
A Type Discipline for Authorization Policies

Cédric Fournet1, Andrew D. Gordon1, and Sergio Maffeis1,2

1 Microsoft Research
2 Department of Computing, Imperial College London

Abstract. Distributed systems and applications are often expected to enforce
high-level authorization policies. To this end, the code for these systems relies
on lower-level security mechanisms such as, for instance, digital signatures, local
ACLs, and encrypted communications. In principle, authorization specifications
can be separated from code and carefully audited. Logic programs, in particular,
can express policies in a simple, abstract manner.

For a given authorization policy, we consider the problem of checking whether
a cryptographic implementation complies with the policy. We formalize authoriza-
tion policies by embedding logical predicates and queries within a spi calculus.
This embedding is new, simple, and general; it allows us to treat logic programs
as specifications of code using secure channels, cryptography, or a combination.
Moreover, we propose a new dependent type system for verifying such implemen-
tations against their policies. Using Datalog as an authorization logic, we show
how to type several examples using policies and present a general schema for
compiling policies.

1 Typing Implementations of Authorization Policies

An authorization policy prescribes conditions that must be satisfied before performing
any privileged action (for example, accessing a sensitive resource). A system complies
with the policy if these conditions hold whenever the action is performed—however, the
policy does not usually prescribe a particular choice of enforcement mechanisms.

Authorization issues can be complex, even at an abstract level. Some policies ad-
dress security concerns for numerous actors, involving roles, groups, partial trust, and
controlled delegation. Those policies are best expressed in high-level languages, with
supporting tools. Specifically, logic programming seems well suited for expressing poli-
cies: each authorization request is formulated as a logical request against a database of
facts and rules, while the policy itself carefully controls changes to the database. Hence,
variants of Datalog have been usefully applied to design trust management systems (e.g.,
PolicyMaker [6], SD3 [20], Binder [12]), express complex policies (e.g., Cassandra [4]),
and study authorization languages (e.g., SDSI/SPKI [1, 21], XrML [11]).

Given a target policy, we consider the problem of verifying that a particular sys-
tem correctly implements this policy. In a distributed setting, this refinement typically
involves security protocols and cryptography. For instance, when receiving a request,
one may first verify an identity certificate, then authenticate the message, and finally
consider the privileges associated with the sender. Authorization decisions are often in-
termingled with other imperative code, and are hard to analyze and audit. For instance,

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 141–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 C. Fournet, A.D. Gordon, and S. Maffeis

the request may rightfully appear in many places in the code, most of them without a
valid identity certificate at hand. The relation between imperative code and declarative
policies is usually informal: theoretical studies rarely connect the logic to an operational
semantics.

Our formal development is within a spi calculus [3], that is, a pi calculus with abstract
cryptographic operations. We use a global policy, interpreted against processes in a way
that generalizes a previous embedding [17] of correspondence assertions [24]. There
are many techniques to verify standard correspondences with respect to the Dolev-Yao
model [13], the standard “network is the opponent” threat model for cryptographic
protocols. However, these correspondences are attached to low-level events (such as
a successful decryption), and it can be quite hard to relate them to high-level access
control decisions. Perhaps in consequence, more abstract correspondences have seldom
been validated against the Dolev-Yao model, even though they rely on cryptography.

In contrast to several previous works, we use the authorization language as a statically
enforced specification, instead of a language for programming dynamic authorization
decisions. The two approaches are complementary. The static approach is less expressive
in terms of policies, as we need to anticipate the usage of the facts and rules involved at
runtime. In contrast, a logic-based implementation may dynamically accept (authenti-
cated) facts and rules, as long as they lead to a successful policy evaluation. The static
approach is more expressive in terms of implementations, as we can assemble imper-
ative and cryptographic mechanisms (for example, communications to collect remote
certificates), irrespective of the logic-based evaluation strategy suggested by the policy.
Hence, the static approach may be more efficient and pragmatically simpler to adapt to
existing systems. Non-executable policies may also be simpler to write and to maintain,
as they can safely ignore functional issues.

Summary of Contributions. To our knowledge, this is the first attempt to relate autho-
rization logics to their cryptographic implementation in a pi calculus. Specifically:

– We show how to embed a range of authorization logics within a pi calculus. (We
use Datalog as a simple, concrete example of an authorization logic.)

– We develop a new type system that checks conformance to a logic policy by keeping
track of logical facts and rules in the typing environment, and using logical deduction
to type authorization queries. Our main theorem states that all queries activated in
a well-typed program follow from the enclosing policy.

– As a sample application, we present two distributed implementations of a simple
Datalog policy for conference management featuring rules for filing reports and
delegating reviews. One implementation requests each delegation to be registered
online, whereas the other enables offline, signature-based delegation, and checks
the whole delegation chain later, when a report is filed.

– As another, more theoretical application, we present a generic implementation of
Datalog in the pi calculus—well-typed in our system—which can be used as a default
centralized implementation for any part of a policy.

We built a typechecker and a symbolic interpreter for our language, and used them to
validate these applications. Our initial experience confirms the utility of such tools for
writing code that composes several protocols, even if its overall size remains modest so
far (a few hundred lines).

A Type Discipline for Authorization Policies 143

Related Work. There is a substantial literature on type systems for checking security
properties. In the context of process calculi, there are, for example type systems to check
secrecy [2] and authenticity [16] properties in the spi calculus, access control properties
of mobile code in the boxed ambient calculus [8], and discretionary access control [9]
and role-based access control [7] in the pi calculus. Moreover, various experimental
systems, such as JIF [22] and KLAIM [23], include types for access control. Still, there
appears to be no prior work on typing implementations of a general authorization logic.

