Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 71))

Abstract

Whereas an image in a conventional transmission electron microscope (CTEM) contains contributions from elastically and inelastically scattered electrons that pass the objective diaphragm, the electron spectroscopic imaging (ESI) mode of an EFTEM allows us to separate the contributions by inserting an energy-selecting slit in the energy-dispersive plane of a filter lens or a prism spectrometer; energy-loss windows E ± δ/2 with a width δ= 1 - 20 eV can be selected (see Sect. 1.4.2). The choice between zero-loss filtering and the use of an energy-loss window in the loss-spectrum of inelastically scattered electrons depends on the specimen and the information wanted. A schematical energy-loss spectrum in Fig. 7.1 shall demonstrate the ESI modes [7.1–5] which are discussed in detail in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer: Electron spectroscopic imaging: an advanced technique for imaging and analysis in TEM. In Methods in Microbiology, ed. by F. Mayer (Academic, London 1988) Vol.20, pp. 113–146

    Google Scholar 

  2. L. Reimer, A. Bakenfelder, I. Fromm, R. Rennekamp, M. Ross-Messemer: Electron spectroscopic imaging and diffraction. EMSA Bull. 20, 73–80 (1990)

    Google Scholar 

  3. L. Reimer: Energy-filtering transmission electron microscopy. Adv. Electr. Electron Phys. 81, 43–126 (1991)

    Google Scholar 

  4. L. Reimer, I. Fromm, P. Hirsch, U. Plate, R. Rennekamp: Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicroscopy 46, 335–347 (1992)

    Google Scholar 

  5. L. Reimer, I. Fromm, Ch. Hülk, R. Rennekamp: Energy-filtering transmission electron microscopy in materials science. Microsc. Microanal. Mi-crostruct. 3, 141–157 (1992)

    Google Scholar 

  6. H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 30, 273–293;

    Google Scholar 

  7. H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 31, 51–71 (1969)

    Google Scholar 

  8. L. Reimer, H. Gilde: Scattering theory and image formation in the electron microscope. In Image Processing and Computer-aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) pp. 138–167

    Google Scholar 

  9. L. Reimer: Elektronenoptischer Phasenkontrast. II. Berechnung mit komplexen Atomstreuamplituden für Atome und Atomgruppen. Z. Naturforschg. A 24, 377–389 (1969)

    ADS  Google Scholar 

  10. L. Reimer: Transmission Electron Microscopy. Physics of Image Formation and Microanalysis. Springer Ser. in Optical Sciences Vol. 36, 3rd ed. (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  11. O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949)

    ADS  MATH  Google Scholar 

  12. F. Thon: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z. Naturforschg. A 21, 476–478 (1966)

    ADS  Google Scholar 

  13. F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforschg. A 9, 185–204 (1954)

    ADS  MATH  Google Scholar 

  14. L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17 bis 1200 keV Elektronen. Z. Naturforschg. A 23, 1569–1582 (1968)

    Google Scholar 

  15. L. Reimer: Messung der Abhängigkeit des elektronenmikroskopischen Bildkontrastes von Ordnungszahl, Strahlspannung und Aperturblende. Z. angew. Phys. 13, 432–434 (1961)

    Google Scholar 

  16. L. Reimer and M. Ross-Messemer: Contrast in the electron spectroscopic imaging mode of a TEM. I. Influence of zero-loss filtering on scattering contrast. J. Micr. 155, 169–182 (1989)

    Google Scholar 

  17. E. Zeitler, G.F. Bahr: Contributions to the quantitative interpretation of electron microscope pictures. Exp. Cell Res. 12, 44–50 (1957)

    Google Scholar 

  18. J.P. Langmore, B.D. Athey: Removal of inelastically scattered electrons substantially increases phase contrast on frozen-hydrated molecules. Proc. 45th Ann. Meeting of EMSA (San Francisco Press, San Francisco 1987) pp.652–653

    Google Scholar 

  19. M. Kunz, M. Möller, H.J. Cantow: The net distribution of elements by element specific electron microscopy — ESI. Makromol. Chemie Rapid Commun. 68, 401–410 (1987)

