Skip to main content

Neuropeptide and Kinin Antagonists

  • Chapter
Analgesia

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 177))

Abstract

Neuropeptides and kinins are important messengers in the nervous system and—on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects—a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiyar N, Daines RA, Disa J, et al (2001) Pharmacology of SB-273779, a non-peptide calcitonin gene related peptide 1 receptor antagonist. J Pharmacol Exp Ther 296:768–775

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, et al (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    Article  PubMed  CAS  Google Scholar 

  • Ambalavanar R, Moritani M, Moutanni A, et al (2006) Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviours which are modulated by a neuropeptide antagonist. Pain 120:53–68

    Article  PubMed  CAS  Google Scholar 

  • Anderson LE, Seybold VS (2004) Calcitonin gene relatedpeptide regulates gene transcription in primary afferent neurons. J Neurochem 91:1417–1429

    Article  PubMed  CAS  Google Scholar 

  • Ashina M, Bendtsen L, Jensen R, et al (2000) Evidence for increased plasma levels of calcitonin gene related peptide in migraine outside of attacks. Pain 86:133–138

    Article  PubMed  CAS  Google Scholar 

  • Aubel B, Kayser V, Mauborgne A, et al (2004) Antihyperalgesic effects of cizolirtine in diabetic rats: behavioural and biochemical studies. Pain 110:22–32

    Article  PubMed  CAS  Google Scholar 

  • Awawdeh L, Lundy FT, Shaw C, et al (2002) Quantitative analysis of substance P, neurokinin A and calcitonin gene-related peptide in pulp tissue from painful and healthy human teeth. Int Endod J 35:30–36

    Article  PubMed  CAS  Google Scholar 

  • Ballet S, Aubel B, Mauborgne A, et al (2001) The novel analgesic cizolirtine inhibits the spinal release of substance P and CGRP in rats. Neuropharmacology 40:578–589

    Article  PubMed  CAS  Google Scholar 

  • Baptista HA, Avellar MCW, Araujo RC, et al (2002) Transcriptional regulation of the rat bradykinin B2 receptor gene: identification of a silencer element. Mol Pharmacol 62:1344–1355

    Article  PubMed  CAS  Google Scholar 

  • Bellamy JL, Cady RK, Durham PL (2006) Salivary levels of CGRP and VIP in rhinosinusitis and migraine patients. Headache 46:24–33

    Article  PubMed  Google Scholar 

  • Bennett AD, Chastain KM, Hulseboch CE (2000) Alleviation of mechanical and thermal allodynia by CGRP 8–37 in a rodent model of chronic central pain. Pain 86:163–175

    Article  PubMed  CAS  Google Scholar 

  • Beresford IJ, Birch PJ, Hagan RM, et al (1991) Investigationinto species variants in tachykinin NK1 receptors by use of the non-peptide antagonist, CP-96,345. Br J Pharmacol 104:292–293

    PubMed  CAS  Google Scholar 

  • Binder W, Scott C, Walker JS (1999) Involvement of substance P in the anti-inflammatory effects of the peripherally selective kappa-opioid asimadoline and the NK1 antagonist GR 205171. Eur J Neurosci 11:2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Block GA, Rue D, Panebianco D, et al (1998) The substance P receptor antagonist L-754,030 (MK-0869) is ineffective in he treatment of postherpetic neuralgia. Neurology 4:A225

    Google Scholar 

  • Bock MG, Longmore J (2000) Bradykinin antagonists: new opportunities. Curr Opin Chem Biol 4:401–406

    Article  PubMed  CAS  Google Scholar 

  • Boix F, Roe C, Rosenborg L, Knardahl S (2005) Kinin peptides in human trapezius muscle during sustained isometric contraction and their relation to pain. J Appl Physiol 98:534–540

    Article  PubMed  CAS  Google Scholar 

  • Borkowki JA, Ransom RW, Seabrook GR, et al (1995) Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smoothmuscle and neurons. J Biol Chem 270:13706–13710

    Article  Google Scholar 

  • Boscan P, Dutschmann M, Herbert H, Paton JFR (2005) Neurokininergic mechanism within the lateral crescent nucleus of the parabrachial complex participates in the heart rate response to nociception. J Neurosci 25:1412–1420

    Article  PubMed  CAS  Google Scholar 

  • Bowen EJ, Schmidt TW, Firm CS, et al (2006) Tumour necrosis factor α stimulation of calcitonin gene related peptide expression and secretion from rat trigeminal ganglion neurons. J Neurochem 96:65–77

    Article  PubMed  CAS  Google Scholar 

  • Boyce S, Hill RG (2000) Discrepant results from preclinical and clinical studies on the potential of substance P-receptor antagonists compounds as analgesics. In: Devor M, Rowbotham MC, Wiesenfield-Hallin Z (eds) Proceedings of the 9th World Congress on Pain. IASP press, Seattle, pp 313–324

    Google Scholar 

  • Boyce S, Hill RG (2004) Substance P (NK1) receptor antagonists—analgesics or not? In: Holzer P (ed) Tachykinins. (Handbook of experimental pharmacology, vol 164) Springer, Berlin Heidelberg New York, pp 441–457

    Google Scholar 

  • Boyce S, Laird JMA, Tattersall FD, et al (1993) Antinociceptive effects of NK1 receptor antagonists: comparison of behavioural and electrophysiological tests. 7th World Congress on Pain. Abstr 641

    Google Scholar 

  • Boyce S, Ali Z, Hill RG (2001) New developments in analgesia. Drug Discov World 4:31–35

    Google Scholar 

  • Brain SD, Grant AD (2004) Vascular actions of calcitonin gene related peptide and adrenomedullin. Physiol Rev 84:903–934

    Article  PubMed  CAS  Google Scholar 

  • Brain SD, Poyner DR, Hill RG (2002) CGRP receptors: a headache to study, but will antagonists prove therapeutic in migraine? Trends Pharmacol Sci 23:51–53

    Article  PubMed  CAS  Google Scholar 

  • Bregola G, Varani K, Gessi S, et al (1999) Changes in hippocampal and cortical B1 bradykinin receptor biological activity in two experimental models of epilepsy. Neuroscience 92:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Burgess GM, Perkins MN, Rang HP, et al (2000) Bradyzide, a potent non-peptide B2 bradykinin receptor antagonist with long-lasting oral activity in animal models of inflammatory hyperalgesia. Br J Pharmacol 129:77–86

    Article  PubMed  CAS  Google Scholar 

  • Cabrini DA, Campos MM, Tratsk KS, et al (2001) Molecular and pharmacological evidence formodulation of kinin B1 receptor expression by endogenous glucocorticoid hormones in rats. Br J Pharmacol 132:567–577

    Article  PubMed  CAS  Google Scholar 

  • Calixto JB, Cabrini DA, Ferreira J, et al (2000) Kinins in pain and inflammation. Pain 87:1–5

    Article  PubMed  CAS  Google Scholar 

  • Calixto JB, Cabrini DA, Ferreira J, et al (2001) Inflammatory pain: kinins and antagonists. Curr Opin Anaesthesiol 14:519–526

    Article  PubMed  CAS  Google Scholar 

  • Calixto JB, Medeiros R, Fernandes ES, et al (2004) Kinin B1 receptors: key G-proteincoupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 143:803–818

    Article  PubMed  CAS  Google Scholar 

  • Cascieri MA, Ber E, Fong TM, et al (1992) Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 42:458–463

    PubMed  CAS  Google Scholar 

  • Chopra B, Barrick SR, Meyers S, et al (2005) Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium. J Physiol 562:859–871

    Article  PubMed  CAS  Google Scholar 

  • Chuang HH, Prescott ED, Kong H, et al (2001) Bradykinin and nerve growth factor release the capsaicin receptor from Ptdlns (4,5)P2-mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  • Conley RK, Wheeldon A, Webb JK, et al (2005) Inhibition of acute nociceptive responses in rat spinal cord by a bradykinin B1 receptor antagonist. Eur J Pharmacol 527:44–51

    Article  PubMed  CAS  Google Scholar 

  • Connor HE, Bertin L, Gillies S, et al (1998) Clinical evaluation of a novel, potent, CNS penetrating NK1 receptor antagonist in the acute treatment of migraine. Cephalalgia 18:392

    Google Scholar 

  • Coudore-Civiale M, Courteix C, Boucher M, et al (2000) Evidence for an involvement of tachykinins in allodynia in streptozocin-induced diabetic rats. Eur J Pharmacol 40:47–53

    Article  Google Scholar 

  • Couture R, Harrisson M, Vianna RM, et al (2001) Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176

    Article  PubMed  CAS  Google Scholar 

  • Cridland RA, Henry JL (1986) Comparison of the effects of substance P, neurokinin A, physalaemin and eledoisin in facilitating a nociceptive reflex in the rat. Brain Res 381:93–99

    Article  PubMed  CAS  Google Scholar 

  • Cruwys SC, Garrett NE, Perkins MN, et al (1994) The role of bradykinin B1 receptors in the maintenance of intra-articular plasma extravasation in chronic antigen-induced arthritis. Br J Pharmacol 113:940–944

    PubMed  CAS  Google Scholar 

  • Cumberbatch MJ, Carlson E, Wyatt A, et al (1998) Reversal of behavioural and electrophysiological correlates of experimental peripheral neuropathy by the NK1 receptor antagonist GR205171 in rats. Neuropharmacology 37:1535–1543

    Article  PubMed  CAS  Google Scholar 

  • Cumberbatch MJ, Williamson DJ, Mason GS, et al (1999) Dural vasodilation causes a sensitization of rat caudal trigeminal nucleus neurons in vivo that is blocked by a 5-HT 1B/1D agonist. Br J Pharmacol 126:1478–1486

    Article  PubMed  CAS  Google Scholar 

  • Daemen MA, Kurvers HA, Kitslaar PJ, et al (1998) Neurogenic inflammation in an animal model of neuropathic pain. Neurol Res 20:41–45

    PubMed  CAS  Google Scholar 

  • Daines RA, Sham KKC, Taggart JJ, et al (1997) Quinine analogues as non-peptide calcitonin gene related peptide (CGRP) receptor antagonists. Bioorg Med Chem Lett 7:2673–2676

    Article  CAS  Google Scholar 

  • De Felipe C, Herrero JF, O’Brien A, et al (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    Article  PubMed  Google Scholar 

  • Delafoy L, Gelot A, Ardid D, et al (2006) Interactive involvement of BDNF, NGF and CGRP in colonic hypersensitivity in the rat Gut. Published online 9 Jan 2006. http://gut.bmjjournals.com/cgi/content/abstract/gut.2005.064063v1. Cited 16 May 2006

    Google Scholar 

  • Dickenson A, Besson JM (eds) (1997) The pharmacology of pain. (Handbook of experimental pharmacology, vol 130) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dionne RA (1999) Clinical analgesic trials of NK1 antagonists. Curr Opin Investig Drugs 1:82–85

    CAS  Google Scholar 

  • Dionne RA, Max MB, Gordon SM, et al (1998) The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin Pharmacol Ther 64:562–568

    Article  PubMed  CAS  Google Scholar 

  • Dlamini Z, Bhoola KD (2005) Upregulation of tissue kallikrein, kinin B1 receptor, and kinin B2 receptor in mast and giant cells infiltrating oesophageal squamous cell carcinoma. J Clin Pathol 58:915–922

    Article  PubMed  CAS  Google Scholar 

  • Duggan AW, Furmidge LJ (1994) Probing the brain and spinal cord with neuropeptides in pathways related to pain and other functions. Front Neuroendocrinol 15:275–300

    Article  PubMed  CAS  Google Scholar 

  • Duggan AW, Morton CR, Zhao ZQ, et al (1987) Noxious heating of the skin releases immunoreactive substance P in the substantia gelatinosa of the cat: a study with antibody microprobes. Brain Res 403:345–349

    Article  PubMed  CAS  Google Scholar 

  • Dziadulewicz EK, Ritchie TJ, Hallett A, et al (2002) Nonpeptide bradykinin B2 receptor antagonists: conversion of rodent-selective bradyzide analogues into potent, orallyactive human bradykinin B2 receptor antagonists. J Med Chem 45:2160–2172

    Article  PubMed  CAS  Google Scholar 

  • Ebersberger A, Charbel Issa P, Vanegas H, Schaible HG (2000) Differential effects of calcitonin gene related peptide and calcitonin gene related peptide 8–37 upon responses to NMDA or AMPA in spinal nociceptive neurons with knee joint input in the rat. Neuroscience 99:171–178

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L (2001) Calcitonin gene-related peptide (CGRP) and the pathophysiology of headache: therapeutic implications. CNS Drugs 15:745–753

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, Goadsby PJ (1995) Neuropeptides in the cerebral circulation: relevance to headache. Cephalalgia 15:272–276

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, Olesen IJ, Kingman TA, et al (1995)Modification of vasoconstrictor responses in cerebral blood vessels by lesioning of the trigeminal nerve: possible involvement of CGRP. Cephalalgia 15:373–383