In the context of strand spaces and nonce-based protocols, Guttman et al. [19] an-
notate send actions in a protocol with trust logic formulas which must hold when a
message is sent, and receive actions with formulas which can be assumed to hold when
a message is received. Their approach also relies on logically-defined correspondence
properties, but it assumes the dynamic invocation of an external authorization engine,
thereby cleanly removing the dependency on a particular authorization policy when rea-
soning about protocols. More technically, we attach static authorization effects to any
operation (input, decryption, matching) rather than just message inputs.

Blanchet’s ProVerif [5] checks correspondence assertions in the applied pi calculus
by reduction to a logic programming problem. ProVerif can check complex disjunctive
correspondences, but has not been applied to check general authorization policies.

Guelev et al. [18] also adopt a conference programme committee as a running ex-
ample, in the context of model checking the consequences of access control policies.

Contents. The paper is organized as follows. Section 2 reviews Datalog, illustrates its
usage to express authorization policies, and states a general definition of authorization
logics. Section 3 defines a spi calculus with embedded authorization assertions. Section 4
presents our type system and states our main safety results. Section 5 develops well-
typed distributed implementations for our sample delegation policy. Section 6 provides
our pi calculus implementation of Datalog and states its correctness and completeness.
Section 7 concludes and sketches future work. Due to space constraints, some standard
definitions and all proofs are omitted; they appear in a technical report [14].

2 A Simple Logic for Authorization

Datalog. We briefly present a syntax and semantics for Datalog. (For a comprehensive
survey of Datalog, see for instance [10].) A Datalog program consists of facts, which
are statements about the universe of discourse, and clauses, which are rules that can be
used to infer facts. In the following, we interpret programs as authorization policies.

Syntax for Datalog:

u ::= X | M term: a logic variable X or a spi calculus message M
L ::= p(u1, . . . ,un) literal: predicate p holds for u1, . . . ,un

C ::= L :−L1, . . . ,Ln clause (or rule), with n ≥ 0 and fv(L) ⊆ ⋃
i fv(Li)

S ::= {C1, . . . ,Cn} Datalog program (or policy): a set of clauses

A literal L is a predicate p(u1, . . . ,un), of fixed arity n ≥ 0, on terms u1, . . . ,un. Terms
range over logical variables X ,Y,Z and messages M; these messages are treated as
Datalog atoms, but they have some structure in our spi calculus, defined in Section 3.

144 C. Fournet, A.D. Gordon, and S. Maffeis

A clause L :−L1, . . . ,Ln has a head, L, and a body, L1, . . . ,Ln; it is intuitively read as
the universal closure of the propositional formula L1 ∧ . . .∧Ln → L. In a clause, variables
occurring in the body bind those occurring in the head. A phrase of syntax is ground if
it has no free variables. We require that each clause be ground. A fact F is a clause with
an empty body, L :− . We often write the (ground) literal L as an abbreviation of the fact
L :− .

We use the following notations: for any phrase ϕ , we let fn(ϕ) and fv(ϕ) collect free
spi calculus names and free variables, respectively. We write ϕ̃ for the tuple ϕ1, . . . ,ϕt ,
for some t ≥ 0. We write {u/X} for the capture-avoiding substitution of u for X , and
write {ũ/X̃} instead of {u1/X1} . . .{un/Xn}. We let σ range over these substitutions.
Similarly, we write {M/n} for capture-avoiding substitution of message M for name n.

A fact can be derived from a Datalog program using the rule below:

Logical Inference: S |= F

(Infer Fact)
L :−L1, . . . ,Ln ∈ S S |= Liσ ∀i ∈ 1..n

S |= Lσ
for n ≥ 0

More generally, a clause C is entailed by a program S, also written S |= C, when
we have {F | S′ ∪ {C} |= F} ⊆ {F | S′ ∪ S |= F} for all programs S′. Similarly, C is
uniformly contained in S when the inclusion above holds for all programs S′ containing
only facts. Entailment is a contextual property for programs: if S |= C and S ⊆ S′, then
S′ |= C. We rely on this property when we reason about partial programs. We generalize
inference to clauses accordingly:

Logical Inference for Clauses (Entailment): S |= C

(Infer Clause)
S ∪{L1σ , . . . ,Lnσ} |= Lσ σ maps fv(L1, . . . ,Ln) to fresh, distinct atoms

S |= L :−L1, . . . ,Ln

Example. Our main example application is a simplified conference management system,
in charge of assigning papers to referees and collecting their reports. For simplicity, we
focus on the fragment of the policy that controls the right to file a paper report in
the system, from the conference manager’s viewpoint. This right, represented by the
predicate Report(U,ID,R), is parameterized by the principal who wrote the report, a
paper identifier, and the report content. It means that principal U can submit report R on
paper ID. For instance, the fact Report(alice,42,report42) authorizes a single report to
be filed. Preferably, such facts should be deducible from the policy, rather than added to
the policy one at a time. To this end, we introduce a few other predicates.

Some predicates represent the content of some extensional database of explicitly
given facts. In our example, for instance, PCMember(U) means that principal U is a
member of the committee; Referee(U,ID) means that principal U has been asked to
review ID; and Opinion(U,ID,R) means that principal U has written report R on paper ID.
Other predicates are intensional; they represent views computed from this authorization
database. For instance, one may decide to specify Report(U,ID,R) using two clauses:

Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R) (clause A)
Report(U,ID,R):−PCMember(U),Opinion(U,ID,R) (clause B)

A Type Discipline for Authorization Policies 145

These clauses state that U can report R on ID if she has this opinion and, moreover,
either U has been assigned this paper (clause A), or U is in the programme committee
(clause B)—thereby enabling PC members to file reports on any paper even if it has not
been assigned to them. Variants of this policy are easily expressible; for instance, we
may instead state that PC members can file only subsequent reports, not initial ones, by
using a recursive variant of clause B:

Report(U,ID,R):−PCMember(U),Opinion(U,ID,R),Report(V,ID,S)

Delegation. Continuing with our example, we extend the policy to enable any designated
referees to delegate their task to a subreferee. To this end, we add an extensional predicate,
Delegate(U,V,ID), meaning that principal U intends to delegate paper ID to principal V,
and we add a clause to derive new facts Referee(V,ID) accordingly:

Referee(V,ID) :− Referee(U,ID),Delegate(U,V,ID) (clause C)

Conversely, the policy { A,B,C } does not enable a PC member to delegate a paper,
unless the paper has been assigned to her.

