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Abstract. Empirical research in learning algorithms for classificatiasks gen-
erally requires the use of significance tests. The qualitytest is typically judged
on Type | error (how often the test indicates a differencemihshould not) and
Type Il error (how often it indicates no difference when ibatd). In this paper
we argue that the replicability of a test is also of imporant/e say that a test has
low replicability if its outcome strongly depends on thetfradar random parti-
tioning of the data that is used to perform it. We present englimeasures of
replicability and use them to compare the performance adrs¢ypopular tests in
a realistic setting involving standard learning algorighamd benchmark datasets.
Based on our results we give recommendations on which testto

1 Introduction

Significance tests are often applied to compare performestimates obtained by re-
sampling methods—such as cross-validation [1]—that rerig@artition data. In this
paper we consider the problem that a test may be very sengitihe particular random
partitioning used in this process. If this is the case, itasgible that, using the same
data, the same learning algorithrsand B, and the same significance test, one re-
searcher finds that methotis preferable, while another finds that there is not enough
evidence for this. Lack of replicability can also cause peois when “tuning” an algo-
rithm: a test may judge favorably on the latest modificatiarepy due to its sensitivity

to the particular random number seed used to partition ttee thathis paper we extend
previous work on replicability [2, 3] by studying the regllmility of some popular tests
in a more realistic setting based on standard benchmarketattaken from the UCI
repository of machine learning problems [4].

The structure of the paper is as follows. In Section 2 we meview significance
tests are used for comparing learning algorithms and inttedhe notion of replicabil-
ity. Section 3 discusses some popular tests in detail. @edtcontains empirical results
for these tests and highlights the lack of replicability ofree of them. Section 5 sum-
marizes the results and makes some recommendations basadempirical findings.



2 Evaluating significance tests

We consider a scenario where we have a certain applicatiorathoand we are inter-
ested in the mean difference in accuracy between two cleastsifn algorithms in this
domain, given that the two algorithms are trained on a datgitie NV instances. We do
not know the joint distribution underlying the domain andsequently cannot com-
pute the difference exactly. Hence we need to estimate d, tncheck whether the
estimated difference is likely to be a “true” differencerfpem a significance test. To
this end we also need to estimate the variance of the diffeeacross different training
sets.

Obtaining an unbiased estimate of the mean and variance difference is easy if
there is a sufficient supply of data. In that case we can saaplember of training sets
of size N, run the two learning algorithms on each of them, and estirtia difference
in accuracy for each pair of classifiers on a large test sat.alierage of these differ-
ences is an estimate of the expected difference in genatializerror across all possible
training sets of sizéV, and their variance is an estimate of the variance. Then we ca
perform a paired-test to check the null hypothesis that the mean differemzerio. The
Type | error of a test is the probability that it rejects thdl hypothesis incorrectly (i.e.
it finds a “significant” difference although there is nong)p@ Il error is the probability
that the null hypothesis is not rejected when there actuslly difference. The test's
Type | error will be close to the chosen significance level

In practice we often only have one dataset of sifeand all estimates must be
obtained from this one dataset. Different training setoatained by subsampling, and
the instances not sampled for training are used for teskbg.each training ses;,

1 < i < k, we get a matching pair of accuracy estimates and the diftere;. The
mean and variance of the differencesis used to estimate the mean and variance of
the difference in generalization error across differeaining sets. Unfortunately this
violates the independence assumption necessary for migpéficance testing because
we re-use the data to obtain the differefis. The consequence of this is that the Type
| error exceeds the significance level. This is problemagizaluise it is important for the
researcher to be able to control the Type | error and knowttblegbility of incorrectly
rejecting the null hypothesis. Several heuristic versafitiet-test have been developed
to alleviate this problem [5, 6].

