CAS  Google Scholar 

  • Maul JE, Lilly JW, Cui LY, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtti plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    PubMed  CAS  Google Scholar 

  • Mazumdar J, Wilson EH, Masek K, Hunter CA, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci USA 103:13192–13197

    PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Google Scholar 

  • McFadden GI, Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 7:328–333

    PubMed  CAS  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson PR, Douglas SE (1994) The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci 107:649–657

    PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson PR, Sims IM (1997) Preliminary characterization of carbohydrate stores from chlorarachniophytes (division: Chlorarachniophyta). Phycol Res 45:145–151

    CAS  Google Scholar 

  • Mereschkowsky C (1905) über natur und ursprung der chromatophoren im pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Minnhagen S, Janson S (2006) Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiol Ecol 57:47–54

    PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et sp nov (Cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    CAS  Google Scholar 

  • Moestrup O, Sengco M (2001) Ultrastructural studies on Bigelowiella natans gen. et sp. nov., a chlorarachniophyte flagellate. J Phycol 37:624–646

    Google Scholar 

  • Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    PubMed  CAS  Google Scholar 

  • Morden CW, Golden SS (1989) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337:382–385

    PubMed  CAS  Google Scholar 

  • Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28:75–90

    PubMed  CAS  Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2000) Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et an. nov., a new heterotrophic flagellate (stramenopiles, Incertae sedis). Protist 151:41–55

    PubMed  CAS  Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2002) A new class of the stramenopiles, Placididea classis nova: description of Placidia cafeteriopsis gen. et sp nov. Protist 153:143–156

    PubMed  CAS  Google Scholar 

  • Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCO in dino-flagellates. Science 268:1622–1624

    PubMed  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Takahashi J, Sakurai A, Inaba Y, Suzuki E, Nihei S, Fujiwara S, Tsuzuki M, Miyashita H, Ikemoto H, Kawachi M, Sekiguchi H, Kurano N (2005) Some cyanobacteria synthesize semi-amylopectin type α -polyglucans instead of glycogen. Plant Cell Physiol 46:539–545

    PubMed  CAS  Google Scholar 

  • Nelson MJ, Dang YK, Filek E, Zhang ZD, Yu VWC, Ishida K, Green BR (2007) Identification and transcription of transfer RNA genes in dinoflagellate plastid minicircles. Gene 392:291–298

    PubMed  CAS  Google Scholar 

  • Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 101:8066–8071

    PubMed  CAS  Google Scholar 

  • Not F, Valentin K, Romari K, Lovejoy C, Massana R, Tobe K, Vaulot D, Medlin LK (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryo-tes. Science 315:253–255

    PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice ( Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    PubMed  CAS  Google Scholar 

  • Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56:485–497

    PubMed  CAS  Google Scholar 

  • Nudelman MA, Rossi MS, Conforti V, Triemer RE (2003) Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235

    CAS  Google Scholar 

  • Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-i T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77

    PubMed  CAS  Google Scholar 

  • Okamoto N, Inouye I (2005) The katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156:163–179

    PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    PubMed  CAS  Google Scholar 

  • Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439

    PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39:4–11

    CAS  Google Scholar 

  • Palmer JD, Nugent JM, Herbon LA (1987) Unusual structure of Geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and 2 repea families. Proc Natl Acad Sci USA 84:769–773

    PubMed  CAS  Google Scholar 

  • Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131–1141

    CAS  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    PubMed  CAS  Google Scholar 

  • Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “ green ” phosphoribulokinase in complex algae with red plastids: Evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol 62:143–157

    PubMed  CAS  Google Scholar 

  • Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481

    PubMed  CAS  Google Scholar 

  • Preisig HR, Hibberd DJ (1983) Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera, part 3. Nordic J Bot 3:695–723

    Google Scholar 

  • Puerta MVS, Bachvaroff TR, Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi : a comparison to other plastid genomes. DNA Res 12:151–156

    Google Scholar 

  • Raven JA (2005) Cellular location of starch synthesis and evolutionary origin of starch genes. J Phycol 41:1070–1072

    Google Scholar 

  • Reid PC, Lancelot C, Gieskes WWC, Hagmeier E, Weichart G (1990) Phytoplankton of the North Sea and its dynamics: a review. Neth J Sea Res 26:295–331

