Skip to main content
  • 2451 Accesses

Abstract

The most serious manifestations of osteoporosis are proximal femoral fractures, affecting over 250,000 elderly in the United States each year and 890,000 in the European Union in the year 2000 alone. The impact on public health and the resultant cost to the health care system highlight the urgency to identify those parameters significant to accurately predict bone quality and fracture risk at the proximal femur. Determinations of the proximal femur are employed to illustrate relevant applications of vQCT with the potential to be extrapolated to other skeletal sites and the research and development of novel biomaterials that could contribute to the restoration or improvement of bone function. We explain the underpinning of parameters for bone mass, BMD, and bone geometry, as well as the structural indices discriminated by vQCT. We further clarify the benefit of sub-regional analysis (trochanteric region separate from femoral neck region) and of compartmental analysis (cortical bone separate from trabecular bone). In order to gain insight into how these factors contribute to bone fragility, we show how vQCT information combined with finite element modeling (FEM) information, a structural analysis tool, allows for estimation of fracture load under various loading conditions including impact from a fall. We typify unique results obtained from studies on aging, drugs with bone impact, and spaceflight, which is difficult to reveal in vivo without vQCT. We show in vivo how aging results in heterogeneous effects in the trochanteric and femoral neck region and how the impact of long-term spaceflight differs between trabecular and cortical bone. We suggest future directions for vQCT, such as the improvement of accuracy and precision for longitudinal studies, the FEM analysis integration into individual patient evaluation for in vivo assessment of simulated fracture conditions, and the development of additional variables for enhancement of bone fragility evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augat P, Gordon CL, Lang TF, Iida H, Genant HK (1998) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol 43(10):2873–2883

    Article  PubMed  CAS  Google Scholar 

  • Bagi CM, Wilkie D, Georgelos K, Williams D, Bertolini D (1997) Morphological and structural characteristics of the proximal femur in human and rat. Bone 21(3):261–267

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349(13):1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Bilezikian JP, Ensrud KE, Greenspan SL, Palermo L, Hue T, Lang TF, McGowan JA, Rosen CJ (2005) One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med 353(6):555–565

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield SA, Allen MR, Hogan HA, Delp MD (2002) Site-and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone 31(1):149–157

    Article  PubMed  CAS  Google Scholar 

  • Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32(10):1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Cooper C (1999) Epidemiology of osteoporosis. Osteoporos Int 9(Suppl 2): S2–S8

    Article  PubMed  Google Scholar 

  • Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Palermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. J Am Med Assoc 280(24):2077–2082

    Article  CAS  Google Scholar 

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  PubMed  Google Scholar 

  • Dempster DW, Arlot MA, Meunier PJ (1983) Mean wall thickness and formation periods of trabecular bone packets in corticosteroid-induced osteoporosis. Calcif Tissue Int 35:410–417

    Article  PubMed  CAS  Google Scholar 

  • Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38(1):26–32

    Article  PubMed  CAS  Google Scholar 

  • Gluer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK (1988) Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr 12(2):242–258

    Article  PubMed  CAS  Google Scholar 

  • Gluer CC, Cummings SR, Pressman A, Li J, Gluer K, Faulkner KG, Grampp S, Genant HK (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 9(5):671–677

    Article  PubMed  CAS  Google Scholar 

  • Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7(5):407–413

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi T, Igarashi M, Karube S, Oda H, Tokuyama H, Huang T, Inoue S (1988) Spontaneous fractures of the hip in the elderly. Orthopedics 11(9):1277–1280

    PubMed  CAS  Google Scholar 

  • Kanis JA, Johnell O (2005) Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int 16(3):229–238

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23(3):165–173

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Rossi SA (2000) Prediction of femoral fracture load using finite element models: an examination of stress-and strain-based failure theories. J Biomech 33(2):209–214

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Lee IY, Skinner HB (1994) Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res 28(11):1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31(2):125–133

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB (2001a) Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 23(9):657–664

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Skinner HB, Fleming JA (2001b) Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res 19(4):539–544

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB (2005) Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res (437):219–228

    Article  PubMed  Google Scholar 

  • Kuiper JW, van Kuijk C, Grashuis JL, Ederveen AG, Schutte HE (1996) Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int 6(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85(9):3069–3076