In this paper we study thesplicability of significance tests. Consider a test based
on the accuracy estimates generated by cross-validatefor@8the cross-validation is
performed, the data is randomized so that each of the negutaining and test sets
exhibits the same distribution. Ideally, we would like tlestts outcome to be indepen-
dent of the particular partitioning resulting from the rantzation process because this
would make it much easier to replicate experimental regultdished in the literature.
However, in practice there is always a certain sensitivityhie partitioning used. To
measure replicability we need to repeat the same test $eirees on the same data
with different random partitionings—in this paper we use tepetitions—and count
how often the outcome is the same. Note that a test will hawatgr replicability than
another test with the same Type | and Type Il error if it is mooasistent in its out-
comes for each individual dataset.



We use two measures of replicability. The first measure, vhie callconsistency,
is based on the raw counts. If the outcome is the same for espeyition of a test on the
same data, we call the teginsistent, and if there is a difference at most once, we call
it almost consistent. This procedure is repeated with multiple datasets, anftdotion
of outcomes for which a test is consistent or almost condisséean indication of how
replicable the test is. The second measure, which waedlkability, is based on the
probability that two runs of the test on the same data sepgidiuce the same outcome.
This probability is never worse than 0.5. To estimate it wech® consider pairs of
randomizations. If we have performed the test based atifferent randomizations
for a particular dataset then there 4@ such pairs. Assume the tests rejects the null

hypothesis fork (0 < k£ < n) of the randomizations. Then there a(@ rejecting
pairs and(”;’“) accepting ones. Based on this the above probability cantlreated
asR(k,n) = ((5) + (",")/(5) = H=ELHM==D ‘We use this probability to

2 n(n—1

form a measure of replicability across different datas&éssume there are: datasets
and letiy, (0 < k < n) be the number of datasets for which the test agkei@ses (i.e.
> oheolk = m). Then we define replicability a8 = > e L R(k,n). The larger the
value of this measure, the more likely the test is to prodheesame outcome for two
different randomizations of a dataset.

3 Significance Tests

In this section we review some tests for comparing learniggrahms. Although test-
ing is essential for empirical research, surprisinglyditias been written on this topic.

3.1 The 5x2cv pairedt-test

Dietterich [5] evaluates several significance tests by oméag their Type | and Type
error on artificial and real-world data. He finds that the @airtest applied to random
subsampling has an exceedingly large Type | error. In ransiglpsampling a training
set is drawn at random without replacement and the remanfdée data is used for
testing. This is repeated a given number of times. In cottivasoss-validation, random
subsampling does not ensure that the test sets do not ovéelafold cross-validation
can be viewed as a special case of random subsampling rdpgeatiémes, where 90%
of the data is used for training, and it is guaranteed thatghéest sets do not overlap.
The paired-test based on ten-fold cross-validation fares betterdretperiments in [5]
but also exhibits an inflated Type | error. On one of the reattevdatasets its Type |
error is approximately twice the significance level.

As an alternative [5] proposes a heuristic test based ontive of two-fold cross-
validation, called “5x2cv paired-test”. In anr-times k-fold cross-validations there
arer, r > 1, runs andk, k > 1, folds. For each ru, 1 < 5 < r, the data is
randomly permutated and split inkosubsets of equal siZeWe call thesé, 1 < i < k,
subsets thé folds of runj. We consider two learning schemdsand B and measure

1 Of course, in some cases it may not be possible to split treeidtt subsets that have exactly
the same size.



their respective accuracies; andb;; for fold ¢ and runj. To obtaina;; andb;; the
corresponding learning scheme is trained on all the datiadixg that in foldi of run
j and tested on the remainder. Note that exactly the same fo&ining and test sets
is used to obtain both,; andb;;. That means a paired significance test is appropriate
and we can consider the individual differences in accuragy= a;; — b;; as the input
for the test.