    Google Scholar 

  • Reith M, Munholland J (1993) The ribosomal RNA repeats are nonidentical and directly oriented in the chloroplast genome of the red alga Porphyra purpurea. Curr Genet 24:443–450

    PubMed  CAS  Google Scholar 

  • Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31

    PubMed  Google Scholar 

  • Rissler HM, Durnford DG (2005) Isolation of a novel carotenoid-rich protein in Cyanophora par-adoxa that is immunologically related to the light-harvesting complexes of photosynthetic eukaryotes. Plant Cell Physiol 46:416–424

    PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    PubMed  CAS  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans : evidence for independent origins of chlorar-achniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    PubMed  CAS  Google Scholar 

  • Rosenblad MA, Samuelsson T (2004) Identification of chloroplast signal recognition particle RNA genes. Plant Cell Physiol 45:1633–1639

    PubMed  CAS  Google Scholar 

  • Rumpho ME, Summer EJ, Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 123:29–38

    PubMed  CAS  Google Scholar 

  • Saldarriaga JF, McEwan ML, Fast NM, Taylor FJR, Keeling PJ (2003) Multiple protein phylogen-les show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365

    PubMed  CAS  Google Scholar 

  • Sanchez-Puerta M V, Bachvaroff TR, Delwiche CF (2007) Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol 44:885–897

    PubMed  CAS  Google Scholar 

  • Scherer S, Herrmann G, Hirschberg J, Boger P (1991) Evidence for multiple xenogenous origins of plastids: Comparison of psbA -genes with a xanthophyte sequence. Curr Genet 19:503–507

    PubMed  CAS  Google Scholar 

  • Schimper AFW (1885) Untersuchungen ü ber die Chlorophyllk ö rner und die ihnen homologen Gebilde. Jahrb Wiss Bot 16:1–247

    Google Scholar 

  • Schnepf E, Elbrachter M (1999) Dinophyte chloroplasts and phylogeny: a review. Grana 38:81–97

    Google Scholar 

  • Schweiker M, Elbrachter M (2004) First ultrastructural investigations of the consortium between a phototrophic eukaryotic endocytobiont and Podolampas bipes (Dinophyceae). Phycologia 43:614–623

    Google Scholar 

  • Sekiguchi H, Moriya M, Nakayama T, Inouye I (2002) Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153:157–167

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Hallick RB (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32:803–810

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Giordani N V, Hallick RB (2002) Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species. Nucleic Acids Res 30:1247–1254

    PubMed  CAS  Google Scholar 

  • Shimonaga T, Fujiwara S, Kaneko M, Izumo A, Nihei S, Francisco PB, Satoh A, Fujita N, Nakamura Y, Tsuzuki M (2007) Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol 9:192–202

    PubMed  CAS  Google Scholar 

  • Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol 57:710–720

    PubMed  CAS  Google Scholar 

  • Six C, Worden AZ, Rodriguez F, Moreau H, Partensky F (2005) New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri , a case study. Mol Biol Evol 22:2217–2230

    PubMed  CAS  Google Scholar 

  • Stiller JW (2007) Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 12:391–396

    PubMed  CAS  Google Scholar 

  • Stiller JW, Hall BD (1997) The origin of red algae: Implications for plasmid evolution. Proc Natl Acad Sci USA 94:4520–4525

    PubMed  CAS  Google Scholar 

  • Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol 39:95–105

    CAS  Google Scholar 

  • Stirewalt VL, Michalowski CB, Loffelhardt W, Bohnert HJ, Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13:327–332

    CAS  Google Scholar 

  • Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    PubMed  CAS  Google Scholar 

  • Stoebe B, Martin W, Kowallik KV (1998) Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Plant Mol Biol Rep 16:243–255

    CAS  Google Scholar 

  • Takishita K, Koike K, Maruyama T, Ogata T (2002) Molecular evidence for plastid robbery (Kleptoplastidy) in Dinophysis , a dinoflagellate causing diarrhetic shellfish poisoning. Protist 153:293–302

    PubMed  CAS  Google Scholar 

  • Takishita K, Ishida K, Maruyama T (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. Protist 154:443–454