    Article  PubMed  CAS  Google Scholar 

  • Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP (2004) The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int 15(12):992–997

    Article  PubMed  CAS  Google Scholar 

  • Lane NE (2001) An update on glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am 27(1):235–253

    Article  PubMed  CAS  Google Scholar 

  • Lang T, LeBlanc A, Evans H, Lu Y, Genant H and Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19(6):1006–1012

    Article  PubMed  Google Scholar 

  • Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21(1):101–108

    Article  PubMed  CAS  Google Scholar 

  • Lang TF, Li J, Harris ST and Genant HK (1999) Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 23(1):130–137

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1(2):157–160

    PubMed  CAS  Google Scholar 

  • Li W, Sode M, Saeed I, Lang T (2006) Automated registration of hip and spine for longitudinal QCT studies: integration with 3D densitometric and structural analysis. Bone 38(2):273–279

    Article  PubMed  Google Scholar 

  • Lian KC, Lang TF, Keyak JH, Modin GW, Rehman Q, Do L, Lane NE (2005) Differences in hip quantitative computed tomography (QCT) measurements of bone mineral density and bone strength between glucocorticoid-treated and glucocorticoid-naive postmenopausal women. Osteoporos Int 16(6):642–650

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Nieves J, Formica C, Henneman E, Woelfert L, Shen V, Dempster D, Cosman F (1997) Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350(9077) 550–555

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Scheele WH, Neer R, Pohl G, Adami S, Mautalen C, Reginster JY, Stepan JJ, Myers SL, Mitlak BH (2004) Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med 164(18):2024–2030

    Article  PubMed  Google Scholar 

  • McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M (2000) Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Invest 30(12):1044–1054

    Article  PubMed  CAS  Google Scholar 

  • Melton LJIII, Kan SH, Wahner HW, Riggs BL (1988) Lifetime fracture risk: an approach to hip fracture risk assessment based on bone mineral density and age. J Clin Epidemiol 41(10):985–994

    Article  PubMed  Google Scholar 

  • Meta M, Lu Y, Keyak JH, Lang T (2006) Young-elderly differences in bone density, geometry and strength indices depend on proximal femur sub-region: a cross sectional study in Caucasian-American women. Bone 39(1):152–158

    Article  PubMed  CAS  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Erik-sen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    Article  PubMed  CAS  Google Scholar 

  • National Osteoporosis Foundation (2005) Physician’s Guide to Prevention and Treatment of Osteoporosis

    Google Scholar 

  • Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, Kaufman JM, Clancy AD, Gaich GA (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44(3):751–764

    Article  PubMed  CAS  Google Scholar 

  • Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30(1):1–8

    Article  PubMed  Google Scholar 

  • Rehman Q, Lane NE (2003) Effect of glucocorticoids on bone density. Med Pediatr Oncol 41(3):212–216

    Article  PubMed  Google Scholar 

  • Riggs BL, Melton LJ III (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17(Suppl 5): 505S–511S

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Melton ILJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCol-lough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954

    Article  PubMed  Google Scholar 

  • Rittmaster RS, Bolognese M, Ettinger MP, Hanley DA, Hodsman AB, Kendler DL, Rosen CJ (2000) Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab 85(6):2129–2134

    Article  PubMed  CAS  Google Scholar 

  • Samnegard E, Akhter MP, Recker RR (2001) Maintenance of vertebral body bone mass and strength created by human parathyroid hormone treatment in ovariectomized rats. Bone 28(4):414–422

    Article  PubMed  CAS  Google Scholar 

  • Sievanen H (2000) A physical model for dual-energy X-ray absorptiometry-derived bone mineral density. Invest Radiol 35(5):325–330

    Article  PubMed  CAS  Google Scholar 

  • Sloan J, Holloway G (1981) Fractured neck of the femur: The cause of the fall? Injury 13(3):230–232

    Article  PubMed  CAS  Google Scholar 

  • van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13(10):777–787

    Article  PubMed  Google Scholar 

  • Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215):1607–1611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Meta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meta, M., Lu, Y., Keyak, J.H., Lang, T.F. (2007). Discrimination of Contributing Factors to Bone Fragility Using vQCT In Vivo. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics