Skip to main content

Aquatic Plants for Phytotechnology

  • Chapter

3. Conclusion

Surface flow constructed wetlands are being designed for the treatment of municipal waste waters in developed nations. However, use of constructed wetlands is not gaining momentum in tropical nations due to water scarcity and high surface evapotranspitration. But, in there countries for the bioremediation mine drainage, agricultural waste waters and flood water there is considerable scope as they have rich plant diversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  Google Scholar 

  • Aksorn E, Visoottiviseth P (2004) Selection of Suitable Emergent Plants for Removal of Arsenic from Arsenic Contaminated Water. Science Asia 30:105–113

    Article  Google Scholar 

  • Betts KS (1997) Native aquatic plants remove explosives. Environ Sci Technol 31:304A

    Google Scholar 

  • COST Action 837 View (2003) In: Vanec T, Schwitzguebel J-P (eds) UOCHB AVCR, Prague, pp 41

    Google Scholar 

  • COST Action 859 (2005) In: Schwitzguebel J-P (ed) Phytotechnologies to promote sustainable land use and improve food safety, 2005

    Google Scholar 

  • Fritioff Å, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Intl J Phytorem 5:211–224

    Google Scholar 

  • Hattink J, de Goeij JJM, Wolterbeek HTH (2000) Uptake kinetics of 99Tc in common duckweed. Environ Exp Bot 44:9–22

    Article  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Côté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Intl 29:1029–1039

    Article  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qion JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr (VI) to CR (III) by wetland plants: Potential for in situ heavy metal detoxification. Environ. Sci Technol 32:3087–3093

    Article  Google Scholar 

  • Lytle CM, Smith BN, McKinnon CZ (1994) Manganese accumulation along Utah roadways: a possible indication of motor vehicle exhaust pollution. Sci Tot Environ 162:105

    Article  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  Google Scholar 

  • Manning K (1988) Detoxification of cyanide by plants and hormone action. In: Cyanide compounds in biology, ed. Ciba foundation, 1988, John Wiley & Sons, Chichester, UK

    Google Scholar 

  • McCutcheon SC, Schnoor JL (eds) (2003) Phytoremediation-transformation and control of contaminants. Wiley Interscience, pp 985

    Google Scholar 

  • Mohan BS, Hosetti BB (1999) Aquatic plants for toxicity assessment. Environ Res 81:259–274

    Article  Google Scholar 

  • Peles JD, Smith MH, Brisbin IH Jr (2002) Ecological half-life of 137Cs in plants associated with a contaminated stream. J Environ Radioactivity 59:169–178

    Article  Google Scholar 

  • Prasad MNV, Greger M, Aravind P (2005) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds), Trace elements in the environment: Biogeochemistry, Biotechnology and Bioremediation. CRC Press, Florida, USA, Now Taylor and Francis, Chap 24, pp 443–474

    Google Scholar 

  • Prasad MNV (2001) Bioremediation Potential of Amaranthaceae In: Leeson A, Foote EA, Banks MK, Magar VS (eds), Phytoremediation, Wetlands, and Sediments, Vol. 6(5), Proc 6th Int In Situ and On-Site Bioremediation Symposium, Battelle Press, Columbus, OH, pp 165–172

    Google Scholar 

  • Prasad MNV, Greger M, Smith BN (2001) Aquatic macrophytes, in Metals in the Environment: Analysis by biodiversity. In: Prasad MNV (ed) Marcel Dekker Inc., New York, 259.

    Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants: from biomolecules to ecosystems, Narosa Publishing House, New Delhi, 2nd Ed. Pp 462+XIV

    Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  Google Scholar 

  • Sheppard SC, Motycka M (1997) Is the akagare phenomenon important to iodine uptake by wild rice (Zizania aquatica)? J Environ Radioactivity 37:339–353

    Article  Google Scholar 

  • Sobolewski A (1999) A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytorem 1:19–51

    Article  Google Scholar 

  • St-Cyr L, Campbell PGC (1994) Trace metals in submerged plants of St. Lawrence river. Can J Bot 72:429

    Google Scholar 

  • St-Cyr L, Campbell PGC, Guertin K (1994) Evaluation of the role of submerged plant beds in the metal budget of fluvial lake. Hydrobiologia 291:141

    Article  Google Scholar 

  • Susarla S, Bacchus TS, Wolfe NL, McCutcheon CS (1999) Phytotransformation of perchlorate using parrot feather. Soil Groundwater Cleanup 2:20–23

    Google Scholar 

  • Trapp S, Larsen M, Pirandello S, Danquah-Boakye J (2003) Feasibility of cyanide elimination using plants. Europ J Min Porc Environ Prot 3(1):128–137

    Google Scholar 

  • Wang W, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Safety 30:289–301

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants:implications for phytoremediation and restoration. Environ Intl 30:685–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasad, M. (2007). Aquatic Plants for Phytotechnology. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_11

Download citation

Publish with us

Policies and ethics