    Google Scholar 

  20. L. Reimer, P. Gentsch: Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy 1, 1–5 (1975)

    Google Scholar 

  21. P. Gentsch, H. Gilde, L. Reimer: Measurement of the top bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Micr. 100, 81–92 (1974)

    Google Scholar 

  22. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative X-ray analysis in the electron microscope. In Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Institute, Chicago 1977) pp.315–324

    Google Scholar 

  23. L. Reimer, M. Ross-Messemer: Top-bottom effect in energy-selecting TEM. Ultramicroscopy 21, 385–388 (1987)

    Google Scholar 

  24. A.V. Crewe, J. Wall, J. Langmore: Visibility of single atoms. Science 168, 1338–1340 (1970)

    ADS  Google Scholar 

  25. E. Carlemalm, C. Colliex, E. Kellenberger: Contrast formation in electron microscopy of biological material. Adv. Electr. Electron Phys. 63, 269–334 (1985)

    Google Scholar 

  26. R. Reichelt, E. Carlemalm, A. Engel: Quantitative contrast evaluation for different STEM imaging modes. In Scanning Electron Microscopy 1984/II, ed. by O. Johari (SEM Inc., AMF O’Hare 1984) pp.1011–1021

    Google Scholar 

  27. C. Jeanguillaume, M. Tence: How to become a thickness independent image in a STEM. Ultramicroscopy 23, 67–76 (1987)

    Google Scholar 

  28. M. Haider: Filtered dark-field and pure Z-contrast: two novel imaging modes in a STEM. Ultramicroscopy 28, 240–247 (1989)

    Google Scholar 

  29. S.J. Pennycook, D.E. Jesson: High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)

    ADS  Google Scholar 

  30. F.P. Ottensmeyer, A.L. Arsenault: Electron spectroscopic imaging and Z-contrast in tissue sections. In Scanning Electron Microscopy 1983/IV, ed. by O. Johari (SEM Inc., AMF O’Hare 1983) pp.1867–1875

    Google Scholar 

  31. L. Reimer, M. Ross-Messemer: Contrast in the electron spectroscopic imaging mode of a TEM. II. Z-Ratio, structure-sensitive and phase contrast. J. Micr. 159, 143–160 (1990)

    Google Scholar 

  32. J.N. Chapman: The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D 17, 623–647 (1984)

    ADS  Google Scholar 

  33. P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv. Phys. 17, 153–242 (1968)

    ADS  Google Scholar 

  34. R.H. Wade: Lorentz microscopy or electron phase microscopy of magnetic objects. In Adv. in Optical and Electron Microscopy, ed. by R. Barer and V.E. Coslett (Academic, London 1973) Vol. 5, pp.239–296

    Google Scholar 

  35. R.H. Wade: The determination of domain wall thickness in ferromagnetic films by electron microscopy. Proc. Phys. Soc. 79, 1237–1244 (1962)

    ADS  Google Scholar 

  36. L. Reimer, H. Kappert: Elektronen-Kleinwinkelstreuung und Bildkontrast in defokussierten Aufnahmen magnetischer Bereichsgrenzen. Z. angew. Phys. 27, 165–170 (1969)

    Google Scholar 

  37. C. Mory, C. Colliex: Inelastic effects in Lorentz microscopy. Phil. Mag. 33, 97–103 (1976)

    ADS  Google Scholar 

  38. H. Lichte: Electron holography approaching atomic resolution. Ultramicroscopy 20, 293–304 (1986)

    Google Scholar 

  39. A. Tonomura: Applications of electron holography. Rev. Mod. Phys. 59, 639–669 (1987)

    ADS  Google Scholar 

  40. L. Reimer: Untersuchungen zur Zwillingsbildung in Silberaufdampfschichten. Optik 16, 30–34 (1959)

    Google Scholar 

  41. A. Bakenfelder, I. Fromm, L. Reimer, R. Rennekamp: Contrast in the electron spectroscopic imaging mode of a TEM. III. Bragg contrast of crystalline specimens. J. Micr. 159, 161–177 (1990)

    Google Scholar 

  42. L. Reimer: Deutung der Kontrastunterschiede von amorphen und kristallinen Objekten in der Elektronenmikroskopie. Z. angew. Phys. 22, 287–296 (1967)