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth H, Rukwied R, Petersen M, et al (2004) Sensitization to bradykinin B1 and B2 receptor activation in UV-B irradiated human skin. Pain 110:197–204

    Article  PubMed  CAS  Google Scholar 

  • Fang LN, Wang ZZ, Wang YL, et al (2004) Expression of calcitonin gene related peptide type 1 receptor mRNA and the activity modifying proteins in the rat nucleus accumbens. Neurosci Lett 362:146–149

    Article  PubMed  CAS  Google Scholar 

  • Fernandes ES, Passos GF, Campos MM, et al (2005) Cytokines and neutrophils as important mediators of platelet-activating factor-induced kinin B1 receptor expression. Br J Pharmacol 146:209–216

    Article  PubMed  CAS  Google Scholar 

  • Fernihough J, Gentry C, Bevan S, Winter J (2005) Regulation of calcitonin gene related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett 388:75–80

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Campos MM, Pesquero JB, et al (2001) Evidence for the participation of kinins in Freund’s adjuvant-induced inflammatory and nociceptive responses in kinin B1 and B2 receptor knockout mice. Neuropharmacology 41:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Campos MM, Araújo R, et al (2002) The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterise the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 43:1188–1197

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Beirith A, Mori MAS, et al (2005) Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J Neurosci 25:2405–2412

    Article  PubMed  CAS  Google Scholar 

  • Ferreira PK, Campos MM, Calixto JB (2000) The role of sensorial neuropeptides in the edematogenic responses mediated by B1 agonist des-Arg9-BK in rats pre-treated with LPS. Regul Pept 89:29–35

    Article  PubMed  CAS  Google Scholar 

  • Field MJ, McCleary S, Boden P, et al (1998) Involvement of the central tachykinin NK1 receptor during maintenance of mechanical hypersensitivity induced by diabetes in the rat. J Pharmacol Exp Ther 285:1226–1232

    PubMed  CAS  Google Scholar 

  • Field MJ, Gonzalez MI, Tallarida RJ, et al (2002) Gabapentin and the neurokinin(1) receptor antagonist CI-1021 act synergistically in two rat models of neuropathic pain. J Pharmacol Exp Ther 303:730–735

    Article  PubMed  CAS  Google Scholar 

  • Fischer MJM, Koulchitsky S, Messlinger K (2005) The nonpeptide calcitonin gene related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus. J Neurosci 25:5877–5883

    Article  PubMed  CAS  Google Scholar 

  • Fox A, Kaur S, Li B, et al (2005)Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br J Pharmacol 144:889–899

    Article  PubMed  CAS  Google Scholar 

  • Gabra BH, Sirois P (2005) Hyperalgesia in non-obese diabetic (NOD) mice: a role for the inducible bradykinin B1 receptor. Eur J Pharmacol 514:61–67

    Article  PubMed  CAS  Google Scholar 

  • Gabra BH, Benrezzak O, Pheng LH, et al (2005) Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worcester rats: efficacy of a selective bradykinin B1 receptor antagonist. J Neuropathol Exp Neurol 64:782–789

    Article  PubMed  CAS  Google Scholar 

  • Gallai V, Sarchielli P, Floridi A, et al (1995) Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15:384–390

    Article  PubMed  CAS  Google Scholar 

  • Ganju P, Davis A, Patel S, et al (2001) p38 stress-activated protein kinase inhibitor reverses bradykinin B1 receptor-mediated component of inflammatory hyperalgesia. Eur J Pharmacol 421:191–199

    Article  PubMed  CAS  Google Scholar 

  • Garret C, Carruette A, Fardin V, et al (1992) RP 67580, a potent and selective substance P non-peptide antagonist. C R Acad Sci III 314:199–204

    PubMed  CAS  Google Scholar 

  • Garry EM, Jones E, Fleetwood-Walker SM (2004) Nociception in vertebrates: key receptors participating in spinal mechanisms of chronic pain in animals. Brain Res Rev 46:216–224

    Article  PubMed  Google Scholar 

  • Gebre-Medhin S, Mulder H, Zhang Y, et al (1998) Reduced nociceptive behaviour in islet amyloid polypeptide (amylin) knockout mice. Mol Brain Res 63:180–183

    Article  PubMed  CAS  Google Scholar 

  • Goadsby PJ (1993) Inhibition of calcitonin gene related peptide by h-CGRP (8–37) antagonises the cerebral dilator response from nasociliary nerve stimulation in the cat. Neurosci Lett 151:13–16

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DJ, Wang O(1999) Lanepitant, an NK1 antagonist, in painful diabetic neuropathy. Clin Pharmacol Therap 65 (Abstr)

    Google Scholar 

  • Goldstein DJ, Wang O, Saper JR, et al (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17:785–790

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DJ, Wang O, Todd TE (1998) Lanepitant in osteoarthritis pain. Clin Pharmacol Ther 63:168

    Google Scholar 

  • Goldstein DJ, Offen WW, Klein EG (1999) Lanepitant, an NK1 antagonist, in migraine prophylaxis. Clin Pharmacol Ther 65:Abstr

    Google Scholar 

  • Gonzalez MI, Field MJ, Hughes J, Singh L (2000) Evaluation of selective NK(1) receptor antagonist CI-1021 in animal models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 294:444–450

    PubMed  CAS  Google Scholar 

  • Goto T, Tanaka T (2002) Tachykinins and tachykinin receptors in bone. Microsc Res Tech 58:91–97

    Article  PubMed  CAS  Google Scholar 

  • Gougat J, Ferrari B, Sarran L, et al (2004) SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[(6-methoxy-2-naphthyl)sulfonyl]aminopropanoyl)amino]-3-(4-[2R,6S)-2,6-di methylpiperidinyl]methylphenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 309:661–669

    Article  PubMed  CAS  Google Scholar 

  • Guzman F, Braun C, Lim RKS, et al (1964)Narcotic and non-narcotic analgesics which block visceral pain evoked by intra-arterial injection of bradykinin and other algesic agents. Arch Int Pharmacodyn Ther 149:571–588

    PubMed  CAS  Google Scholar 

  • Han JS, Li W, Neugebauer V(2005) Critical role of calcitonin gene related peptide 1 receptors in the amygdala in synaptic plasticity and pain behaviour. J Neurosci 25:10717–10728

    Article  PubMed  CAS  Google Scholar 

  • Hanesch U, Pfrommer U, Grubb BD, Schaible HG (1993) Acute and chronic phases of unilateral inflammation in rat’s ankle are associated with an increase in the proportion of calcitonin gene related peptide-immunoreactive dorsal root ganglioncells. Eur J Neurosci 5:154–161

