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Abstract. Non-rigid image registration is widely used in the analysis of brain
images to the extent it is provided as a standard tool in common packages such
as SPM. However the performance of algorithms in specific applications re-
mains hard to measure. In this paper a detailed comparison of the performance
of an affine, B-Spline control-point and viscous fluid registration algorithm in
inter-subject brain registration is presented. The comparison makes use of
highly detailed expert manual labellings of a range of structures distributed in
scale and in location in the brain. The overall performance is B-Spline, fluid, af-
fine (best first) with all algorithms struggling to improve the match of smaller
structures. We discuss caveats, evaluation strategies for registration and impli-
cations for future registration-based neuroimaging studies.

1   Introduction

Image registration is now widely used in medical image analysis but detailed com-
parison of the performance and suitability of algorithms for specific applications re-
mains difficult, especially in the non-rigid case. In brain image analysis a common
task is to register an MRI brain scan of one subject to another or to a template image
in standard anatomical space. This is challenging due to population variability in cor-
tical anatomy and the poorly specified nature of anatomical versus functional corre-
spondence [1]. Many registration algorithms exist which can attempt this task but one
persistent problem is how to conduct a detailed evaluation of such algorithms under
realistic conditions.

In this paper we describe an application-centric framework for comparison and use
it to evaluate the relative success of applying an affine [2], B-Spline [3] and viscous
fluid registration (e.g. [4]) to the problem of inter-subject brain registration. This
comparison framework makes use of highly detailed expert labelling of neuro-
anatomical structures on a set of test images [5], [6]. These labels allow two assess-
ments to be made: (i) an assessment of the relative performance of the registration al-
gorithms in aligning specific structures or tissue classes (ii) a generic assessment of
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which structures fail to be well registered by any algorithm. The latter case has im-
portant implications for the efficacy of large-scale neuroimaging studies where the
identification of structural or functional differences relies on non-rigid registration.
The evaluation is “application-centric” in that it tests the ability of each algorithm to
bring a series of neuroanatomical structures into alignment, rather than testing the ab-
solute correctness of the algorithms in recovering a known transformation between
two data-sets. We put no conditions on how the registration algorithms were applied
beyond suggesting that default or typical parameter settings should be used and that
the registrations should be run once using these settings. We are assessing suitability
for the task rather than performing a detailed technical comparison of algorithms.

Fig. 1. A few of the sub-cortical structures available in the CMA brain data.

2   Method

2.1   Evaluation Data

We made use of eight labelled MR brain images obtained from the Centre of Mor-
phometric Analysis at MGH (Boston). This centre has spent many years performing
detailed reproducible manual labelling of MRI brain images [5], [6]. Each voxel has
associated binary labels that identify it as a member of particular structures or tissue
classes; there are 84 sub-cortical labels and 48 cortical labels. These brain images and
a subset of the labels are available for use by the research community from the Inter-
net Brain Segmentation Repository (http://www.cma.mgh.harvard.edu/ibsr/). For this
work, the original labels have been grouped to produce a smaller hierarchy ranging
from the entire brain and the primary lobes down to structures such as the hippocam-
pus and the thalamus (see Table 1 for the full list of labels and Fig. 1 for some exam-
ples). The chosen groupings are arbitrary and can be defined to suit any specific ap-
plication. In this paper we refer to the set of grouped labels as the test labels.
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Table 1. The four groups of test labels used in the evaluation. The number of original anatomi-
cal labels used to create each test label is shown in brackets.

Major Structures Major Lobes Other Structures Sub-Cortical
All (32) Frontal (14) Lat. Ventricle (2) Thalamus (2)

Brain (25) Occipital (8) Cerebellum (4) Caudate (2)
Cortex (6) Parietal (7) Brain Stem (3) Putamen (2)

White Matter (2) Temporal (16) Sub-Cortex (10) Pallidum (2)
CSF (7) Hippocampus (2)

Amygdala (2)

2.2   Evaluation Algorithms

Three non-rigid registration algorithms were evaluated. These were (a) an affine reg-
istration algorithm (FLIRT) available as part of the FSL image analysis toolkit
(www.fmrib.ox.ac.uk/fsl) [2], [7] (b) a free-form deformation algorithm based on B-
Splines [3], [8] and (c) a viscous fluid algorithm implemented following [4] and [9].