    Google Scholar 

  43. G. Lehmpfuhl, D. Krahl, M. Swoboda: Electron microscopic channelling imaging of thick specimens with medium-energy electrons in an energy-filter microscope. Ultramicroscopy 31, 161–168 (1989)

    Google Scholar 

  44. A. Bakenfelder, L. Reimer, R. Rennekamp: Comparison of images of crystalline specimens by energy-filtering TEM at 80 keV and CTEM at 200 keV. Proc. XIIth Int’l Congr. for Electron Microscopy, ed. by L.D. Peachy and D.B. Williams (San Francisco Press, San Francisco 1990) Vol.2, pp.62–63

    Google Scholar 

  45. D. J.H. Cockayne: The principles and practice of the weak-beam method of electron microscopy. J.Micr. 98, 116–134 (1973)

    Google Scholar 

  46. J. Mayer: Electron spectroscopic imaging and diffraction application in materials science. Proc. 50th Ann. Meeting EMSA (San Francisco Press, San Francisco 1991) pp.616–617

    Google Scholar 

  47. W. Probst, E. Zellmann, R. Bauer: Electron spectroscopic imaging of frozen-hydrated sections. Ultramicroscopy 28, 312–314 (1989)

    Google Scholar 

  48. K.J. Hanszen: The optical transfer theory of the electron microscope: fundamental principles and applications. In Adv. in Optical and Electron Microscopy, ed. by R. Barer and V.E. Cosslett (Academic, London 1971) Vol. 4, pp. 1–84

    Google Scholar 

  49. K.J. Hanszen, L. Trepte: Der Einfluß von Strom- und Spannungsschwankungen sowie der Energiebreite der Strahlelektronen auf Kontrastübertragung und Auflösung des Elektronenmikroskopes. Optik 32, 519–538 (1971)

    Google Scholar 

  50. K.J. Hanszen, L. Trepte: Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166–181 (1971)

    Google Scholar 

  51. H. Kohl, H. Rose: Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Electr. Electron Physics 65, 173–200 (1985)

    Google Scholar 

  52. J.M. Martin, J.L. Mansot, M. Hallouis: Energy filtered electron microscopy (EFEM) of overbased reverse micelles. Ultramicroscopy 30, 321–328 (1989)

    Google Scholar 

  53. A.J. Craven, C. Colliex:. The effect of energy loss on phase contrast. Inst. of Physics Conf.Ser. 36, ed. by D.L. Misell (Inst. of Physics, Bristol 1977) pp.271–274

    Google Scholar 

  54. P. Hirsch, L. Reimer: Increase of zero-loss filtering on electron optical phase contrast. J. Micr. 174, 143–148 (1994)

    Google Scholar 

  55. C.B. Boothroyd, W.M. Stobbs: The contribution of inelastically scattered electrons to high resolution [110] images of AlAs/GaAs hetereostructures. Ultramicrocopy 31, 259–274 (1989)

    Google Scholar 

  56. N. Ajika, H. Hashimoto, K. Yamaguchi, H. Endoh: Atomic structure image formed by plasmon-loss electrons. Jpn. J. Appl. Phys. 24, L41–L44 (1985)

    ADS  Google Scholar 

  57. O.C. Krivanek, C. Ahn: Energy-filtered imaging with quadrupole lenses. XIth Int’l Congr. on Electron Microscopy, ed. by T. Imura, S. Maruse and T. Suzuki (Jpn. Soc. of Electr. Micr., Tokyo 1986) Vol.1, pp.519–520

    Google Scholar 

  58. O.L. Krivanek: Developments in electron detectors and recording systems. In Electron Microscopy 1992, ed. by A. Rios, J.M. Arias L. Megias-Megias, A. López-Galindo (Secr. Publ. Univ. of Granada, Granada 1992) Vol.1., pp.83–87

    Google Scholar 

  59. Z.L. Wang, J. Bentley: Theory of phase correlations in localized inelastic electron diffraction and imaging. Ultramicroscopy 38, 181–213 (1991)