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves R (2002) Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. J Clin Psychiatry 63 Suppl:18-24

    Google Scholar 

  • Hay DL, Conner AC, Howitt SG, et al (2004) The pharmacology of adrenomedullin receptors and their relationship to CGRP receptors. J Mol Neurosci 22:105–113

    Article  PubMed  Google Scholar 

  • Hay DL, Poyner DR, Sexton PM (2006) GPCR modulation by RAMPs. Pharmacol Ther 109:173–197

    Article  PubMed  CAS  Google Scholar 

  • Henry JL (1976) Effects of substance P on functionally identified units in cat spinal cord. Brain Res 114:439–451

    Article  PubMed  CAS  Google Scholar 

  • Henry MA, Nouser-Goebl NA, Westrum LE (1993) Light and electron microscopic localization of calcitonin gene related peptide immunoreactivity in lamina II of the feline trigeminal pars caudalis/medullary dorsal horn. Synapse 13:99–107

    Article  PubMed  CAS  Google Scholar 

  • Hershey JC, Corcoran HA, Baskin EP, et al (2005) Investigation of the species selectivity of a non-peptide CGRP receptor antagonist using a novel pharmacodynamic assay. Regul Pept 127:71–77

    Article  PubMed  CAS  Google Scholar 

  • Hess JF, Ransom RW, Zeng Z, et al (2004) Generation and characterization of a human bradykinin receptor B1 transgenic rat as a pharmacodynamic model. J Pharmacol Exp Ther 10:488–497

    Article  CAS  Google Scholar 

  • Hill RG (2001) Molecular basis for the perception of pain. Neuroscientist 7:282–292

    Article  PubMed  CAS  Google Scholar 

  • Hill RG, Rupniak NMJ (1999) Tachykinin receptors and the potential of tachykinin antagonists as clinically effective analgesics and anti-inflammatory agents. In: Brain SB, Moore PK (eds) Pain and neurogenic inflammation. Birkhauser, Basel, pp 313–333

    Google Scholar 

  • Hingten CM, Roy SL, Clapp DW (2006) Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene. Neuroscience 137:637–645

    Article  CAS  Google Scholar 

  • Hokfelt T, Arvidsson U, Ceccatelli S, et al (1992) Calcitonin-gene related peptide in the brain, spinal cord and some peripheral systems. Ann NY Acad Sci 657:119–134

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000) Neuropeptides-an overview. Neuropharmacology 39:1337–1356

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Kuteeva E, Stanic D, Ljungdahl A(2004) The histochemistry of tachykinin systems in the brain. In: Holzer P (ed) Tachykinins (Handbook of experimental pharmacology, vol 164). Springer, Berlin, Heidelberg, New York, pp 64–120

    Google Scholar 

  • Honore P, Mantyh P (2000) Bone cancer pain: from mechanism to model to therapy. Pain Med 1:303–309

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Mantyh PW (2001) The molecular dynamics of pain control. Nat Rev Neurosci 2:83–91

    Article  PubMed  CAS  Google Scholar 

  • Hutchins B, Spears R, Hinton RJ, Harper RP (2000) Calcitonin gene related peptide and substance P immunoreactivity in rat trigeminal ganglia and brainstem following adjuvant-induced inflammation of the temporomandibular joint. Arch Oral Biol 45:335–345

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Sugimoto T (2002) The co-expression of ASIC3 with calcitonin gene related peptide and parvalbumin in the rat trigeminal ganglion. Brain Res 943:287–291

    Article  PubMed  CAS  Google Scholar 

  • Iyengar S, Hipskind PA, Gehlert DR, et al (1997) LY303870, a centrally active neurokinin-1 antagonist with a long duration of action. J Pharmacol Exp Ther 280:774–785

    PubMed  CAS  Google Scholar 

  • Jang JH, Nam TS, Paik KS, Leem JW (2004) Involvement of peripherally released substance P and calcitonin gene related peptide in mediating mechanical hyperalgesia in a traumatic neuropathy model of the rat. Neurosci Lett 360:129–132

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Phillips E, Davis C, et al (1999) Molecular characterisation of cloned bradykinin B1 receptors from rat and human. Eur J Pharmacol 374:423–433

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Basbaum A (2005) A neuropeptide courier for δ-opioid receptors? Cell 122:496–498

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  PubMed  CAS  Google Scholar 

  • Juranek I, Lembeck F (1997) Afferent C-fibres release substance P and glutamate. Can J Physiol Pharmacol 75:661–664

    Article  PubMed  CAS  Google Scholar 

  • Just S, Leipold-Buttner C, Heppelmann B (2001) Histological demonstration of voltage dependent calcium channels on calcitonin gene related peptide immunoreactive nerve fibres in the mouse knee joint. Neurosci Lett 312:133–136

    Article  PubMed  CAS  Google Scholar 

  • Kang DS, Ryberg K, Morgelin M, Leeb-Lundberg LM (2004) Spontaneous formation of a proteolytic B1 and B2 bradykinin receptor complex with enhanced. signaling capacity. J Biol Chem 279:22102–22107

    Article  PubMed  CAS  Google Scholar 

  • Kang DS, Gustafsson C, Mörgelin M, et al (2005) B1 bradykinin receptor homo-oligomers in receptor cell surface expression and signaling: effects of receptor fragments. Mol Pharmacol 67:309–318

    Article  PubMed  CAS  Google Scholar 

  • Kayser V, Farre A, Hamon M, Bourgoin S (2003) Effects of the novel analgesic cizolirtine in a rat model of neuropathic pain. Pain 104:169–177

    Article  PubMed  CAS  Google Scholar 

  • Kerezoudis NP, Olgart L, Edwall L (1994) CGRP(8–37) reduces the duration but not the maximal increase of antidromic vasodilation in dental pulp and lip of the rat. Acta Physiol Scand 151:73–81

    PubMed  CAS  Google Scholar 

  • King T, Gardell LR, Wang R, et al (2005) Role of NK-1 transmission in opioid-induced hyperalgesia. Pain 116:276–288

    Article  PubMed  CAS  Google Scholar 

  • Kinloch RA, Cox PJ (2005)New targets for neuropathic pain therapeutics. Expert Opin Ther Targets 9:685–698

    Article  PubMed  CAS  Google Scholar 

  • Kuraishi Y, Nanayama T, Ohno H, et al (1988) Antinociception induced in rats by intrathecal administration of antiserum against calcitonin gene related peptide. Neurosci Lett 92:325–329