FLIRT: The affine registration method, FLIRT (FMRIB's Linear Registration Tool),
was chosen as robust affine registration is widely used to register brain images and af-
fine transformations are sufficient to successfully align many brain structures between
individuals despite the relatively small number of degrees of freedom in the transfor-
mation model.  It is designed to be highly robust to the initial alignment of the images
by using a customised global optimisation method that runs over multiple scales (8, 4,
2 and 1mm); a large search space in rotation and scale is used at the 8mm resolution
and many smaller perturbations on the best three candidate solutions used in the 4mm
resolution.  In addition, the cost functions are regularised such that they de-weight
contributions near the edge of the overlapping field of view in order to produce a
smoothly changing cost function. All of these factors combine to reduce the chance of
the registration becoming "trapped" in a local minimum of the cost function. The cor-
relation ratio is used to drive the registration.

B-SPLINE: Non-rigid registration based on free-form deformations and B-Splines is
widely used in many registration applications including those involving inter-subject
brain registration. The basic idea of FFDs is to deform an object by manipulating an
underlying mesh of control points. The optimal control point locations are found by
minimising a cost function which encompasses two competing goals: the first term
represents the cost associated with the voxel-based similarity measure, in this case
normalised mutual information, while the second term corresponds to a regularisation
term which constrains the transformation to be smooth. The control-point spacing was
set at 2.5mm for this study.

FLUID: The fluid methods have been used successfully for intra-subject brain regis-
tration [10] [11] and for registering structures from one brain to another [4]. They use
a mathematical model of a compressible viscous fluid to model the transformation
between images. They can accommodate large deformations but can be less robust
than other methods without good initialisation. Therefore the fluid algorithm was ini-
tialised from a locally derived affine registration of each subject into a standard ana-
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tomical space. Additionally the registration was terminated after 5 regridding steps to
reduce the influence of numerical error. The intensity cross correlation was used to
drive the registration as in [9].

2.3   Evaluation Measures

We observe that for most applications of non-rigid registration in neuroimaging it is
correspondence of brain structures on a variety of scales that is important as the ab-
solute correctness of the transformation model cannot usually be determined; a corol-
lary is that the amount of information contained in an MR brain image is insufficient
to assess the point-accuracy of the registration but anatomical structures can be tested
for correspondence post registration. Therefore the test labels that we have generated
from the CMA data represent a natural means for evaluation of registration algorithms
that is closely tied to their uses for neuroimaging research. Given pairs of test-labels,
S and T, on registered brains a method for evaluating their overlap is required. There
is considerable literature in this area, much of it applied to the assessment of segmen-
tation algorithms (e.g. [12]). In this work we use P, the ratio of the number of over-
lapping voxels to the total number of voxels in the labelled structures.

( )
( )TSN

TSN
P

∪
∩=

(1)

This measure has been widely used but has the known disadvantage that errors in la-
belling small structures are magnified compared with larger structures.

2.4   Evaluation Framework

Each of the eight test subjects was registered to the other seven subjects using each of
the three algorithms giving 56 inter-subject registrations for each algorithm. The reg-
istrations were run by the researchers most familiar with their operation; these re-
searchers made any necessary parameter choices independently.  After registration,
each of the 19 test labels on each subject was transformed into the space of all the
other subjects using the transformations determined by each registration algorithm.
The binary labels were transformed using trilinear interpolation and then thresholded
at 50% to produce transformed binary labels. The test-label overlap, P, was computed
in all cases and this data was analysed to produce a mean and standard deviation frac-
tional overlap for each test-label for each registration algorithm. The overlaps were
also computed for all pairs of unregistered scans for comparison.

3   Results

The FLIRT registrations took approximately 5 minutes each to run on a contemporary
desk-top Linux PC. Both the B-Spline and fluid registrations were run in a distributed
fashion on a Linux condor cluster (one CPU per registration) and typically took be-
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Fig. 2. The mean and standard deviation of the overlap measure for each structure registered by
each registration algorithm. INITIAL refers to the original images.

tween 2 and 10 hours per registration. The results are summarised in Fig. 2. For each
of the test labels, the mean fractional overlap is shown for each registration algorithm
and the error bars show ±1 s.d.  Some general observations can be made. In all cases
all registration algorithms improved the mean label overlap except for the case of
FLIRT applied to the pallidum and amygdala. We might expect that the potential ac-
curacy of matching increases with the degrees of freedom available to the algorithms
but that the potential for mis-registration also increases. In fact what we found is that
for this study, the B-Spline method consistently performed well and was only outper-
formed by the fluid method for two structures (the pallidum and amygdala) where all
methods struggled to improve the overlap. Conversely the B-Spline method proved
far superior to all other methods for registering the larger tissue compartments (cor-
tex, white, csf and lateral ventricle). There are some caveats associated with these re-
sults. The most obvious is that the sample-size of subject data is relatively small but
another important point is that as part of the labelling process, the subject data was
realigned and had already been interpolated prior to our analysis. This might have the
largest impact on the alignment of small structures.