    PubMed  CAS  Google Scholar 

  • Takishita K, Ishida KI, Maruyama T (2004) Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist 155:447–458

    PubMed  CAS  Google Scholar 

  • Takishita K, Ishida KI, Ishikura M, Maruyama T (2005) Phylogeny of the psbC gene, coding a photosystem II component CP 43 , suggests separate origins for the peridinin- and fucoxanthin derivative-containing plastids of dinoflagellates. Phycologia 44:26–34

    Google Scholar 

  • Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, Nozaki H (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43:1302–1309

    CAS  Google Scholar 

  • Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J (2007) Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158:263–276

    PubMed  CAS  Google Scholar 

  • Teles-Grilo ML, Tato-Costa J, Duarte SM, Maia A, Casal G, Azevedo C (2007) Is there a plastid in Perkinsus atlanticus (phylum Perkinsozoa)? Eur J Protistol 43:163–167

    PubMed  Google Scholar 

  • Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017

    PubMed  CAS  Google Scholar 

  • Thompson MD, Copertino DW, Thompson E, Favreau MR, Hallick RB (1995) Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena. Nucleic Acids Res 23:4745–4752

    PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162

    PubMed  CAS  Google Scholar 

  • Tomova C, Geerts WJC, Muller-Reichert T, Entzeroth R, Humbel BM (2006) New comprehension of the apicoplast of Sarcocystis by transmission electron tomography. Biol Cell 98:535–545

    PubMed  CAS  Google Scholar 

  • Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol 54:66–72

    PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2005) The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 3:22

    PubMed  Google Scholar 

  • van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541:34–53

    PubMed  Google Scholar 

  • Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc R Soc Lond Ser B Biol Sci 268:1417–1422

    CAS  Google Scholar 

  • Vogel K, Meeuse BJD (1968) Characterization of the reserve granules from the dinoflagellate Thecadinium inclinatum Balech. J Phycol 4:317–318

    Google Scholar 

  • Von der Heyden S, Chao EE, Cavalier-Smith T (2004) Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur J Phycol 39:343–350

    Google Scholar 

  • Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M (1997) Complete nucleo-tide sequence of the chloroplast genome from the green alga Chlorella vulgaris : the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94:5967–5972

    PubMed  CAS  Google Scholar 

  • Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “ A green algal apico-plast ancestor”. Science 301:49a

    Google Scholar 

  • Walsby AE (1986) Prochlorophytes: Origins of chloroplasts. Nature 320:212–215

    Google Scholar 

  • Wang D, Wu YW, Shih ACC, Wu CS, Wang YN, Chaw SM (2007) Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol Biol Evol 24:2040–2048

    PubMed  CAS  Google Scholar 

  • Wilcox LW, Wedemayer GJ (1984) Gymnodinium acidotum Nygaard (Pyrrophyta), a dinoflagel-late with an endosymbiotic cryptomonad. J Phycol 20:236–242

    Google Scholar 

  • Wilhelm C (1987) Purification and identification of chlorophyll- c1 from the green alga Mantoniella squamata. Biochim Biophys Acta 892:23–29

    CAS  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729

    CAS  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002b) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512

    CAS  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    PubMed  CAS  Google Scholar 

  • Yu SK, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB (2002) Physico-chemical characterization of floridean starch of red algae. Starch 54:66–74

    CAS  Google Scholar 

  • Zapata M, Garrido JL (1997) Occurrence of phytylated chlorophyll c in Isochrysis galbana and Isochrysis sp. (Clone T-ISO) (Prymnesiophyceae). J Phycol 33:209–214

    CAS  Google Scholar 

  • Zeidner G, Preston CM, Delong EF, Massana R, Post AF, Scanlan DJ, Beja O (2003) Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environ Microbiol 5:212–216

    PubMed  CAS  Google Scholar 

  • Zhang ZD, Cavalier-Smith T, Green BR (2002) Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol 19:489–500

    PubMed  CAS  Google Scholar 

  • Zimmerly S, Hausner G, Wu XC (2001) Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res 29:1238–1250

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, E., Archibald, J.M. (2009). Diversity and Evolution of Plastids and Their Genomes. In: Sandelius, A.S., Aronsson, H. (eds) The Chloroplast. Plant Cell Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68696-5_1

Download citation

Publish with us

Policies and ethics