Letx ; denote the mean difference for a single run of 2-fold cras&tation,z ; =
(z1 + w2;)/2. The variance i$7 = (z1; — zj)* + (z2; — = ;)*. The 5x2cv paired
t-test uses the following test statistic:
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This statistic is plugged into the Studendistribution with five degrees of freedom.
Note that the numerator only uses the term and not the other differences;. Con-
sequently the outcome of the test is strongly dependentepdtticular partitioning of
the data used when the test is performed. Therefore it carpexted that the replica-
bility of this test is not high. Our empirical evaluation denstrates that this is indeed
the case.

The empirical results in [5] show that thex 2cv pairedt-test has a Type | error at
or below the significance level. However, they also showith&ts a much higher Type
Il error than the standardtest applied to ten-fold cross-validation. Consequethigy
former test is recommended in [5] when a low Type | error iea8al, and the latter
test otherwise.

The other two tests evaluated in [5] are McNemar's test aedebst for the dif-
ference of two proportions. Both of these tests are basedsorgée train/test split and
consequently cannot take variance due to the choice ofrigaénd test set into account.
Of these two tests, McNemar’s test performs better ovatdlhs an acceptable Type |
error and the Type Il error is only slightly lower than thattbé5 x 2cv pairedt-test.
However, because these two tests are inferior tathe2ev test, we will not consider
them in our experiments.

t =

3.2 Tests based on random subsampling

As mentioned above, Dietterich [5] found that the standdest has a high Type | error
when used in conjunction with random subsampling. NadeauBzmgio [6] observe
that this is due to an underestimation of the variance bectugssamples are not inde-
pendent (i.e. the different training and test sets overl@phsequently they propose to
correct the variance estimate by taking this dependenoysictount.

Let a; andb; be the accuracy of algorithm4 and B respectively, measured on
runj (1 < j < n). Assume that in each rum, instances are used for training, and
the remaining, instances for testing. Let; be the difference; = a; — b;, andj
ands? the estimates of the mean and variance ofitithifferences. The statistic of the
“corrected resampledtest” is:

1
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This statistic is used in conjunction with the Studedistribution and: — 1 degrees of
freedom. The only difference to the standatdst is that the factojf in the denominator
has been replaced by the factor- 2. Nadeau and Bengio [6] suggest that “... normal
usage would call fon; to be 5 or 10 times larger thar, ...".

Empirical results show that this test dramatically impowea the standard resam-
pledt-test: the Type | error is close to the significance level, amtlke McNemar’s test
and the5 x 2cv test, it does not suffer from high Type Il error [6].

3.3 Tests based on repeated k-fold cross validation

Here we consider tests basedetimesk-fold cross-validation whereandk can have
any value. As in Section 3.1, we observe differenegs= a;; — b;; for fold i and

run j. One could simply usen = - Ele >j—1i; @s an estimate for the mean

ands? = L= " | > i1 (xi; —m)?* as an estimate for the variance. Then, assum-

ing the various values of;; are independent, the test statistie- m/+/(1/k.r)62 is
distributed according tofadistribution withdf = k.r — 1 degrees of freedom. Unfortu-
nately, the independence assumption is highly flawed, atd based on this assump-
tion show very high Type | error, similar to plain subsamglin

However, the same variance correction as in the previousestibn can be per-
formed here because cross-validation is a special casasdbna subsampling where
we ensure that the test sets in one run do not overlap. (Ofeptast sets from different
runs will overlap.) This results in the following statistic

k
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wheren; is the number of instances used for training, aadhe number of instances
used for testing. We call this test the “corrected repeataldcy test”.

4 Empirical evaluation

To evaluate how replicability affects the various tests,pgegormed experiments on a
selection of datasets from the UCI repository [4]. We usddenBayes, C4.5 [7], and
the nearest neighbor classifier, with default settings gda@mented in Wekaversion
3.3 [1]. For tests that involve multiple folds, the folds wexhosen using stratification,
which ensures that the class distribution in the whole @atageflected in each of the
folds. Each of the tests was run ten times for each pair ohlegrschemes and a 5%
significance level was used in all tests unless stated otberw

4.1 Results for the 5x2cv pairedt-test

Table 1 shows the datasets and their properties, and thigsrssithe 5x2 cross valida-
tion test. The three right-most columns show the numbenafgithe test does not reject

2 Weka is freely available with source from http://www.csikedo.ac.nz/ml.



dataset #inst |#atts|#cl.|NB vs C4.3NB vs NN|C4.5 vs NN
anneal 898 38/ 5 4 4 10
arrhythmia 452 280 13 9 9 2
audiology 226 69| 24 5 10 8
autos 205 25 6 10 7 10
balance-scalg 625 4 3 1 4 7
breast-cancer, 286 9 2 10 9 8
credit-rating | 690 16| 2 6 8 10
ecoli 336 8 8 7 10 10
German credit1000 20| 2 9 6 10
glass 214 9l 6 6 6 9
heart-statlog | 270 13 2 4 5 9
hepatitis 155 19 2 9 10 10
horse-colic 368 22| 2 8 10 7
Hungarian 294 13 2 10 10 10
heart disease
ionosphere 351 34 2 10 10 8
iris 150 4 3 10 10 10
labor 57| 16| 2 8 10 10
lymphography 148 18 4 9 10 10
pima-diabetes 768 8 2 10 6 7
primary-tumor 339 17| 21 7 3 10
sonar 208 60 2 10 9 6
soybean 683 35 19 8 8 9
vehicle 846 18| 4 0 0 9
vote 435 16| 2 4 9 7
vowel 990 13| 11 4 0 0
Wisconsin 699 9 2 8 9 10
breast cancer
Z00 10 16| 7 10 10 8
Consistent;: 9 12 13
Almost consistent: 14 17 17
Replicability (r):| 0.737 0.783 0.816

Table 1. The number of cases (#inst.), attributes (#atts.), andetag#cl.) for each dataset; and
the number of draws for each pair of classifiers based on tBerfss validation test (NB = naive
Bayes, NN = nearest neighbor).

the null hypothesis, i.e, the number of times the 5x2 crodatéon test indicates that
there is no difference between the corresponding pair aisiflars. For example, for
the anneal dataset, the test indicates no difference betagiee Bayes and C4.5 four
times, so six times it does indicate a difference. Note thatsame dataset, the same
algorithm, the same settings, and the same significance¢gstused in each of the ten
experiments. The only difference was in the way the dataastsplit into the 2 folds in
each of the 5 runs. Clearly, the test is very sensitive to #réqular partitioning of the
anneal data.



Looking at the column for naive Bayes vs. C4.5, this testddad used to justify
the claim that the two perform the same for all datasets axbepvehicle dataset just
by choosing appropriate random number seeds. Howevenlid gast as well be used
to support the claim that the two algorithms perform diffehgin 19 out of 27 cases.

For some rows, the test consistently indicates no diffexrdratween any two of the
three schemes, in particular for the iris and Hungariantltisease datasets. However,
most rows contain at least one cell where the outcomes oé#tate not consistent.

The row labeled “consistent” at the bottom of the table lisessnumber of datasets
for which all outcomes of the test are the same. These aralatdd as the number of
0's and 10’s in the column. For any of the compared schemss,thean 50% of the
results turn out to be consistent.

Note that, it is possible that, when comparing algorithmsd B, sometimes A is
preferred and sometimes B if the null hypothesis is rejedtesvever, closer inspection
of the data reveals that this only happens when the null ingsid is accepted most of
the time, except for 2 or 3 runs. Consequently these casestaontribute to the value
of the consistency measure.

If we could accept that one outcome of the ten runs does netagith the rest, we
get the number labeled “almost consistent” in Table 1 (he.riumber of O’s, 1's, 9's
and 10’s in a column). The 5x2 cross validation test is alnossistent in fewer than
66% of the cases, which is still a very low rate.

