Skip to main content

Bioremediation of Metals: Microbial Processes and Techniques

  • Chapter

7. Conclusion

Bioremediation has developed from the laboratory to a fully commercialised technology over the last 30 years in many industrialised countries. However, the rate and the extent of development has varied from country to country. A successful bioremediation scheme relies on the management of soil microbial populations capable of catabolising the contaminants. The role of soil microbiota in the biochemical conversion of organic and inorganic contaminants has been realised, priority research needs have been identified and effort has been made to understand the ecological, biochemical and genetic basis of microbial contaminant degradation, with a view to enhancing microbial capabilities and thus designing more effective bioremediation processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agathos SN, Reineke W (2002) Biotechnology for the Environment: Soil Remediation, Focus on Biotechnology series volume 3B, Kluwer Academic Publishers, Dordrecht, pp 140

    Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  Google Scholar 

  • Brim H, McFarlan SC, Ferdickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Natl Biotech 8:85–90

    Google Scholar 

  • Bruce DL, Duff DC (1968) Requirement of potassium or rubidium for biosynthesis of pigment by Serratia marcescens. J Bacteriol 96:278–279

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  Google Scholar 

  • Buerge IJ, Hug SJ (1998) Influence of organic ligands on chromium(VI) reduction by iron(II). Environ Sci Technol 32:2092–2099

    Article  Google Scholar 

  • Chang YJ, Peacock AD, Lang PE, Stephen JR, McKinley JP, MacNaughton SJ, Hussain AKMA, Saton AM, White D (2001) Diversity and characterization of sulphate reducing bacteria in groundwater uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  Google Scholar 

  • Cifuentes FR, Lindemann WC, Barton LL (1996) Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci 161:233–241

    Article  Google Scholar 

  • Coates JD, Michaelidon U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per) chlorate reducing bacteria. Appl Environ Microbiol 65:5234–5241

    Google Scholar 

  • Dungan RS, Frankenberger WT Jr (2000) Factors affecting the volatalisation of dimethyl selenide by Enterobacter cloacae SLD 1a-1. Soil Biol Biochem 32:1353–1358

    Article  Google Scholar 

  • Fude L, Harris B, Urrutia MM, Beveridge TJ (1994) Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB III). Appl Environ Microbiol 60:1525–1531

    Google Scholar 

  • Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. J Environ Qual 26:753–763

    Google Scholar 

  • GNN (Genome News Network) (2003) Super microbe cleans up Uranium. http://www.genomenewsnetwork.org/articles/12_03/geobacter.shtml

    Google Scholar 

  • Higgins TE, Halloran AR, Petura JC (1997) Traditional and innovative treatment methods for Cr (VI) in soil. J Soil Contam 6:767–797

    Google Scholar 

  • Hinchee RE, Wilson JT (eds) (1995) Intrinsic Bioremediation. Bioremediation 3:1

    Google Scholar 

  • James BR, Petura JC, Vitale RJ, Mussoline GR (1997) Oxidation-reduction chemistry of chromium: Relevance to the regulation and remediation of chromate contaminated soils. J Soil Contam 6:569–580

    Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Indus Microbiol 14:61–75

    Article  Google Scholar 

  • Kamaludeen SPB, Arunkumar R, Avudainayagam S, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Ind J Expt Biol 41:972–985

    Google Scholar 

  • Komori K, Wang P, Toda K, Ohtake H (1989) Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl Microbiol Biotechnol 31:567–570

    Article  Google Scholar 

  • Komori K, Rivas R, Toda K, Ohtake H (1990) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954

    Article  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  Google Scholar 

  • Lloyd JR, Mabbett AN, Williams DR, Macaskie LE (2001) Metal reduction by sulphate reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59:327–337

    Article  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:92–121

    Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994a) Bioremediation of chromate contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150

    Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Philips EJP (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–300

    Article  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Philips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • NABIR (Natural and Accelerated Bioremediation Research Programme) Primer, Office of the Biological Environmental Research, Office of Science, US Department of Energy

    Google Scholar 

  • Nies DH (1999) Microbial metal resistance Appl Microbiol Biotechnol 51:730–750

    Article  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux system involved in bacterial metal resistance. J Indus Microbiol 14:186–199

    Article  Google Scholar 

  • Nikunen E, Leinonen R, Kultamaa A (1990) Environmental properties of chemicals. Ministry of the Environment, Environmental Protection Department, Research Report 91:885–889

    Google Scholar 

  • Pongratz R, Heumann KG (1999) Production of mehylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102

    Article  Google Scholar 

  • Ramasamy K (2000) Towards the better management of tannery waste contaminated soils, Conference Proceedings, ACAIR. Canberra

    Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. John Wiley & Sons, UK

    Google Scholar 

  • Shen H, Pritchard PH, Sewell GW (1996) Microbial reduction of Cr(VI) during anaerobic degradation of benzoate. Environ Sci Technol 30:1667–1674

    Article  Google Scholar 

  • Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formations: insights into manganese (II) oxidation from molecular genetic and biochemical studies. Rev Minerology 35:255–266

    Google Scholar 

  • Tinoko I Jr, Sauer K, Wang JC (1985) Physical Chemistry: Principles and Applications in Biological Sciences, Second edition, Prentice Hall, Inc, New Jersey

    Google Scholar 

  • Turick CE, Apel WA, Carmiol NS (1996) Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments. Appl Microbiol Biotechnol 44:683–688

    Article  Google Scholar 

  • USACE (1998) Bioremediation of soils using windrow composting, Guide specifications for military constructions, CEGS-02191

    Google Scholar 

  • USEPA (1996) Test methods for evaluating solid wastes, physical/chemical methods (Method 7199) SW-846.3rd edition. In: Office of the Solid Waste and Emergency Response, Washington DC

    Google Scholar 

  • USGS (1997) Bioremediation: Nature’s Way to a Cleaner Environment, http://water.usgs.gov/wid/html/bioremed.html

    Google Scholar 

  • Wackett LP, Dodge AG, Ellis LBM (2004) Microbial genomics and the periodical table. Appl Environ Microbiol 70:647–655

    Article  Google Scholar 

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527

    Article  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilisation and immobilization of toxic metals: key biochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramasamy, K., Kamaludeen, Banu, S.P. (2007). Bioremediation of Metals: Microbial Processes and Techniques. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_7

Download citation

Publish with us

Policies and ethics