4   Discussion

We have assessed the ability of three registration algorithms to align a variety of brain
structures between eight subjects and found overlaps ranging from ~0.3 (lateral ven-
tricle) to ~0.9 (brain).  The results enable us to distinguish the performance of the al-
gorithms over different parts of the brain. Notable is that the B-Spline algorithm
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matches CSF and lateral ventricle particularly well, no algorithms match the major
lobes better than ~0.7 and that there is less difference between the algorithms ability
to match the sub-cortical structures than a consideration of the degrees of freedom of
the transformation model used in each case might suggest. We would normally expect
the largest increase in overlap to be achieved by the affine registration compared with
no registration however due to the realignment applied to the images prior to manual
segmentation the observed increases are relatively small. The fact that each algorithm
used a different image similarity measure must impact on the results but reflects the
current lack of consensus and deep understanding of the operation of such measures.

The most relevant recent work on registration evaluation is Hellier et al [13] where
six registration algorithms were compared using a variety of measures including tis-
sue overlap, correlation of differential characteristics and sulcal shape characteristics.
They found that algorithms with higher degrees of freedom did not perform propor-
tionately better at matching cortical sulci and that inter-subject cortical variability re-
mains a severe challenge for voxel-based non-rigid algorithms. These findings are
consistent with our experience. Their choice of a single reference subject could be a
source of bias that we avoid by registering all permutations of the test subjects. Previ-
ously, Grachev et al  [14] suggested using 128 carefully defined and manually placed
landmarks per hemisphere to evaluate inter-subject registration accuracy. This ap-
proach, like ours, requires significant operator expertise to identify features. Land-
marks enable a millimetre error to be computed but labels allow assessment that is
more easily related to correspondence of the underlying neuroanatomy. Label-based
evaluation approaches can also estimate the degree to which non-rigid registration can
align anatomically and functionally important areas of the brain. This might prove
important for establishing error bounds in studies using registration to compare
groups of individuals. Another application is in serial scanning of individuals where
labels defined on the first scan in a sequence may be propagated to subsequent scans
using non-rigid registration.

Simple voxel-intensity driven algorithms will not on their own resolve the out-
standing problem of cortical variability between subjects but are likely to remain use-
ful for matching the locale of similar cortical structures. This degree of matching may
be perfectly adequate for many applications especially where explicit allowance is
made for uncertainty in structural matching e.g. in Voxel Based Morphometry [15].
For more specialised applications hybrid approaches may be required; for example
cortical matching may be improved - or at least better controlled – by exploiting work
done by Maudgil et al [16] where 24 points which were determined to be homologous
between subjects were identified on the cortical surface. Such points can be incorpo-
rated into voxel-based registration algorithms [17].

There remain some questions as to the best way to define label overlaps. The
measure we use in this paper is well known but does not account explicitly for incon-
sistency in the labelling process nor does it indicate the nature of the error in non-
perfect overlaps. Crum et al [1] suggest the use of a tolerance parameter with overlap
measures so that, for instance with the tolerance set to 1 voxel, the boundaries of two
labels are regarded as completely overlapping if they are at most one voxel away from
each other. A deeper consideration of overlap measures and the incorporation of la-
belling error is an urgent priority.

We plan to extend this study by including more registration algorithms and more
labelled subjects in the evaluation.  Future work will focus on a more detailed techni-
cal comparison of algorithms but this initial work has provided a benchmark for fu-
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ture performance in two ways. First, other registration techniques can be easily tested
within the same framework for an operational comparison. Second, we can recognise
that these algorithms are subject to many parameter choices that we have ignored in
this study. We can optimise the parameter choice for each algorithm with respect to
this well-defined task; this optimisation process may ultimately lead to new methods
tuned to register structures of particular scale and intensity characteristics.
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