Discussion. In contrast to more sophisticated authorization languages, which associates
facts with principals “saying” them, we adopt the subjective viewpoint of the conference
system, which implicitly owns all predicates used to control reports. Even if Opinion(U,)
and Delegate(U,...) are implicitly owned by U, these predicates represent the fact that
the conference system believes these facts, rather than U’s intents. Also, the distinction
between intensional and extensional predicates is useful to interpret policies but is not
essential. As we illustrate in Section 5, this distinction in the specification does not
prescribe any implementation strategy.

From Datalog to Arbitrary Authorization Logics. Although Datalog suffices as an au-
thorization logic for the examples and applications developed in this paper, its syntax
and semantics are largely irrelevant to our technical developments. More abstractly, our
main results hold for any logic that meets the requirements listed below:

Definition 1. An authorization logic (C , fn, |=) is a set of clauses C ∈ C closed by
substitutions σ of messages for names, with finite sets of free names fn(C) such that
Cσ = C if dom(σ)∩ fn(C) = ∅ and fn(Cσ) ⊆ (fn(C) \ dom(σ))∪ fn(σ); and with an
entailment relation S |= C, between sets of clauses S ⊆ C and clauses C,C′ ∈ C , such
that (Mon) S |= C ⇒ S ∪{C′} |= C and (Subst) S |= C ⇒ Sσ |= Cσ .

3 A Spi Calculus with Authorization Assertions

The spi calculus [3] extends the pi calculus with abstract cryptographic operations in
the style of Dolev and Yao [13]. Names represent both cryptographic keys and com-
munication channels. The version of spi given here has a small but expressive range
of primitives: encryption and decryption using shared keys, input and output on shared
channel names, and operations on pairs. We conjecture our results, including our type
system, would smoothly extend to deal with more complex features such as asymmetric
cryptography and communications, and a richer set of data types.

146 C. Fournet, A.D. Gordon, and S. Maffeis

The main new features of our calculus are authorization assertions: statements and
expectations. These processes generalize the begin- and end-assertions in previous em-
beddings of correspondences in process calculi [17]. Similarly, they track security prop-
erties, but do not in themselves affect the behaviour of processes.

A statement is simply a clause C (either a fact or a rule). For example, the following
process is a composition of clause A of Section 2 with two facts:

A | Referee(alice,42) | Opinion(alice,42,report42) (process P)

An expectation expectC represents the expectation on the part of the programmer that
the rule or fact C can be inferred from clauses in parallel. Expectations typically record
authorization conditions. For example, the following process represents the (justified)
expectation that a certain fact follows from the clauses of P.

P | expect Report(alice,42,report42) (process Q)

Expectations most usefully concern variables instantiated at runtime. In the follow-
ing, the contents x of the report is received from the channel c:

P | out c (report42,ok) | in c(x,y); expect Report(alice,42,x) (process R)

(The distinguished name ok is an annotation to help typing, with no effect at runtime.)
All the statements arising in our case studies fall into two distinct classes. One class

consists of unguarded, top-level statements of authorization rules, such as those in the
previous section, that define the global authorization policy. The other class consists
of input-guarded statements, triggered at runtime, that declare facts—not rules—about
data arising at runtime, such as the identities of particular reviewers or the contents of
reports. Moreover, all the expectations in our case studies are of facts, not rules.

The syntax and the operational semantics of our full calculus appear on the next
page. The split and match processes for destructing pairs are worth comparing. A split
binds names to the two parts of a pair, while a match is effectively a split followed by a
conditional; think of match M as (N,y);P as split M as (x,y); if x = N then P. Taking
match as primitive is a device to avoid using unification in a dependent type system [16].
Binding occurrences of names have type annotations, T or U ; the syntax of our system
of dependent types is in Section 4.

The operational semantics is defined as a reduction relation, with standard rules.
Statements and expectations are inert processes; they do not have particular rules for
reduction or congruence (although they are affected by other rules). The conditional
operations decrypt, split, and match simply get stuck if decryption or matching fails;
we could allow alternative branches for error handling, but they are not needed for the
examples in the paper.

In examples, we rely on derived notations for n-ary tuples, and for pattern-matching
tuples via sequences of match and split operations. For n > 2, (M1,M2, . . . ,Mn) ab-
breviates (M1,(M2, . . . ,Mn)). We write our process notation for pattern-matching tu-
ples in the form tuple M as (N1, . . . ,Nn);P, where n > 0, M is a message (expected
to be a tuple), and each Ni is an atomic pattern. Let an atomic pattern be either a
variable pattern x, or a constant pattern, written =M, where M is a message to be

A Type Discipline for Authorization Policies 147

Syntax for Messages and Processes:

a,b,c,k,x,y,z name
M,N ::= message

x name: a key or a channel
{M}N authenticated encryption of M with key N
(M,N) message pair
ok distinguished name

P,Q,R ::= process
out M(N) asynchronous output of N to channel M
in M(x:T);P input of x from channel M (x has scope P)
new x:T ;P fresh generation of name x (x has scope P)
!P unbounded parallel composition of replicas of P
P | Q parallel composition of P and Q
0 inactivity
decrypt L as {y:T}N;P bind y to decryption of L with key N (y has scope P)
split M as (x:T,y:U);P solve (x,y) = M (x has scope U and P; y has scope P)
match M as (N,y:U);P solve (N,y) = M (y has scope P)
C statement of clause C
expect C expectation that clause C is derivable

Notations: (x̃:T̃) �= (x1:T1, . . . ,xn:Tn) and new x̃:T̃ ;P
�= new x1:T1; . . .new xn:Tn;P

Let S = {C1, . . . ,Cn}. We write S | P for C1 | . . . | Cn | P.