    Google Scholar 

  60. A. Howie: Inelastic scattering of electrons by crystals. Proc. Roy. Soc. (London) A 271, 268–287 (1963)

    ADS  MATH  Google Scholar 

  61. C.J. Humphreys, M.J. Whelan: Inelastic scattering of fast electrons by crystals. Phil. Mag. 20, 165–172 (1969)

    ADS  Google Scholar 

  62. H. Watanabe: Energy selecting microscope. Jpn. J. Appl. Phys. 3, 480–485 (1964)

    ADS  Google Scholar 

  63. R. Castaing, P. Henoc, L. Henry, M. Natta: Degre de coherence de la diffusion électronique par interaction électron-phonon. C.R. Acad. Sci. (Paris) 265, 1293–1296 (1967)

    Google Scholar 

  64. S.L. Cundy, A.J.F. Metherell, M.J. Whelan: Contrast preserved by elastic and quasi-elastic scattering of fast electrons near Bragg beams. Phil. Mag. 15, 623–630 (1967)

    ADS  Google Scholar 

  65. S.L. Cundy, A. Howie, U. Valdre: Preservation of electron microscope image contrast after inelastic scattering. Phil. Mag. 20, 147–163 (1969)

    ADS  Google Scholar 

  66. S. Kuwubara, T. Uefuji: Variation of electron microscopic thickness fringes of Al single crystals with energy loss. J. Phys. Soc. Jpn. 38, 1090–1097 (1975)

    ADS  Google Scholar 

  67. A.J. Craven, J.M. Gibson, A. Howie, D.R. Spalding: Study of single-electron excitations by electron microscopy. I. Image contrast from delocalized excitations. Phil. Mag. A 38, 519–527 (1978)

    Google Scholar 

  68. P.H. Duval, L. Henry: Calcul de l’influence de la diffusion inélastique des électrons sur les images de monocristaux. Phil. Mag. 35, 1381–1385 (1977)

    ADS  Google Scholar 

  69. S. Doniach, C. Sommers: Coherence of inelastically scattered fast electrons in crystals of finite thickness. Phil. Mag. A 51, 419–427 (1985)

    ADS  Google Scholar 

  70. W.M. Stobbs, A.J. Bourdillon: Current applications of electron energy loss spectroscopy. Ultramicroscopy 9, 303–306 (1982)

    Google Scholar 

  71. L. Reimer, P. Hagemann. STEM of crystalline specimens. In Scanning Electron Microscopy 1976/I, ed. by O. Johari (IITRI, Chicago 1976) pp.321–328

    Google Scholar 

  72. P.E. Batson: Inelastic scattering of fast electrons in clusters of small spheres. Surf. Sci. 156, 720–734 (1985)

    ADS  Google Scholar 

  73. P.E. Batson: Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982)

    ADS  Google Scholar 

  74. Z.L. Wang, J.M. Cowley: Surface plasmon loss excitation for supported metal particles. Ultramicroscopy 21, 77–94 (1987)

    Google Scholar 

  75. Z.L. Wang, J.M. Cowley: Size and shape dependence of the surface plasmon frequencies for supported metal particle systems. Ultramicroscopy 23, 97–108 (1987)

    Google Scholar 

  76. L.D. Marks: Observation of the image force for fast electrons near an MgO surface. Solid Stat Commun. 43, 727–729 (1982)

    ADS  Google Scholar 

  77. A. Howie, R.H. Milne: Electron energy loss spectra and reflection images from surfaces. J. Micr. 136, 279–285 (1984)

    Google Scholar 

  78. L. Reimer, I. Fromm, R. Rennekamp: Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a TEM. Ultramicroscopy 24, 339–354 (1988)

    Google Scholar 

  79. C. von Festenberg: Zur Dämpfung des Al 15-eV Plasmaverlustes in Abhängigkeit vom Streuwinkel und der Kristallitgröße. Z. Phys. 207, 47–55 (1967)

    ADS  Google Scholar 

  80. V. Krishan, R.H. Ritchie: Anomalous damping of volume plasmons in poly-crystalline metals. Phys. Rev. Lett. 24, 1117–1119 (1970)

    ADS  Google Scholar 

  81. D.B. Tran Thoai, E. Zeitler: Inelastic scattering of fast electrons by thin metal slabs. Phys. Stat. Solidi (a) 120, 467–474 (1990)