The last row shows the value of the replicability meashréor the three pairs of
learning schemes considered. These results reflect the lsalina®iour as the consis-
tency measures. The replicability values are pretty lowstaring thatR cannot be
smaller than 0.5.

4.2 Results for the corrected resampled-test

In the resampling experiments, the data was randomized,&dfased for training,
and the remaining 10% used to measure accuracy. This waateepeith a different
random number seed for each run. Table 2 shows the resuttefoorrected resampled
t-test. The number of runs used in resampling was varied fi@to 100 to see the effect
on the replicability.

The replicability increases with the number of runs almastrgwhere. The only
exception is in the last row, where the “almost consisteatlig decreases by one when
increasing the runs from 10 to 20. This can be explained bgaarfluctuations due to
the random partitioning of the datasets. Overall, the capliity becomes reasonably
acceptable when the number of runs is 100. In this case 80%eaEsults are “almost
consistent”, and the value of the replicability meashiris approximately 0.9 or above.

4.3 Results for tests based on (repeated) cross validation

For the standartitest based on a single run of 10-fold cross validation weenkesl
consistent results for 15, 16, and 14 datasets, comparing/idBC4.5, NB with NN,
and C4.5 with NN respectively. Contrasting this with cotegcresampling with 10
runs, which takes the same computational effort, we seelthibld cross validation



#Runs
10| 20| 50|1OO

NB vs C4.5
consistent 15| 14| 19 | 21
almost consistent16 | 19 | 22 | 23
replicability (R) {0.8010.8430.8920.922
NB vs NN
consistent 12 | 15| 18 | 20
almost consistent20 | 21 | 22 | 23
replicability (R) {0.8350.8650.8820.899
C4.5vs NN
consistent 12 | 14 | 18 | 23
almost consistent18 | 17 | 22 | 24
replicability (R) [0.8190.8250.8780.935

Table 2. Replicability for corrected resampledest.

is at least as consistent. However, it is substantially tsssistent than (corrected)
resampling at 100 runs. Note also that this test has an idfatee | error [5].

Performing the same experiment in conjunction with the diatht-test based on
the 100 differences obtained by 10-times 10-fold crossiatilbn, produced consistent
results for 25, 24, and 18 datasets, based on NB with C4.5, BN, and C4.5 with
NN respectively. This looks impressive compared to any eftésts we have evaluated
so far. However, the Type | error of this test is very high @nese of the overlapping
training and test sets) and therefore it should not be usprhittice.

Toreduce Type | error it is necessary to correct the variaradgle 3 shows the same
results for the corrected pairédest based on the paired outcomes-dimes 10-fold
cross validation. Comparing this to Table 2 (for correcteshmpling) the consistency
is almost everywhere as good and often better (assumingthe somputational effort
in both cases): the column with 1 run in Table 3 should be coetpwith the 10 runs
column in Table 2, the column with 2 runs in Table 3 with theutoh with 20 runs in
Table 2, etc. The same can be said about the replicabilitgure®. This indicates that
repeated cross validation helps to improve replicabilitynipared to just performing
random subsampling).

To ensure that the improved replicability of cross-validiatis not due to strati-
fication (which is not performed in the case of random subdiagip we performed
an experiment where resampling was done with stratificaiwe replicability scores
differed only very slightly from the ones shown in Table 2ggasting the improved
replicability is not due to stratification.

Because the corrected pairetest based on 10-times 10-fold cross validation ex-
hibits the best replicability scores, we performed an expent to see how sensitive its
replicability is to the significance level. The results,whan Table 4, demonstrate that
the significance level does not have a major impact on camgigtor the replicability
measureR. Note that the latter is greater than 0.9 in every single,dag&ating very
good replicability for this test.