Rules for Reduction: P → P′

P → P′ ⇒ P | Q → P′ | Q (Red Par)
P → P′ ⇒ new x:T ;P → new x:T ;P′ (Red Res)
P ≡ Q,Q → Q′,Q′ ≡ P′ ⇒ P → P′ (Red Struct)

out a(M) | in a(x:T);P → P{M/x} (Red Comm)
decrypt {M}k as {y:T}k;P → P{M/y} (Red Decrypt)
split (M,N) as (x:T,y:U);P → P{M/x}{N/y} (Red Split)
match (M,N) as (M,y:U);P → P{N/y} (Red Match)

Structural equivalence P ≡ Q is defined as usual, and P →∗
≡ P′ is P ≡ P′ or P →∗ P′.

matched. Each variable pattern translates to a split, and each constant pattern trans-
lates to a match. For example, tuple (a,b,c) as (x,=b,y);P translates to the process
split (a,(b,c)) as (x,z);match z as (b,z);split (z,z) as (y,z);P, where z is fresh. We
allow pattern-matching in conjunction with input and decryption processes, and omit
type annotations. The technical report has the formal details of these notations.

The presence of statements and expectations in a process induces the following
safety properties. Informally, to say an expectation expect C is justified means there are
sufficient statements in parallel to derive C. Then a process is safe if every expectation
in every reachable process is justified.

Definition 2 (Safety). A process P is safe iff whenever P →∗
≡ new x̃:T̃ ;(expect C | P′)

then P′ ≡ new ỹ:Ũ ;(C1 | . . . | Cn | P′′) and {C1, . . . ,Cn} |= C with {ỹ}∩ fn(C) = ∅.

(The definition mentions x̃ to allow fresh names in C, while it mentions ỹ to ensure that
the clauses C, C1, . . . , Cn all use the same names; the scopes of these names are otherwise
irrelevant in the logic.)

148 C. Fournet, A.D. Gordon, and S. Maffeis

Given a process P representing the legitimate participants making up a system, we
want to show that no opponent process O can induce P into an unsafe state, where some
expectation is unjustified. An opponent is any process within our spi calculus, except it
is not allowed to include any expectations itself. (The opponent goal is to confuse the
legitimate participants about who is doing what.) As a technical convenience, we require
every type annotation in an opponent to be a certain type Un; type annotations do not
affect the operational semantics, so the use of Un does not limit opponent behaviour.

Definition 3 (Opponent). A process O is an opponent iff it contains no expectations,
and every type annotation is Un.

Definition 4 (Robust Safety). A process P is robustly safe iff P | O is safe for all
opponents O.

For example, the process Q given earlier is robustly safe, because the statements
in P suffice to infer Report(alice,42,report42), and they persist in any interaction with an
opponent. On the other hand, the process R is safe on its own, but is not robustly safe.
Consider the opponent out c (bogus,ok). We have:

R | out c (bogus,ok) → P | out c (report42,ok) | expect Report(alice,42,bogus)

This is unsafe because Report(alice,42,bogus) is not derivable from the statements in
process P. We can secure the channel c by using the new operator to make it private.
The process new c; R is robustly safe; no opponent can inject a message on c.

4 A Type System for Verifying Authorization Assertions

We present a new dependent type system for checking implementations of authorization
policies. Our starting point for this development was a type and effect system by Gor-
don and Jeffrey [15] for verifying one-to-many correspondences. Apart from the new
support for logical assertions, the current system features two improvements. First, a
new rely-guarantee rule for parallel composition allows us to typecheck a safe process
such as L | expect L; the analogous parallel composition cannot be typed in the original
system. Second, effects are merged into typing environments, leading to a much cleaner
presentation, and to the elimination of typing rules for effect subsumption. We begin by
defining the syntax and informal semantics of message types.

Syntax for Types:

T,U ::= type
Un public data
Ch(T) channel for T messages
Key(T) secret key for T plaintext
(x:T,U) dependent pair (scope of x is U)
Ok(S) ok to assume the clauses S

T is generative (may be freshly created) iff T is either Un, Key(U), or Ch(U).
Notation: (x1:T1, . . . ,xn:Tn,Tn+1)

�= (x1:T1, . . . ,(xn:Tn,Tn+1))

A Type Discipline for Authorization Policies 149

A message of type Un is public data that may flow to or from the opponent; for
example, all ciphertexts are of type Un. A message of type Ch(T) is a name used as a
secure channel for messages of type T . Similarly, a message of type Key(T) is a name
used as a secret key for encrypting and decrypting plaintexts of type T . A message of
type (x:T,U) is a pair (M,N) where M is of type T , and N is of type U{M/x}. Finally,
the token ok is the unique message of type Ok(S), proving S may currently be inferred.

For example, the type Ch((x:Un,Ok(Report(alice,42,x)))) can be assigned to c in
process R, stating that c is a channel for communicating pairs (M,ok) where M : Un and
ok : Ok(Report(alice,42,M)).

Next, we define typing environments—lists of variable bindings and clauses—plus
two auxiliary functions. The function env(−) sends a process to an environment that
collects its top-level statements, with suitable name bindings for any top-level restric-
tions. The function clauses(−) sends an environment to the program consisting of all
the clauses listed in the environment plus the clauses in top-level Ok(−) types.

Syntax for Environments, and Functions env(P) and clauses(E):

E ::= ∅ | E,x:T | E,C Notation: E(x) = T if E = E ′,x:T,E ′′

E is generative iff E = x1:T1, . . . ,xn:Tn and each Ti is generative.

env(P | Q)x̃,ỹ = env(P)x̃,env(Q)ỹ (where {x̃, ỹ}∩ fn(P | Q) = ∅)
env(new x:T ;P)x,x̃ = x:T,env(P)x̃ (where {x̃}∩ fn(P) = ∅)
env(!P)x̃ = env(P)x̃ env(C)∅ = C env(P)∅ = ∅ otherwise

Convention: env(P) �= env(P)x̃ for some distinct x̃ such that env(P)x̃ is defined.

clauses(E,C) = clauses(E)∪{C} clauses(E,x:Ok(S)) = clauses(E)∪S
clauses(E,x:T) = clauses(E) if T �= Ok(S) clauses(∅) = ∅

Our system consists of three judgments, defined by the following tables. The judg-
ments define well-formed environments, types of messages, and well-formed processes.

Rules for Environments and Messages: E � �, E � M : T

(Env ∅)

∅ � �

(Env x)
E � � fn(T) ⊆ dom(E) x /∈ dom(E)

E,x:T � �

(Env C)
E � � fn(C) ⊆ dom(E)

E,C � �
(Msg x)
E � � x ∈ dom(E)

E � x : E(x)

(Msg Encrypt)
E � M : T E � N : Key(T)

E � {M}N : Un

(Msg Encrypt Un)
E � M : Un E � N : Un

E � {M}N : Un
(Msg Pair)
E � M : T E � N : U{M/x}

E � (M,N) : (x:T,U)

(Msg Pair Un)
E � M : Un E � N : Un

E � (M,N) : Un
(Msg Ok)
E � � fn(S) ⊆ dom(E) clauses(E) |= C ∀C ∈ S

E � ok : Ok(S)

(Msg Ok Un)
E � �

E � ok : Un

The rule (Msg Ok) populates an Ok(S) type only if we can infer each clause in the
Datalog program S from the clauses in E. For example, if

E = alice:Un,42:Un, report42:Un,Referee(alice,42),Opinion(alice,42,report42)

150 C. Fournet, A.D. Gordon, and S. Maffeis

then E � ok : Ok(Report(alice,42, report42)). The other message typing rules are fairly
standard. As in previous systems [16, 15], we need the rules (Msg Encrypt Un), (Msg
Pair Un), and (Msg Ok Un) to assign Un to arbitrary messages known to the opponent.

Rules for Processes: E � P

(Proc Nil)
E � �
E � 0

(Proc Rep)
E � P

E � !P

(Proc Res)
E,x:T � P T generative

E � new x:T ;P

(Proc Expect)
E,C � � clauses(E) |= C

E � expect C

(Proc Par)
E,env(Q) � P E,env(P) � Q fn(P | Q) ⊆ dom(E)

E � P | Q

(Proc Fact)
E,C � �
E � C

(Proc Decrypt)
E � M : Un E � N : Key(T) E,y:T � P

E � decrypt M as {y:T}N;P

(Proc Input)
E � M : Ch(T) E,x:T � P

E � in M(x:T);P

(Proc Decrypt Un)
E � M : Un E � N : Un E,y:Un � P

E � decrypt M as {y:Un}N;P

(Proc Input Un)
E � M : Un E,x:Un � P

E � in M(x:Un);P

(Proc Match)
E � M : (x:T,U) E � N : T E,y:U{N/x} � P

E � match M as (N,y:U{N/x});P

(Proc Output)
E � M : Ch(T) E � N : T

E � out M(N)

(Proc Match Un)
E � M : Un E � N : Un E,y:Un � P

E � match M as (N,y:Un);P

(Proc Output Un)
E � M : Un E � N : Un

E � out M(N)

(Proc Split)
E � M : (x:T,U) E,x:T,y:U � P

E � split M as (x:T,y:U);P

(Proc Split Un)
E � M : Un E,x:Un,y:Un � P

E � split M as (x:Un,y:Un);P

There are three rules of particular interest. (Proc Expect) allows expect C provided
C is entailed in the current environment. (Proc Fact) allows any statement, provided
its names are in scope. (Proc Par) is a rely-guarantee rule for parallel composition; it
allows P | Q, provided that P and Q are well-typed given the top-level statements of Q
and P, respectively. For example, by (Proc Par), ∅ � Foo() | expect Foo() follows from
∅ � Foo() and Foo() � expect Foo(), the two of which follow directly by (Proc Fact)
and (Proc Expect).

Main Results. Our first theorem is that well-typed processes are safe; to prove it, we rely
on a lemma that both structural congruence and reduction preserve the process typing
judgment.

Lemma 1 (Type Preservation). If E � P and either P ≡ P′ or P → P′ then E � P′.

Theorem 1 (Safety). If E � P and E is generative, then P is safe.

Our second theorem is that well-typed processes whose free names are public, that
is, of type Un, are robustly safe. It follows from the first via an auxiliary lemma that any
opponent process can be typed by assuming its free names are of type Un.

A Type Discipline for Authorization Policies 151

Lemma 2 (Opponent Typability). If fn(O) ⊆ {x̃} for opponent O then x̃:Ũn � O.

Theorem 2 (Robust Safety). If x̃:Ũn � P then P is robustly safe.

We conclude this section by showing our calculus can encode standard one-to-many
correspondence assertions. The idea of correspondences is that processes are annotated
with two kinds of labelled events: begin-events and end-events. The intent is that in each
run, for every end-event, there is a preceding begin-event with the same label.

We can encode one particular syntax [15] as follows:

begin !L;P
�= L | P end L;P

�= expect L | P

With this encoding and a minor extension to the type system (tagged union types), we
can express and typecheck all of the authentication protocols from Gordon and Jeffrey’s
paper [15], including WMF and BAN Kerberos.

The correspondences expressible by standard begin- and end-assertions are a special
case of the class of correspondences expressible in our calculus where the predicates
in expectations are extensional, that is, given explicitly by facts. Hence, we refer to our
generalized correspondence assertions based on intensional predicates as intensional
correspondences, to differentiate them from standard (extensional) correspondences.

5 Application: Access Control for a Programme Committee

We provide two implementations for the Datalog policy with delegation introduced in
Section 2 (defining clauses A, B, and C). In both implementations, the server enables
those three clauses, and also maintains a local database of registered reviewers, on a
private channel pwdb:

A | B | C | new pwdb : Ch(u:Un, Key(v:Un,id:Un,Ok(Delegate(u,v,id))),
Key(id:Un,report:Un,Ok(Opinion(u,id,report))));

Hence, each message on pwdb codes an entry in the reviewer database, and associates
the name u of a reviewer with two keys used to authenticate her two potential actions:
delegating a review, and filing a report. The usage of these keys is detailed below.

Although we present our code in several fragments, these fragments should be read
as parts of a single process, whose typability and safety properties are summarized at
the end of the section. Hence, for instance, our policy and the local channel pwdb are
defined for all processes displayed in this section.

Online Delegation, with Local State. Our first implementation assumes the conference
system is contacted whenever a referee decides to delegate her task. Hence, the system
keeps track of expected reports using a local database, each record showing a fact of the
form Referee(U,ID). When a report is received, the authenticated sender of the report
is correlated with her record. When a delegation request is received, the corresponding
record is updated.

The following code defines the (abstract) behaviour of reviewer v; it is triggered
whenever a message is sent on createReviewer; it has public channels providing con-
trolled access to all her privileged actions—essentially any action authenticated with one

152 C. Fournet, A.D. Gordon, and S. Maffeis

of her two keys. For simplicity, we proceed without checking the legitimacy of requests,
and we assume v is not a PC member—otherwise, we would implement a third action
for filing PC member reports.

(!in createReviewer(v);
new kdv: Key(z:Un,id:Un,Ok(Delegate(v,z,id)));
new krv: Key(id:Un,report:Un,Ok(Opinion(v,id,report)));
((!out pwdb(v,kdv,krv))
| (!in sendreportonline(=v,id,report);

Opinion(v,id,report) | out filereport(v,{id,report,ok}krv))
| (!in delegateonline(=v,w,id);

Delegate(v,w,id) | out filedelegate(v,w,id,{w,id,ok}kdv)))) |

Two new keys are first generated. The replicated output on pwdb associates those keys
with v. The replicated input on sendreportonline guards a process that files v’s reports;
in this process, the encryption {id,report,ok}krv protects the report and also carries the
fact Opinion(v,id,report) stating its authenticity. The replicated input on delegateonline
similarly guards a process that files v’s delegations.

Next, we give the corresponding code that receives these two kinds of requests at
the server. (We omit the code that selects reviewers and sends message on refereedb.) In
the process guarded by !in filereport(v,e), the decryption “proves” Opinion(v,id,report),
whereas the input on refereedb “proves” Referee(v,id): when both operations succeed,
these facts and clause A jointly guarantee that Report(v,id,report) is derivable. Con-
versely, our type system would catch errors such as forgetting to correlate the paper
or the reviewer name (e.g., writing =v,id instead of =v,=id in refereedb), leaking the
decryption key, or using the wrong key.

The process guarded by !in filedelegate(v,w,id,sigd) is similar, except that it uses the
fact Delegate(v,w,id) granted by decrypting under key kdv to transform Referee(v,id)
into Referee(w,id), which is expected for typing ok in the output on refereedb.

new refereedb : Ch((u:Un,(id:Un,Ok(Referee(u,id)))));
(!in filereport(v,e);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
in refereedb(=v,=id,); expect Report(v,id,report)) |

(!in filedelegate(v,w,id,sigd);
in pwdb(=v,kdv,krv); decrypt sigd as {=w,=id, }kdv;
in refereedb(=v,=id,); out refereedb(w,id,ok)) |

Reviews from PC members, using Capabilities. The code for processing PC member
reports is similar but simpler:

new kp:Key(u:Un,Ok(PCMember(u)));
(!in createPCmember(u,pc);PCMember(u) | out pc({(u,ok)}kp)) |
(!in filepcreport(v,e,pctoken);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
decrypt pctoken as {=v, }kp; expect Report(v,id,report)) |

Instead of maintaining a database of PC members, we (arbitrarily) use capabilities,
consisting of the name of the PC member encrypted under a new private key kp. The
code also implement two services as replicated inputs, to register a new PC member

A Type Discipline for Authorization Policies 153

and to process a PC member report. The fact Opinion(v,id,report) is obtained as above.
Although the capability sent back on channel pc has type Un, its successful decryption
yields the fact PCMember(v) and thus enables Report(v,id,report) by clause B.

Offline Delegation, with Certificate Chains. The second implementation relies instead
on explicit chains of delegation certificates. It does not require that the conference system
be contacted when delegation occurs; on the other hand, the system may have to check
a list of certificates before accepting an incoming report.

To this end, the process guarded by the replicated input on channel filedelegatereport
allocates a private channel link and uses that channel recursively to verify each piece of
evidence filed with the report, one certificate at a time. The process guarded by link has
two cases: the base case (decrypt cu) verifies an initial refereeing request and finally
accepts the report as valid; the recursive case (tuple cu) verifies a delegation step then
continues on the rest of the chain (ct). Note that the type assigned to link precisely states
our loop invariant: Delegate(u,v,id) proves that there is a valid delegation chain from u
(the report writer) up to v (the current delegator) for paper id.

A further, less important difference is that our second implementation relies on
self-authenticated capabilities under key ka for representing initial refereeing requests,
instead of messages on the private database channel refereedb. Finally, our second im-
plementation relies on auxiliary clauses making Delegate reflexive and transitive; these
clauses give us more freedom but they do not affect the outcome of our policy—one can
check that these two clauses are redundant in any derivation of Report.

(Delegate(U,W,ID):−Delegate(U,V,ID),Delegate(V,W,ID)) |
(Delegate(U,U,ID):−Opinion(U,ID,R)) |
new ka:Key((u:Un,(id:Un,Ok(Referee(u,id)))));
(!in filedelegatereport(v,e,cv);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
new link:Ch(u:Un,c:Un,Ok(Delegate(u,v,id))); out link(v,cv,ok) |
!in link(u,cu,);
(decrypt cu as {=u,=id, }ka; expect Report(v,id,report)) |
(tuple cu as (t,skt,ct);
in pwdb(=t,kdt,); decrypt skt as {=u,=id, }kdt; out link(t,ct,ok)) |

Proposition 1. Let EP assign the types displayed above to pwdb, refereedb, kp, and ka.
Let EUn assign type Un to createReviewer, createPCMember, sendreportonline, delega-
teonline, filereport, filedelegate, filepcreport, filedelegatereport, and any other variable
in its domain.

Let P be a process such that EUn,EP � P. Let Q be the process consisting of all
process fragments in this section followed by P.

We have EUn � Q, and hence Q is robustly safe.

This proposition is proved by typing Q then applying Theorem 2. In its statement, the
process P has access to the private keys and channels collected in EP; this process
accounts for any trusted parts of the server left undefined, including for instance code
that assigns papers to reviewers by issuing facts on Referee and using them to populate
refereedb and generate valid certificates under key ka. We may simply take P = 0, or let P
introduce its own policy extensions, as long as it complies with the typing environments
EUn and EP.

154 C. Fournet, A.D. Gordon, and S. Maffeis

In addition, the context (implicitly) enclosing Q in our statement of robust safety
accounts for any untrusted part of the system, notably the attacker, but also additional
code for the reviewers interacting with Q (and possibly P) using the names collected
in EUn, and notably the free channels of Q. Hence, the context may impersonate referees,
intercept messages on free channels, then send on channel filedelegatereport any term
computed from intercepted messages. The proposition confirms that minimal typing
assumptions on P suffice to guarantee the robust safety of Q.

6 Application: A Default Implementation for Datalog

We finally describe a translation from Datalog programs to the spi calculus. To each
predicate p and arity n, we associate a fresh name pn with type Tp,n. Unless the predicate p
occurs with different arities, we omit indices and write p and Tp for pn and Tp,n. Relying
on some preliminary renaming, we also reserve a set of names V for Datalog variables.
The translation is given below:

Translation from Datalog to the spi calculus: [[S]]

Tp,n = Ch(x1:Un, . . . ,xn:Un,Ok(p(x1, . . . ,xn)))
[[S]] = ∏C∈S[[C]] [[∅]] = 0 [[L :−L1, . . . ,Lm]] = ![[L1, . . . ,Lm]]∅[[[L]]+] for m ≥ 0
[[p(u1, . . . ,un)]]+ = out pn(u1, . . . ,un,ok)
[[L1,L2, . . . ,Lm]]Σ [·] = [[L1]]Σ

[
[[L2, . . . ,Lm]]Σ∪fv(L1)[·]

]
[[ε]]Σ [·] = [·]

[[p(u1, . . . ,un)]]Σ [·] = in pn(u1, . . . ,un,= ok); [·]
where ui is ui when ui �∈ (V \ (Σ ∪ fv(u j<i))) and ui is =ui otherwise.

P ⇓L when ∃P′.P →∗
≡ P′ | [[L]]+

For example, using the policy of Section 2, the translation of predicate Report uses
a channel Report of type TReport = Ch(U :Un, ID:Un,R:Un,Ok(Report(U,ID,R))) and
the translation of clause A yields the process

[[Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R)]] =
!in Referee(U,ID,=ok); in Opinion(=U,=ID,R,=ok); out Report(U,ID,R,ok)

The next lemma states that the translation of a Datalog program is well typed when
placed in parallel with itself as a policy.

Lemma 3 (Typability of the encoding). Let S be a Datalog program using predi-
cates p̃n and names ỹ with fn(S) ⊆ {ỹ}. Let E = ỹ:Ũn, p̃n:T̃n,p. We have E � S | [[S]].

More precisely, the lemma also shows that our translation is compositional: one can
translate some part of a logical policy, develop some specific protocols that comply with
some other part of the policy, then put the two implementations in parallel and rely on
messages on channels pn to safely exchange facts concerning shared predicates.

Lemma 3 establishes that our translation is correct by typing. The following theorem
also states that the translation is complete: any fact that logically follows from the Datalog
program can be observed in the pi calculus.

Theorem 3 (Correctness and completeness). Let S be a Datalog program and F a
fact. We have S |= F if and only if [[S]] ⇓F .