    ADS  Google Scholar 

  82. I. Fromm, L. Reimer, R. Rennekamp: Investigation and use of plasmon losses in energy-filtering transmission electron microscopy. J. Micr. 166, 257–271 (1992)

    Google Scholar 

  83. S.L. Cundy, A.J.F. Metherell, M.J. Whelan, RW.T. Unwin, R.B. Nicholson: Studies of segregation and the initial stages of precipitation at grain boundaries in an Al-7wt%Mg alloy with an energy analysing electron microscope. Proc. Roy. Soc. (London) 307, 267–275 (1968)

    ADS  Google Scholar 

  84. D.R. Spalding, A.J.F. Metherell: Plasmon losses in Al-Mg alloys. Phil. Mag. 18, 41–48 (1968)

    ADS  Google Scholar 

  85. C. von Festenberg: Energieverlustmessungen an III–V Verbindungen. Z. Phys. 227, 453–481 (1969)

    ADS  Google Scholar 

  86. A.J.F. Metherell: Energy analysing and energy selecting electron microscopes. Adv. in Optical and Electron Microscopy, ed. by R. Barer and V.E. Cosslett (Academic, London 1971) Vol. 4, pp.263–361

    Google Scholar 

  87. B. Bernert, P. Zacharias: Die optischen Konstanten von Silber-Gallium-Legierungen in der Nähe der Plasmafrequenz. Z. Phys. 241, 205–216 (1972)

    ADS  Google Scholar 

  88. M. Schlüter: Die optischen Eigenschaften von Gold, Silber und Gold-Silber-Legierungen zwischen 2 und 40 eV aus Energieverlustmesungen. Z. Phys. 250, 87–98 (1972)

    ADS  Google Scholar 

  89. H. Möller, A. Otto: Plasmon dispersion in aluminium-magnesium alloys. Phys. Rev. Lett. 45, 2140–2143 (1980)

    ADS  Google Scholar 

  90. R. Grundler: Volume plasmon dispersion of polycrystalline films of the ternary semiconductors ZnSnAs2 and ZnSiAs2. Phys. Stat. Sol. (b) 140, K19–K22 (1987)

    ADS  Google Scholar 

  91. P. Henoc, M. Natta, L. Henry: Pertes caractéristiques associées à la dimension et à la nature de petits précipitès dans une matrice cristalline. In Microscopic Electronique 1970, ed. by P. Favard (Soc. Francaise de Micr. Electr., Francaise de Micr. 1970) Vol.II, pp.123–124

    Google Scholar 

  92. R. Castaing: Energy filtering in electron microscopy and electron diffraction. In Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.J. Siegel and D.R. Beaman (Wiley, New York 1975) pp.287–301

    Google Scholar 

  93. P. Sainfort, P. Guyot: High-spatial-resolution STEM analysis of transition micro-phases in Al-Li and Al-Li-Cu alloys. Phil. Mag. A 51, 575–588 (1985)

    ADS  Google Scholar 

  94. D.B. Williams, H.W. Edington: The precipitation of δ’(Al3Li) in dilute aluminium-lithium alloys. Met. Sci. 9, 529–532 (1975)

    Google Scholar 

  95. W. Probst, R. Bauer: Technik und biologische Anwendung der elektronen-spektroskopischen Abbildung (ESI) und Elektronen-Energieverlust-Spektroskopie (EELS). Abbildung (ESI) und Elektronen-Energieverlust-Spektroskopie (EELS). Verh. Dtsch. Zool. Ges. 80, 119–128 (1987)

    Google Scholar 

  96. P. Keusch, J.R. Guenter, R. Bauer: Improvement of the epitaxial orientation of thin vapour deposited gold films on alkali halides by double evaporation. Proc. XIth Int’l Congr. on Electron Microscopy, ed. by T. Imura, S. Maruse and T. Suzuki (Jpn. Soc. of Electron Microscopy, Kyoto 1986) Vol.II, pp.1379–1380

    Google Scholar 

  97. R. Bauer, U. Hezel, D. Kurz: High-resolution imaging of thick biological specimens with an imaging electron energy loss spectrometer. Optik 77, 171–174 (1987)