#Runs Significance level

1 | 2 | 5 | 10 1% |2.5%| 5% |10%
NB vs C4.5 NB vs C4.5
consistent 16 | 20 | 21 | 24 consistent 22 |1 23| 24| 21
almost consistent18 | 21 | 23 | 25 almost consistent23 | 24 | 25 | 22
replicability (R) |0.8210.8890.9280.962 replicability (R) {0.9270.9360.9620.91
NB vs NN NB vs NN
consistent 18 | 20 | 23 | 23 consistent 23| 24| 23| 23
almost consistent19 | 21 | 23 | 24 almost consistent24 | 27 | 24 | 23
replicability (R) |0.8580.89(0.9390.942 replicability (R) {0.9390.9780.9420.93
C4.5vs NN C4.5vs NN
consistent 13| 19| 22 | 22 consistent 23| 24| 22| 20
almost consistent18 | 23 | 24 | 24 almost consistent23 | 24 | 24 | 24
replicability (R) |0.8140.9040.9280.928 replicability (R) {0.9430.9530.9280.91
Table 3. Replicability for corrected-x10 Table 4. Replicability of corrected 10x10
fold cross-validation test. fold cross-validation test for various signif-

icance levels.

4.4 Simulation experiment

To study the effect of the observed difference in accuraagplicability, we performed
a simulation study. Four data sources were selected by nalgdgenerating Bayesian
networks over 10 binary variables where the class variaddehs probability of being
zero or one. A 0.5 probability of the class variable is knowmrause the largest vari-
ability due to selection of the training data [5]. The firstmerk had no arrows and all
variables except the class variables were independendgted with various different
probabilities. This guarantees that any learning scherfidhare 50% expected accu-
racy on the test data. The other three data sources had a BAdisE [8], generated
by starting with a naive Bayes model and adding arrows whikrgnteeing acyclicity.

Using stochastic simulation [9], a collection of 1000 tiagsets with 300 instances
each was created. Naive Bayes and C4.5 were trained on e#obnofand their accu-
racy measured on a test set of 20,000 cases, generated fobnofeie data sources.
The average difference in accuracy is shown in Table 5 indglhemarkedA accuracy,
and it ranges from 0% to 11.27%.

Each of the tests was run 10 times on each of the #000 training sets. Table 5
shows, for each of the tests and each data source, the pageanit training sets for
which the test is consistent (i.e., indicates the same owtctO times). The last column
shows the minimum of the consistency over the four data ssurc

Again, 5x 2 cross validation, 10 times resampling, and 10 fold crobdation show
rather low consistency. Replicability increases dranaditiavith 100 times resampling,
and increases even further when performing 10 times regpp@@téold cross validation.
This is consistent with the results observed on the UCI eé#das

Table 5 shows that the tests have fewer problems with datzss®d and 4 (apart
from the5 x 2 cv test), where it is easy to decide whether the two schenfies.dihe
5 x 2 test has problems with data source 4 because it is a rathsecative test (low
Type | error, high Type Il error) and tends to err on the sidbaifg too cautious when
deciding whether two schemes differ.



Source 1l 2| 3 4

A accuracy 0.0[2.775.8311.27/min.
5x2 cv 72.371.263.5 16.916.9
10 x resampling 65.544.026.0 48.826.0
100 x resampling 90.973.266.9 97.266.8
10-fold cv 49.747.633.2 90.833.2
corrected 10x10 fold 491.980.376.7 98.976.7

Table 5.Results for data sources 1 to 4: the difference in accurawydss naive Bayes and C4.5
(in percent) and the consistency of the tests (in percent).

5 Conclusions

We considered tests for choosing between two learning ithhgos for classification
tasks. We argued that such a test should not only have an@peoType | error and
low Type Il error, but also high replicability. High replibdity facilitates reproducing
published results and reduces the likelihood of oversé@agch our experiments, good
replicability was obtained using 100 runs of random subdammjn conjunction with
Nadeau and Bengio’s corrected resamgheist, and replicability improved even fur-
ther by using 10-times 10-fold cross-validation insteadasfdom subsampling. Both
methods are acceptable but for best replicability we recenththe latter one.
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