    Article  PubMed  CAS  Google Scholar 

  • Laird JM, Hargreaves RJ, Hill RG (1993) Effect of RP 67580, a non-peptide neurokinin 1 receptor antagonist, on facilitation of a nociceptive spinal flexion reflex in the rat. Br J Pharmacol 109:713–718

    PubMed  CAS  Google Scholar 

  • Laird JM, Olivar T, Roza C, et al (2000) Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 98:345–352

    Article  PubMed  CAS  Google Scholar 

  • Laird JM, Roza C, De Felipe C, et al (2001) Role of central and peripheral tachykinin NK1 receptors in capsaicin-induced pain and hyperalgesia in mice. Pain 90:97–103

    Article  PubMed  CAS  Google Scholar 

  • Lassen LH, Haderslev PA, Jacobsen VB, et al (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61

    Article  PubMed  CAS  Google Scholar 

  • Leah JD, Cameron AA, Snow PJ (1985) Neuropeptides in physiologically identified mammalian sensory neurons. Neurosci Lett 23:257–263

    Article  Google Scholar 

  • Leeb-Lundberg LM, Kang DS, Lamb ME, et al (2001) The human B1 bradykinin receptor exhibits high ligand-independent, constitutive activity. J Biol Chem 276:8785–8792

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Zochodne DW (2000) Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain. Pain 86:265–271

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Burstein R, Strassman AM (2005) Calcitonin gene related peptide does not excite or sensitisemeningeal nociceptors: implications for the pathophysiology ofmigraine. Ann Neurol 58:698–705

    Article  PubMed  CAS  Google Scholar 

  • Levy MJ, Classey JD, Manreesri S, et al (2004) The association between calcitonin gene related peptide (CGRP), substance P and headache in pituitary tumours. Pituitary 7:67–71

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Ding YQ, Xiong KH, Li JS, et al (1998) Substance P receptor (NK1)-immunoreactive neurons projecting to the periaqueductal gray: distribution in the spinal trigeminal nucleus and the spinal cord of the rat. Neurosci Res 30:219–225

    Article  PubMed  CAS  Google Scholar 

  • Limmroth V, Katsarava Z, Liedert B, et al (2001) An in vivo model to study calcitonin gene related peptide release following activation of the trigeminal vascular system. Pain 92:101–106

    Article  PubMed  CAS  Google Scholar 

  • Littman B, Newton FA, Russell IJ (1999) Substance P antagonism in fibromyalgia: a trial with CJ-11,974. 9th World Congress of Pain, abstr 218, p 67

    Google Scholar 

  • Liu HX, Hokfelt T (2002) The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci 23:468–474

    Article  PubMed  CAS  Google Scholar 

  • Lofgren O, Yu LC, Theodorsson E, et al (1997) Intrathecal CGRP (8–37) results in a bilateral increase in the hindpaw withdrawal latency in rats with a unilateral thermal injury. Neuropeptides 31:601–607

    Article  PubMed  CAS  Google Scholar 

  • Lopes P, Couture R (1997) Localization of bradykinin-like immunoreactivity in the rat spinal cord: effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy. Neuroscience 78:481–497

    Article  PubMed  CAS  Google Scholar 

  • Lu JT, Son YJ, Lee J, et al (1999) Mice lacking α-calcitonin gene related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol Cell Neurosci 14:99–120

    Article  PubMed  CAS  Google Scholar 

  • Ma QP, Hill R, Sirinathsinghji D (2001) Colocalization of CGRP with 5-HT 1B/1D receptors and substance P in trigeminal ganglion neurons in rats. Eur J Neurosci 13:2099–2104

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Ramer MS, Bisby MA (1999) Increased calcitonin related peptide immunoreactivity in gracile nucleus after partial sciatic nerve injury: age dependent and originating from spared sensory neurons. Exp Neurol 159:459–473

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Chabot JG, Powell KJ, et al (2003) Localization and modulation of calcitonin gene related peptide receptor component protein immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 120:677–694

    Article  PubMed  CAS  Google Scholar 

  • Mansikka H, Shiotani M, Winchurch R, et al (1999) Neurokinin-1 receptors are involved in behavioral responses to high-intensity heat stimuli and capsaicin-induced hyperalgesia in mice. Anesthesiology 90:1643–1649

    Article  PubMed  CAS  Google Scholar 

  • Mansikka H, Sheth RN, DeVries C, Lee H, Winchurch R, Raja SN (2000) Nerve injury-induced mechanical but not thermal hyperalgesia is attenuated in neurokinin-1 receptor knockout mice. Exp Neurol 162:343–349

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Hunt SP (1985) The autoradiographic localization of substance P receptors in the rat and bovine spinal cord and the rat and cat spinal trigeminal nucleus pars caudalis and the effects of neonatal capsaicin. Brain Res 332:315–324

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, DeMaster E, Malhotra A, et al (1995) Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Rogers SD, Honore P, et al (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278:275–279

    Article  PubMed  CAS  Google Scholar 

  • Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852

    Article  PubMed  CAS  Google Scholar 

  • Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptor for kinins. Pharmacol Rev 50:358–382

    Google Scholar 

  • Martinez-Caro L, Laird JM (2000) Allodynia and hyperalgesia evoked by sciatic mononeuropathy in NKI receptor knockout mice. Neuroreport 11:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Mason GS, Cumberbatch MJ, Hill RG, et al (2002) The bradykinin B1 receptor antagonist B9858 inhibits a nociceptive spinal reflex in rabbits. Can J Physiol Pharmacol 80:264–268

    Article  PubMed  CAS  Google Scholar 

  • Matthew IR, Ogden GR, Frame JW, Wight AJ (2000) Dose response and safety of cizolirtine citrate (E-4018) in patients with pain following extraction of third molars. Curr Med Res Opin 16:107–114

    Article  PubMed  CAS  Google Scholar 

  • Max MB, Schafer SC, Culnane M, et al (1988) Association of pain reliefwith drug side-effects in postherpetic neuralgia: a single-dose study clonidine, codeine, ibuprofen and placebo. Clin Pharmacol Ther 43:363–371

    Article  PubMed  CAS  Google Scholar 

  • Mazzuferi M, Binaschi A, Rodi D, et al (2005) Induction of B1 bradykinin receptors in the kindled hippocampus increases extracellular glutamate levels: a microdialysis study. Neuroscience 135:979–986

    Article  PubMed  CAS  Google Scholar 

  • McLean PG, Perretti M, Ahluwalia A (2000) Kinin B1 receptors and the cardiovascular system: regulation of expression and function. Cardiovasc Res 48:194–210

    Article  PubMed  CAS  Google Scholar 

  • McLean S, Ganong AH, Seeger TF, et al (1991) Activity and distribution of binding sites in brain of a nonpeptide substance P (NK1) receptor antagonist. Science 251:437–439

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Miermeister F, Seifert F, et al (2005) Variable sensitivity to noxious heat ismediated by differential expression of the CGRP gene. Proc Natl Acad Sci U S A 102:12938–12943

    Article  PubMed  CAS  Google Scholar 

  • Molander C, Ygge J, Dalsgaard CJ (1987) Substance P-, somatostatin-and calcitonin generelated peptide-like immunoreactivity and fluoride resistant acid phosphatase-activity in relation to retrogradely labeled cutaneous, muscular and visceral primary sensory neurons in the rat. Neurosci Lett 74:37–42

    Article  PubMed  CAS  Google Scholar 

  • Moreno MJ, Abounader R, Hebert E, et al (2002) Efficacy of the non-peptide CGRP receptor antagonist BIBN4096BS in blocking CGRP-induced dilations in human and bovine cerebral arteries: potential implications in acute migraine treatment. Neuropharmacology 42:568–576

    Article  PubMed  CAS  Google Scholar 

  • Morissette G, Fortin JP, Otis S, et al (2004) A novel nonpeptide antagonist of the kinin B1 receptor: effects on the rabbit receptor. J Pharmacol Exp Ther 311:1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Morris R, Cheunsuang O, Stewart A, Maxwell D (2004) Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. Brain Res Brain Res Rev 46:173–190

    Article  PubMed  Google Scholar 

  • Muff R, Born W, Lutz TA, Fischer JA (2004) Biological importance of the peptides of the calcitonin family as revealed by disruption and transfer of corresponding genes. Peptides 25:2027–2038

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, Hunt SP, Iversen LL, et al (1981) Biochemical and anatomical observations on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin. Neuroscience 6:1923–1934

    Article  PubMed  CAS  Google Scholar 

  • Natsugari H, Ikeura Y, Kiyota Y, et al (1995) Novel, potent, and orally active substance P antagonists: synthesis and antagonist activity of N-benzylcarboxamide derivatives of pyrido[3,4-b]pyridine. J Med Chem 38:3106–3120

    Article  PubMed  CAS  Google Scholar 

  • Navari RM, Reinhardt RR, Gralla RJ, et al (1999) Reduction of cisplatin-induced emesis by a selective neurokinin-1-receptor antagonist. L-754,030 Antiemetic Trials Group. N Engl J Med 340:190–195

    Article  PubMed  CAS  Google Scholar 

  • Nawa H, Kotani H, Nakanishi S (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312:729–734

    Article  PubMed  CAS  Google Scholar 

  • Neckers LM, Schwartz JP, Wyatt RJ, et al (1979) Substance P afferents from the habenula innervate the dorsal raphe nucleus. Exp Brain Res 37:619–623

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer V, Rumenapp P, Schaible HG (1996) Calcitonin gene related peptide is involved in the spinal processing of mechanosensory input from the rat’s knee joint and in the generation and maintenance of hyperexcitability of dorsal horn neurons during development of acute inflammation. Neuroscience 71:1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Nohr D, Schafer MKH, Persson S, et al (1999) Calcitonin gene related peptide gene expression in collagen-induced arthritis is differentially regulated in primary afferents and motoneurons: influence of glucocorticoids. Neuroscience 93:759–773

    Article  PubMed  CAS  Google Scholar 

  • Norman B, Panebianco D, Block GA (1998) A controlled, in clinic study to explore the preliminary safety and efficacy of intravenous L-758,298 (a prodrug of the NK1 receptor antagonist L-754,030) in the acute treatment of migraine [abstract]. Cephalalgia 18:407

    Google Scholar 

  • Oh-hashi Y, Shindo T, Kurihara Y, et al (2001) Elevated sympathetic nervous activity inmice deficient in α-CGRP. Circ Res 89:983–990

    PubMed  CAS  Google Scholar 

  • Okano S, Ikeura Y, Inatomi N (2002) Effects of tachykinin NK1 receptor antagonists on the viscerosensory response caused by colorectal distention in rabbits. J Pharmacol Exp Ther 300:925–931

    Article  PubMed  CAS  Google Scholar 

  • Okayama Y, Ono Y, Nakazawa T, et al (1998) Human skin mast cells produce TNF-alpha by substance P. Int Arch Allergy Immunol 117Suppl 1:48

    Article  PubMed  CAS  Google Scholar 

  • Olesen J, Diener HC, Husstedt IW, et al (2004) Calcitonin gene related peptide receptor antagonist BIBN4096BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Oliver KR, Sirinathsinghji DJ, Hill RG (2000) Frombasic research on neuropeptide receptors to clinical benefit. Drug News Perspect 13:530–542

    Article  PubMed  CAS  Google Scholar 

  • Oliver KR, Kane SA, Salvatore CA, et al (2001) Cloning, characterization and central nervous system distribution of rat receptor activity modifying proteins. Eur J Neurosci 14:618–628

    Article  PubMed  CAS  Google Scholar 

  • Oliver KR, Wainright A, Edvinsson L, Pickard JD, Hill RG (2002) Immunochemical localization of calcitonin-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. J Cereb Blood Flow Metab 22:620–629

    Article  PubMed  CAS  Google Scholar 

  • Opree A, Kress M (2000) Involvement of the proinflammatory cytokines tumor necrosis factor α, IL-1β and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci 20:6289–6293

    PubMed  CAS  Google Scholar 

  • Patel S, Gentry CT, Campbell EA (1996) A model for in vivo evaluation of tachykinin NK1 receptor antagonists using carrageenan-induced hyperalgesia in the guinea pig paw. Br J Pharmacol 117:248P

    Google Scholar 

  • Patte-Mensah C, Kibaly C, Mensah-Nyagan AG (2005) Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. Proc Natl Acad Sci U S A 102:9044–9049

    Article  PubMed  CAS  Google Scholar 

  • Patwardhan AM, Berg KA, Akopain AN, et al (2005) Bradykinin-induced functional competence and trafficking of the δ-opioid receptor in trigeminal nociceptors. J Neurosci 25:8825–8832

    Article  PubMed  CAS  Google Scholar 

  • Pavlik I, Suchy J, Pac D, et al (2004) Comparison of cizolirtine citrate and metamizol sodium in the treatment of adult acute renal colic: a randomized double blind clinical pilot study. Clin Ther 26:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Pesquero JB, Araujo RC, Heppenstall PA, et al (2000) Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci U S A 97:8140–8145

    Article  PubMed  CAS  Google Scholar 

  • Petersen KA, Lassen LH, Birk S, et al (2005) BIBN4096BS antagonizes human α-calcitonin gene related peptide-induced headache and extracerebral artery dilatation. Clin Pharmacol Ther 77:202–213

    Article  PubMed  CAS  Google Scholar 

  • Phebus LA, Johnson KW, Stengel PW, et al (1997) The non-peptide NK-1 receptor antagonist LY303870 inhibits neurogenic dural inflammation in guinea pigs. Life Sci 60:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Piper RD, Edvinsson L, Ekman R, Lambert GA (1993) Cortical spreading depression does not result in the release of calcitonin gene related peptide into the external jugular vein of the cat: relevance to human migraine. Cephalalgia 13:180–183

    Article  PubMed  CAS  Google Scholar 

  • Poyner DR, Sexton PM, Marshall I, et al (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene related peptide, adrenomedullin, amylin and calcitonin receptors. Pharmacol Rev 54:233–246

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan V, Henry JL (1991) Novel substance P antagonist, CP-96, 345, blocks responses of cat spinal dorsal horn neurons to noxious cutaneous stimulation and to substance P. Neurosci Lett 132:39–43

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan V, Iyengar S, Henry JL (1998) The nonpeptide NK-1 receptor antagonists LY303870 and LY306740 block the responses of spinal dorsal horn neurons to substance P and to peripheral noxious stimuli. Neuroscience 83:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Raidoo DM, Bhoola KD (1997) Kinin receptors on human neurons. J Neuroimmunol 77: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Ransom RW, Harrell CM, Reiss D, et al (2004) Pharmacological characterization and radioligand binding properties of a high-affinity, nonpeptide, bradykinin B1 receptor antagonist. Eur J Pharmacol 499:77–84

    Article  PubMed  CAS  Google Scholar 

  • Rashid MH, Inoue M, Matsumoto M, et al (2004) Switching of bradykinin-mediated nociception following partial sciatic nerve injury in mice. J Pharmacol Exp Ther 308:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt RR, Laub JB, Fricke JR, et al (1998) Comparison of the neurokinin-1 antagonist, L-754,030, to placebo, acetaminophen and ibuprofen in the dental pain model. Clin Pharmacol Ther 63:168

    Google Scholar 

  • Ren K, Novikova SI, He F, et al (2005) Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats. Mol Pain 1:27

    Article  PubMed  CAS  Google Scholar 

  • Richie TJ, Dziadulewicz EK, Culshaw AJ, et al (2004) Potent and orally bioavailable nonpeptide antagonists at the human bradykinin B1 receptor based on a 2-alkylamino-5-sulfamoylbenzamide core. J Med Chem 47:4642–4644

    Article  CAS  Google Scholar 

  • Riediger T, Schmid HA, Young AA, Simon E (1999) Pharmacological characterization of amylin-related peptides activating subfornical organ neurons. Brain Res 837:161–168

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld MG, Emeson RB, Yeakley JM, et al (1992) Calcitonin gene related peptide: a peptide generated as a consequence of tissue-specific developmentally regulated alternative RNA processing events. Ann N Y Acad Sci 657:1–17

    Article  PubMed  CAS  Google Scholar 

  • Rudolf K, Eberlein W, Engel W, et al (2005) Development of human calcitonin gene related peptide (CGRP) receptor antagonists. 1. potent and selective small molecule CGRP antagonists. 1-[N2[3,5 dibromo-N-[[4-(3,4-dihydro-2)1H)-oxoquinazolin-3yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl) piperazine: the first CGRP antagonist for clinical trials in acute migraine. J Med Chem 48:5921–5931

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NM, Boyce S, Williams AR, et al (1993) Antinociceptive activity of NK1 receptor antagonists: non-specific effects of racemic RP67580. Br J Pharmacol 110:1607–1613

    PubMed  CAS  Google Scholar 

  • Rupniak NM, Carlson E, Boyce S, et al (1996) Enantioselective inhibition of the formalin paw late phase by the NK1 receptor antagonist L-733,060 in gerbils. Pain 67:189–195

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NM, Tattersall FD, Williams AR, et al (1997a) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Boyce S, Webb JK, et al (1997b) Effects of the bradykinin B1 receptor antagonist des-Arg9[Leu8] bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 7:89–97

    Article  Google Scholar 

  • Rupniak NMJ, Longmore J, Hill RG (2000) Role of bradykinin B1 and B2 receptors in nociception and inflammation. In: Wood JN (ed) Molecular basis of pain induction. Wiley-Liss, Toronto, pp 149–173

    Google Scholar 

  • Russell IJ, Orr MD, Littman B, et al (1994) Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum 37:1593–1601

    PubMed  CAS  Google Scholar 

  • Sabino MA, Honore P, Rogers SD, et al (2002) Tooth extraction-induced internalization of the substance P receptor in trigeminal nucleus and spinal cord neurons: imaging the neurochemistry of dental pain. Pain 95:175–186

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Matsuno H, Tsuji H, et al (1998) Substance P receptor (NK1) gene expression in synovial tissue in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol 27:135–141

    Article  PubMed  CAS  Google Scholar 

  • Salt TE, Hill RG (1983) Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience 4:1083–1103

    Article  Google Scholar 

  • Samsam M, Covenas R, Ahangari R, et al (2000) Simultaneous depletion on neurokinin A, substance P and calcitonin gene related peptide from the caudal trigeminal nucleus of the rat during electrical stimulation of the trigeminal ganglion. Pain 84:389–395

    Article  PubMed  CAS  Google Scholar 

  • Schubert TEO, Weidler C, Lerch K, et al (2005) Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis 64:1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Schutz B, Mauer D, Salmon AM, et al (2004) Analysis of the cellular expression pattern of β-CGRP in α-CGRP deficient mice. J Comp Neurol 476:32–43

    Article  PubMed  CAS  Google Scholar 

  • Schwei MJ, Honore P, Rodgers SD, et al (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19:10886–10897

    PubMed  CAS  Google Scholar 

  • Seabrook GR, Bowery BJ, Heavens R, et al (1997) Expression of B1 and B2 bradykinin receptor mRNA and their functional roles in sympathetic ganglia and sensory dorsal root ganglia neurons from wild-type and B2 receptor knockout mice. Neuropharmacology 36:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Seguin L, Millan MJ (1994) The glycine B receptor partial agonist (+)-HA966, enhances induction of antinociception by RP 67580 and CP-99,994. Eur J Pharmacol 253:R1–3

    Article  PubMed  CAS  Google Scholar 

  • Sergeyev V, Hokfelt T, Hurd Y (1999) Serotonin and substance P co-exist in dorsal raphe neurons of the human brain. Neuroreport 10:3967–3970

    Article  PubMed  CAS  Google Scholar 

  • Seybold VS, McCarson KE, Mermelstein PG, et al (2003) Calcitonin gene related peptide regulates expression of neurokinin 1 receptors by rat spinal neurons. J Neurosci 23: 1816–1824

    PubMed  CAS  Google Scholar 

  • Shembalkar P, Taubel J, Abadias M, et al (2001) Cizolirtine citrate (E-4018) in the treatment of chronic neuropathic pain. Curr Med Res Opin 17:262–266

    Article  PubMed  CAS  Google Scholar 

  • Shepheard SL, Williamson DJ, Hill RG, et al (1993) The non-peptide neurokinin1 receptor antagonist, RP 67580, blocks neurogenic plasma extravasation in the dura mater of rats. Br J Pharmacol 108:11–12

    PubMed  CAS  Google Scholar 

  • Shepheard SL, Williamson DJ, Williams J, et al (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in Dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34:255–261

    Article  PubMed  CAS  Google Scholar 

  • Sibilia V, Pagani F, Lattuada N, et al (2000) Amylin compared with calcitonin: competitive binding studies in rat brain and antinociceptive activity. Brain Res 854:79–84

    Article  PubMed  CAS  Google Scholar 

  • Simpson PB, Woollacott AJ, Hill RG, et al (2000) Functional characterization of bradykinin analogues on recombinant human bradykinin B1 and B2 receptors. Eur J Pharmacol 392:1–9

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Hill RG, Edvinsson L, Longmore J (2002) An immunohistochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D receptor immunoreactivities are expressed by trigeminal sensory fibres. Cephalalgia 22:424–431

    Article  PubMed  CAS  Google Scholar 

  • Su DS, Markowitz MK, DiPardo RM, et al (2003) Discovery of a potent, non-peptide bradykinin B1 receptor antagonist. J Am Chem Soc 125:7516–7517

    Article  PubMed  CAS  Google Scholar 

  • Sun RQ, Tu YJ, Lawand NB, et al (2004) Calcitonin gene related peptide receptor activation produces PKA-and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 92:2859–2866

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Noguchi K, Ruda MA (2002) Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci Lett 327:133–137

    Article  PubMed  CAS  Google Scholar 

  • Tajti J, Uddman R, Edvinsson L (2001) Neuropeptide localization in the ‘migraine generator’ region of the human brainstem. Cephalalgia 21:96–101

    Article  PubMed  CAS  Google Scholar 

  • Tan KK, Brown MJ, Hargreaves RJ, et al (1995) Calcitonin gene related peptide as an endogenous vasodilator: immunoblockade studies in vivo with an anti-calcitonin gene related peptide monoclonal antibody and its Fab’ fragment. Clin Sci 89:565–573

    PubMed  CAS  Google Scholar 

  • Tan KKC, Brown MJ, Longmore J, et al (1994) Demonstration of the neurotransmitter role of calcitonin gene related peptide (CGRP) by immuno-blockade with anti-CGRP monoclonal antibodies. Br J Pharmacol 111:703–710

    PubMed  CAS  Google Scholar 

  • Tanaka S, Barron KW, Chandler MJ, et al (2001) Low intensity spinal cord stimulation may induce cutaneous vasodilation via CGRP release. Brain Res 896:183–187

    Article  PubMed  CAS  Google Scholar 

  • Troger J, Humpel C, Kremser B, et al (1999) The effects of streptozotocin-induced diabetes mellitus on substance P and calcitonin gene related peptide expression in the rat trigeminal ganglion. Brain Res 842:84–91

    Article  PubMed  CAS  Google Scholar 

  • Urban L, Gentry C, Patel S, et al (1999) Selective NK1 receptor antagonists block neuropathic and inflammatory pain in the guinea pig. 9th World Congress on Pain (abstr 125), p 40

    Google Scholar 

  • Urban LA, Fox AJ (2000) NK1 receptor antagonists—are they really without effect in the pain clinic? Trends Pharmacol Sci 21:462–464

    Article  PubMed  CAS  Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    Article  PubMed  Google Scholar 

  • Vellani V, Zachrisson O, McNaughton PA (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol 560:391–401

    Article  PubMed  CAS  Google Scholar 

  • Wacnik PW, Baker CM, Herron MJ, et al (2005) Tumor-induced mechanical hyperalgesia involves CGRP receptors and altered innervation and vascularization of DsRed2 fluorescent hindpaw tumors. Pain 115:95–106

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kohno T, Amaya F, et al (2005) Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J Neurosci 25:7986–7992

    Article  PubMed  CAS  Google Scholar 

  • White FA, Bhangoo SK, Miller RJ (2005) Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov 4:834–844

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Hargreaves RJ (2001) Neurogenic inflammation in the context of migraine. Microsc Res Tech 53:167–178

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Shepheard SL, Hill RG, et al (1997) The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur J Pharmacol 328:61–64

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997a) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene related peptide on dural vessel diameter in the anesthetized rat. Cephalalgia 17:518–524

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997b) Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat—intravital microscope studies. Cephalalgia 17:525–531

    Article  PubMed  CAS  Google Scholar 

  • Wood MR, Kim JJ, Han W, et al (2003) Benzodiazepines as potent and selective bradykinin B1 antagonists. J Med Chem 46:1803–1806

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK (2005) Activin induces tactile allodynia and increases calcitonin gene related peptide after peripheral inflammation. J Neurosci 25:9227–9235

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yaksh TL (1991) Stereospecific effects of a nonpeptidic NK1 selective antagonist, CP-96,345: antinociception in the absence of motor dysfunction. Life Sci 49: 1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Yasuda T, Iwamoto T, Ohara M, et al (1999) The novel analgesic compound OT-7100 (5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine) attenuates mechanical nociceptive responses in animal models of acute and peripheral neuropathic hyperalgesia. Jpn J Pharmacol 79:65–73

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Wimalaswansa SJ, Westlund KN (1999) Receptor for calcitonin gene related peptide: localization in the dorsal and ventral spinal cord. Neuroscience 92:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Yu LC, Weng XH, Wang JW, Lundeberg T (2003) Involvement of calcitonin gene related peptide and its receptor in anti-nociception in the periaqueductal grey of rats. Neurosci Lett 349:1–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, R.G., Oliver, K.R. (2006). Neuropeptide and Kinin Antagonists. In: Stein, C. (eds) Analgesia. Handbook of Experimental Pharmacology, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33823-9_7

Download citation

Publish with us

Policies and ethics