A Type Discipline for Authorization Policies 155

Example. To illustrate our translation, we sketch an alternative implementation of our
conference management server. Instead of coding the recursive processing of messages
sent by subreferees, as in Section 5, we set up a replicated input for each kind of certificate,
with code to check the certificate and send a message on a channel of the translation.
Independently, when a fact is expected, we simply read it on a channel of the translation.
For instance, to process incoming reports, we may use the code

!in trivial filereport(v,id,report);
in Report(=v,=id,=report,=ok); expect Report(v,id,report)

The translation of clause A sends a matching message on Report, provided the sys-
tem sends matching messages on Opinion and Referee. This approach is correct and
complete, but also non-deterministic and very inefficient. As a refinement, since any
(well-typed) program can access the channels of the translation, one may use the trans-
lation as a default implementation for some clauses and provide optimized code for
others.

7 Conclusions and Future Work

We presented a spi calculus with embedded authorization policies, a type system that
can statically check conformance to a policy (even in the presence of active attackers),
and a series of applications coded using a prototype implementation.

In itself, our type system does not “solve” authorization: the security of a well-typed
program still relies on a careful (manual) review of the policy, on the discriminating
statement of trusted facts (or even rules) in the program, and on the presence of expect
processes marking sensitive actions—indeed, in our setting, every program is safe for a
sufficiently permissive policy. Nonetheless, our type system statically enforces a disci-
pline prescribed by the policy across the program, as it uses channels and cryptographic
primitives to process messages, and can facilitate code reviews.

Future Work. From a logical viewpoint, many authorization languages extend Datalog
with notions of locality and partial trust, considering for examples facts and clauses
relative to each principal. Similarly, many variants of the pi calculus feature explicit
localities and principals and could, in principle, provide a more realistic distributed se-
mantics for these logics. We are also exploring extensions of our type system to support,
for instance, some subtyping, public-key cryptographic primitives, and linearity proper-
ties. More experimentally, we plan to extend our typechecker and symbolic interpreter,
and to study their integration with other proof techniques.

Acknowledgments. Karthikeyan Bhargavan contributed to several discussions at the start
of this project, and commented on a draft of this paper. Martı́n Abadi and the anonymous
conference reviewers made useful suggestions.

156 C. Fournet, A.D. Gordon, and S. Maffeis

References

1. M. Abadi. On SDSI’s linked local name spaces. J. Computer Security, 6(1–2):3–21, 1998.
2. M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786, Sept. 1999.
3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148:1–70, 1999.
4. M. Y. Becker and P. Sewell. Cassandra: flexible trust management, applied to electronic

health records. In 17th IEEE Computer Security Foundations Workshop (CSFW’04), pages
139–154, June 2004.

5. B. Blanchet. From secrecy to authenticity in security protocols. In 9th International Static
Analysis Symposium (SAS’02), volume 2477 of LNCS, pages 342–359. Springer, 2002.

6. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In IEEE 17th
Symposium on Research in Security and Privacy, pages 164–173, 1996.

7. C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based access control. In
17th IEEE Computer Security Foundations Workshop (CSFW’04), pages 48–60, June 2004.

8. M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: the calculus of
boxed ambients. ACM TOPLAS, 26(1):57–124, Jan. 2004.

9. M. Bugliesi, D. Colazzo, and S. Crafa. Type based discretionary access control. In CON-
CUR’04 - Concurrency Theory, volume 3170 of LNCS, pages 225–239. Springer, Sept. 2004.

10. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, 1989.

11. ContentGuard. XrML 2.0 Technical Overview. http://www.xrml.org/, Mar. 2002.
12. J. DeTreville. Binder, a logic-based security language. In IEEE Computer Society Symposium

on Research in Security and Privacy, pages 105–113, 2002.
13. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, IT–29(2):198–208, 1983.
14. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies.

Technical Report MSR–TR–2005–01, Microsoft Research, 2005.
15. A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspondences in security

protocols. In Software Security—Theories and Systems, volume 2609 of LNCS, pages 270–
282. Springer, 2002.

16. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. J. Computer
Security, 11(4):451–521, 2003.

17. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication protocols.
Theoretical Comput. Sci., 300:379–409, 2003.

18. D. P. Guelev, M. D. Ryan, and P.-Y. Schobbens. Model-checking access control policies. In
Seventh Information Security Conference (ISC’04), volume 3225 of LNCS. Springer, 2004.

19. J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C. Herzog, J. D. Ramsdell, and B. T. Sniffen.
Trust management in strand spaces: a rely-guarantee method. In 13th European Symposium
on Programming (ESOP’04), volume 2986 of LNCS, pages 340–354. Springer, 2004.

20. T. Jim. SD3: a trust management system with certified evaluation. In IEEE Computer Society
Symposium on Research in Security and Privacy, pages 106–115, 2001.

21. N. Li and J. C. Mitchell. Understanding SPKI/SDSI using first-order logic. In Proceedings
of the 16th IEEE Computer Security Foundation Workshop (CSFW’03), pages 89–103, 2003.

22. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

23. R. D. Nicola, G. Ferrari, and R. Pugliese. Programming access control: The KLAIM experi-
ence. In CONCUR 2000, volume 1877 of LNCS, pages 48–65. Springer, 2000.

24. T. Woo and S. Lam. A semantic model for authentication protocols. In IEEE Computer
Society Symposium on Research in Security and Privacy, pages 178–194, 1993.

	Typing Implementations of Authorization Policies
	A Simple Logic for Authorization
	A Spi Calculus with Authorization Assertions
	A Type System for Verifying Authorization Assertions
	Application: Access Control for a Programme Committee
	Application: A Default Implementation for Datalog
	Conclusions and FutureWork
	References