    Google Scholar 

  98. H.J. Wagner: Contrast tuning by electron spectroscopic imaging of half-micrometer-thick sections of nervous tissue. Ultramicroscopy 32, 42–47 (1990)

    Google Scholar 

  99. L. Landau: On the energy loss of fast electrons by ionization. J. Phys. USSR 8, 201 (1944)

    Google Scholar 

  100. L. Reimer, K. Brockmann, U. Rhein: Energy losses of 20–40 keV electrons in 150–600 μg cm-2 films. J. Phys. D 11, 2151–2155 (1978)

    ADS  Google Scholar 

  101. L. Reimer: Calculation of the angular and and energy distribution of multiple scattered electrons using Fourier transforms. Ultramicroscopy 31, 169–176 (1989)

    Google Scholar 

  102. L. Reimer, R. Senkel: Calculation of energy spectra of electrons transmitted through thin aluminium foils. J. Phys. D 25, 1371–1376 (1992)

    ADS  Google Scholar 

  103. C. Colliex, C. Mory, A.L. Olins, D.E. Olins, M. Tence: Energy-filtered STEM imaging of thick biological sections. J. Micr. 153, 1–21 (1989)

    Google Scholar 

  104. L. Reimer. R. Rennekamp, I. Fromm, M. Langenfeld: Contrast in the electron spectroscopic imaging mode of TEM: IV. Thick specimens imaged by the most-probable energy loss. J. Micr. 162, 3–14 (1991)

    Google Scholar 

  105. L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3–19 (1979)

    Google Scholar 

  106. H. Hashimoto: HVEM contrast theory. In by High Voltage Electron Microscopy, ed. P.R. Swann et al. (Academic, London 1974) pp.9–21

    Google Scholar 

  107. A.P. Somlyo: Compositional mapping in biology: x-rays and electrons. J. Ultrastructure Res. 88, 135–142 (1984)

    Google Scholar 

  108. K.M. Adamson-Sharpe, F.P. Ottensmeyer: Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Micr. 122, 309–314 (1981)

    Google Scholar 

  109. F.P. Ottensmeyer: Elemental mapping by energy filtration: advantages, limitations, and compromises. Ann. New York Acad. Sci. 483, 339–351 (1986)

    ADS  Google Scholar 

  110. H. Shuman, C.F. Chang, A.P. Somlyo: Elemental mapping and resolution in energy-filtered conventional electron microscopy. Ultramicroscopy 19, 121–134 (1986)

    Google Scholar 

  111. T.J. White, D.R. Cousens, G.J. Auchterlonie: Preliminary characterization of an intrinsic germanium detector on a 400-keV microscope. J. Micr. 162, 379–390 (1991)

    Google Scholar 

  112. P. Kruit: Auger spectroscopy in STEM, recent progress. In Electron Microscopy 1992, ed. by A. Rios, J.M. Arias, L. Megias-Megias, A. L’opez-Galindo (Seer. Publ. Universidad de Granada, Granada 1992) Vol.1, pp.215–218

    Google Scholar 

  113. P.T.E. Roberts, J.N. Chapman, A.M. MacLeod: CCD-based image recording system for the CTEM. Ultramicroscopy 8, 385–398 (1984)

    Google Scholar 

  114. N.J. Zaluzec: Two-dimensional CCD arrays as parallel detectors in electron energy loss and x-ray wavelength dispersive spectroscopy. Ultramicroscopy 28, 131–136 (1989)

    Google Scholar 

  115. J. Mayer: Energy filtered electron microscopy: applications in materials science. In Electron Microscopy 1992, ed. by A. Rios, J.M. Arias, L. Megias-Megias, A. López-Galindo (Secr. Publ. Universidad de Granada, Granada 1992) Vol.1, pp.269–270

    Google Scholar 

  116. L. Reimer, U. Zepke, J. Moesch, St. Schulze-Hillert, M. Ross-Messemer, W. Probst, E. Weimer: EELSpectroscopy. A Reference Handbook of Standard Data for Identification and Interpretation of Electron Energy Loss Spectra and for Generation of Electron Spectroscopic Images. (Zeiss, Oberkochen 1992)

    Google Scholar 

  117. C. Colliex: Electron energy loss spectroscopy analysis and imaging of biological specimens. Ann. New York Acad. Sci. 483, 311–325 (1986)

    ADS  Google Scholar 

  118. R.H. Barckhaus, H.J. Höhling, I. Fromm, P. Hirsch, L. Reimer: Electron spectroscopic-diffraction and imaging of the early and mature stages of calcium phosphate formation in the epiphyseal growth plate. J. Micr. 162, 155–169 (1991)

    Google Scholar 

  119. R.D. Leapman: Scanning transmission electron microscope (STEM) elemental mapping by electron energy-loss spectroscopy. Ann. New York Acad. Sci. 483, 326–338 (1986)

    ADS  Google Scholar 

  120. H. Shuman, C.F. Chang, E.L. Bahe, A.R Somlyo: Electron energy-loss spectroscopy: quantitation and imaging. Ann. New York Acad. Sci. 483, 295–310 (1986)

    ADS  Google Scholar 

  121. H. Lehmann, U. Kunz, A. Jacob: A simplified preparation procedure of plant material for elemental analysis by ESI and EELS techniques. J. Micr. 162, 77–82 (1991)

    Google Scholar 

  122. R.R. Schröder: Zero-loss energy-filtered imaging of frozen-hydrated proteins: model calculations and implications for future developments. J. Micr. 166, 389–400 (1992)

    Google Scholar 

  123. J.L. Costa, D.C. Joy, D.M. Maher, K.L. Kirk, S.W. Hui: Fluorinated molecule as a tracer: difluoroserotonin in human platelets mapped by electron energy-loss spectroscopy. Science 200, 537–539 (1978)

    ADS  Google Scholar 

  124. J. Sevely, J.R Perez, B. Jouffrey: Energy losses of electrons through Al and C films from 300 keV up to 1200 keV. In High Voltage Electron Microscopy, ed. by P.R. Swann et al. (Academic, London 1974) pp. 38–47

    Google Scholar 

  125. L. Reimer: Methods of detection of radiation damage in electron microscopy. Ultramicroscopy 14, 291–304 (1984)

    Google Scholar 

  126. A. Howie, F.J. Rocca, U. Valdre: Electron beam ionization damage processes in p-therphenyl. Phil. Mag. B 52, 751–757 (1982)

    Google Scholar 

  127. R.F. Egerton: Chemical measurements of radiation damage in organic samples at and below room temperature. Ultramicroscopy 5, 521–523 (1980)

    Google Scholar 

  128. R.F. Egerton: Measurement of radiation damage by electron energy-loss spectroscopy. J. Micr. 118, 389–399 (1982)

    Google Scholar 

  129. R.F. Egerton: Organic mass loss at 100 K and 300 K. J. Micr. 126, 95–100 (1982)

    Google Scholar 

  130. R.D. Leapman, R.L. Ornberg: Quantitative electron energy loss spectroscopy in biology. Ultramicrocopy 24, 251–268 (1988)

    Google Scholar 

  131. L. Reimer, J. Spruth: Interpretation of the fading of diffraction patterns from organic substances irradiated with 100 keV electrons at 10–300 K. Ultramicroscopy 10, 199–210 (1982)

    Google Scholar 

  132. M.K. Lamvik, D. Kopf, S.D. Davilla: Mass loss rate in collodion is greatly reduced at liquid helium temperature. J. Micr. 148, 211–217 (1987)

    Google Scholar 

  133. R.H. Wade: The temperatur dependence of radiation damage in organic and biological samples. Ultramicroscopy 14, 265–270 (1984)

    Google Scholar 

  134. G. Siegel: Der Einfluß tiefer Temperaturen auf die Strahlenschädigung von organischen Kristallen durch 100 keV-Elektronen. Z. Naturforschg. A 27, 325–332 (1972)

    ADS  Google Scholar 

  135. M. Creuzburg: Entstehung von Alkalimetallen bei der Elektronenbestrahlung von Alkalihalogeniden. Z. Phys. 194, 211–218 (1966)

    ADS  Google Scholar 

  136. P.A. Crozier, J.N. Chapman, A.J. Craven, J.M. Titchmarsh: Some factors affecting the accuracy of EELS in determining elemental concentrations in thin films. In Analytical Electron Microscopy1984, ed. by D.B. Williams and D.C. Joy (San Francisco Press, San Francisco 1984) pp.79–82

    Google Scholar 

  137. M. Isaacson, D. Johnson: The microanalysis of light elements using transmitted energy-loss electrons. Ultramicroscopy 1, 33–52 (1975)

    Google Scholar 

  138. D.C. Joy, D.M. Maher: Electron energy-loss spectroscopy: detectable limits for elemental analysis. Ultramicroscopy 5, 333–342 (1980)

    Google Scholar 

  139. P. Rez: Detection limits and error analysis in energy-loss spectrometry. In Microbeam Analysis1983, ed. by R. Gooley (San Francisco Press, San Francisco 1983) pp.153–155

    Google Scholar 

  140. A.L. Arsenault, F.P. Ottensmeyer: Stereoscopic representation of complex overlapping elemental maps in electron spectroscopic images. J. Micr. 133, 69–72 (1984)

    Google Scholar 

  141. A.L. Arsenault, F.P. Ottensmeyer: Quantitative spatial distribution of calcium phosphorus and sulfur in calcifying epiphysis by high resolution spectroscopic imaging. Proc. Nat. Acad. Sci. USA 80, 1322–1326 (1983)

    ADS  Google Scholar 

  142. A.L. Arsenault, F.P. Ottensmeyer: Visualization of early intramembranous ossification by electron microscopic and electron spectroscopic imaging. J. Cell Biol. 98, 911–921 (1984)

    Google Scholar 

  143. D. Blottner, H.J. Wagner: Localization of calcium and phosphorus in early predentin-matrix matrix components by electron spectroscopic imaging (ESI)-analysis in rat molars. Cell and Tissue Res. 25.5, 611–617 (1989)

    Google Scholar 

  144. M. Döpfner, C. Wiencke: Calcium compartmentation in ontarctic broade algae. Ultramicroscopy 32, 7–11 (1990)

    Google Scholar 

  145. G. Harauz, F.P. Ottensmeyer: Nucleosome reconstruction via phosphorus mapping. Science 226, 936–940 (1984)

    ADS  Google Scholar 

  146. U.R. Heinrich, M. Drechsler, W. Kreutz, W. Mann: Identification of precipitable Ca2+ by ESI and EELS in the organ of Corti of guinea pig. Ultramicroscopy 32, 1–6 (1990)

    Google Scholar 

  147. H. Körtje, D. Körtje, H. Rahmann: The application of energy-filtering electron microscopy for the cytochemical localization of Ca2+-ATPase activity in synaptic terminals. J. Micr. 162, 105–114 (1991)

    Google Scholar 

  148. F.P. Ottensmeyer, D.W. Andrews, A.L. Arsenault, Y.M. Heng, G.T. Simon, G.C Weatherley: Elemental imaging by electron energy loss microscopy. Scanning 10, 227–238 (1988)

    Google Scholar 

  149. R.D. Leapman, S. B. Andrews: Biological electron energy loss spectroscopy: the present and the future. Microsc. Microanal. Microstr. 2, 387–394 (1991)

    Google Scholar 

  150. C. Mory, C. Colliex: Elemental analysis near the single-atom detection level by processing sequences of energy-filtered images. Ultramicroscopy 28, 339–346 (1989)

    Google Scholar 

  151. A. Berger, H. Kohl: Optimum imaging parameters for elemental mapping in an energy filtering transmission electron microscope. Optik 92, 175–193 (1993)

    Google Scholar 

  152. U. Plate, H.J. Höhling, L. Reimer, R.H. Barckhaus, R. Wienecke, H.P. Wiesmann, A. Boyde: Analysis of the calcium distribution in predentine by EELS and of the early crystal formation in dentine by ESI and ESD. J. Micr. 166, 329–341 (1992)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1995). Electron Spectroscopic Imaging. In: Reimer, L. (eds) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48995-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48995-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14055-0

  • Online ISBN: 978-3-540-48995-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics