Skip to main content

Recent Developments in Drug Delivery Systems

  • Chapter
Biomedical and Life Physics
  • 136 Accesses

Abstract

The method of administering medicines has become a central consideration in drug development. As products are developed to specifically target diseases, the ability to administer drugs with greater efficiency and efficacy becomes more and more important. The properties of an ideal drug dosage form include a precise, specific attack on the diseased tissue without excessive or toxic effects, either locally or systemically. Most fall short of this ideal and, consequently, there is scope for new (improved) drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. White PF. Use of patient-controlled analgesia for management of acute pain. JAMA, 259:243,1988.

    Article  Google Scholar 

  2. Scheving LE, Halberg F, Ehret CF (eds). Chronobiotechnology and Chronobiological Engineering. Martinus Nijhoff Publishers, Boston,1987.

    Google Scholar 

  3. Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev,6:19, 1991.

    Article  Google Scholar 

  4. Kari B. Control of blood glucose levels in alloxan-diabetic rabbits by iontophoresis of insulin. Diabetes, 35:217, 1986.

    Article  Google Scholar 

  5. Meyer BR, Kreis W, Eschbach J, O’Mara V, Rosen S, Sibalis D. Successful transdermal administration of therapeutic doses of a polypeptide to normal human volunteers. Clin Pharmacol Ther, 44:607, 1988.

    Article  Google Scholar 

  6. Stephen R, Miotti D, Bettaglio R, Rossi C, Bonezzi C. Electromotive administration of a new morphine formulation: Morphine citrate. Artif Organs, 18:461, 1994.

    Article  Google Scholar 

  7. Halberg F. Physiologic 24-h periodicity; general and procedural considerations with reference to the adrenal cycle. Z Vitamin, Hormon Fermentforsch, 10:225, 1959.

    MathSciNet  Google Scholar 

  8. Lemmer B. Implications of chronopharmacokinetics for drug delivery: antiasthmatics, H2-blockers and cardiovascular active drugs. Adv Drug Deliv Rev, 6:83, 1991.

    Article  Google Scholar 

  9. Floyer J. A treatise of the asthma. Wilkins, Innis, London, 1698.

    Google Scholar 

  10. Barnes JP. Autonomic control of the airways and nocturnal asthma as a basis for drug treatment. In Lemmer B (ed.), Chronopharmacology — Cellular and Biomedical Interactions. Marcel Dekker, NY/Basel, pp.53, 1989.

    Google Scholar 

  11. Dethlefsen U, Repges R. Ein neues Therapieprinzip bei nächtlichem Asthma. Med Klin, 80:44, 1985.

    Google Scholar 

  12. Chien YW, Chien TY, Bagdon RE, Huang YC, Bierman RH. Transdermal dual-controlled delivery of contraceptive drugs: formulation development, in vitro and in vivo evaluations and clinical performance. Pharm Res,6:904, 1989.

    Article  Google Scholar 

  13. Bangham AD. In Knight G (ed.), Liposomes from physical structure to therapeutic application. Elsevier, North-Holland, NY, 1981.

    Google Scholar 

  14. Bangham AD, Standish MM, Watkins JC. The action of steroids and streotolysins on the permeability of phospholipid structures to cations. J Mol Biol, 13:138, 1965.

    Article  Google Scholar 

  15. Gregoriadis G. The carrier potential of liposomes in biology and medicine. New Engl J Med, 295:704,1976.

    Article  Google Scholar 

  16. Fendler JH, Romero A. Liposomes as drug carriers. Life Sci, 20:1109.1977.

    Article  Google Scholar 

  17. Szoka F, Papahadjopoulos D. Liposomes: preparation and characterization. In Knight CG (ed.), Liposomes from physical struture to therapeutic applications. Elsevier, North-Holland, NY, 1981.

    Google Scholar 

  18. Lichtenberg D, Barenholz Y. Liposomes, preparation characterization and preservation. In Glick D (ed.), Methods of biological analysis. John Wiley, NY, 33:337, 1988.

    Chapter  Google Scholar 

  19. Nassander UK, Storm G, Peeters PAM, Crommelin DJA. Liposomes. In Langer R, Chassin M (eds), Biodegradable polymers as drug delivery systems. Marcel Dekker, NY, 1990.

    Google Scholar 

  20. Yatvin MB, Lelkes PI. Clinical prospects for liposomes. Med Phys. 9:149.1982.

    Article  Google Scholar 

  21. Lopez-Berestein G, Fidler IJ (eds). Liposomes in the therapy of infectious diseases and cancer. Alan R.Liss,NY, 1989.

    Google Scholar 

  22. Gregoriadis G (ed.). Liposomes as drug carriers. In Recent Trends and Progress. John Wiley, Chichester, 1988.

    Google Scholar 

  23. Egbaria K, Weiner N. Liposomes as a topical drug delivery system. Adv Drug Deliv Rev, 5: 287, 1990.

    Article  Google Scholar 

  24. Scherphof GL. In vivo behavior of liposomes; interactions with the RES and implications of drug targeting. In Handbook of Experimental Pharmacology. Juliano RL (ed.). Springer Verlag, Heidelberg, pp.285, 1991.

    Google Scholar 

  25. Maruyama KM, Kennel SJ, Van Borssum Waalkcs M, Scherphof GL. Huang L. Drug delivery by organ specific liposomes. in Polymeric drugs and drug delivery systems. Dunn RL. Ottenbrik A (eds), pp.275, 1991.

    Google Scholar 

  26. Daemen T, Dontje BHJ, Veninga A, Scherphof GL, Oosterhuis JW. Therapy of murine liver metastases by administration of MDP encapsulated in liposomes. Selective Cancer Therapeutics, 6:63, 1990.

    Article  Google Scholar 

  27. Forssen EA, Tökes ZA. Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes. Cancer Res, 43:546, 1983.

    Google Scholar 

  28. Gabizon A, Dagau A, Coreu D, Barenholz I, Fuks Z. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res, 42:4734.1984.

    Google Scholar 

  29. Chang TMS. In Thomas C (ed.). Artijkal cells. Springfield. IL. USA, 1972

    Google Scholar 

  30. Arshady R. Microspheres and microcapsules. A survey of manufacturing techniques: I. Suspension crosslinking. Polym Eng Sci, 29:1746, 19

    Article  Google Scholar 

  31. Arshady R. Microspheres for biomedical applications: preparation of reactive and labelled microspheres, Biomaterials, 14:5, 1993.

    Article  Google Scholar 

  32. Couvreur P, Kante B, Roland M, Guiot P, Baudhuin P, Speiser P. Polycyanoacrylates nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol, 31:331,1979.

    Article  Google Scholar 

  33. Vezin W, Florence A. in vitro degradation rates of biodegradable poly-N-alkylcyanoacrylates. J Pharm Pharmacol, 30:Suppl 5P,1978.

    Google Scholar 

  34. Leonard F, Kulkarni R, Brandes G, Nelson J, Cameron J. Synthesis and degradation of polyalkylcyanocrylates. J Appl Polym Sci, 10:259,1966.

    Article  Google Scholar 

  35. Couvreur P, Roblot-Treupel L, Poupon MF, Braseur F, Puisieux F. Nanoparticles as microcarriers for anticancer drugs. Adv Drug Deliv Rev, 5:209,1990.

    Article  Google Scholar 

  36. Kuhn TS. The structure of scientific revolutions. 2nd Ed. Chicago, University of Chicago Press, 1970

    Google Scholar 

  37. Kuntz RE, Bairn DS. Definning coronary restenosis; newer clinical and angiographic paradigms. Circulation 88:1310,1993.

    Google Scholar 

  38. Kerenyi T, Merkel V, Szabolcs Z, Pusztai P, Nadasy G. Local enzymatic treatment of artherosclerotic plaques. Exp Mol Pathol, 49:330,1988.

    Article  Google Scholar 

  39. Wolinsky H, Thung SN. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine artery. J Am Coll Cardiol, 15:475,1990.

    Article  Google Scholar 

  40. March KL, Mohanraj S, Ho PPK, Wilensky RL, Hathaway DR. Biodegradable microspheres containing a colchinine analogue inhibit DNA synthesis in vascular smooth muscle cells. Circulation, 89:1929,1994.

    Google Scholar 

  41. Fritschy WM. Experimental studies on microencapsulation of pancreatic islets for transplantation in diabetes mellitus. Thesis PhD, University of Groningen, Groningen, The Netherlands, 1994.

    Google Scholar 

  42. Fischell RE. A programmable implantable medication system (PIMS) as a means for intracorporeal drug delivery. In Tyle P (ed.), Drug Delivery Dwices. Marcel Dekker, NY, pp.261,1988.

    Google Scholar 

  43. Elmqvist R, Senning A. Implantable pacemaker for the heart. In Medical Electronics. (Proc 2nd Int Conf Med Electronics, Paris, June 1959), Smyth CN (ed.), Iliff& Son, London, pp.253,1960.

    Google Scholar 

  44. Fischell RE, Lewis KB, Schulman JH, Love JW. A long-lived reliable, rechargeable cardiac pacemaker. In Schaldach M, Furman S (Eds), Advances in pacemaker technology. Vol 1, Springer Verlag, NY,1975.

    Google Scholar 

  45. Love JW, Lewis KG, Fischell RE. The Johns Hopkins rechargeable pacemaker. JAMA, 234:64,1975.

    Article  Google Scholar 

  46. Spencer WJ. For diabetes; an electronic pancreas. IEEE Spectrum, 15:38,1978.

    Google Scholar 

  47. Munsat TL, Reichlins S, Taft J, Andres P, Kaplan M, Kasdon D. Experience with long-term intrathecal infusion of TRH in ALS. Muscle Nerve, 9:103,1986.

    Google Scholar 

  48. Koning G, Feith F. A new implantable drug delivery system for patient-controlled analgesia. Ann NY Acad Sci, 531:48,1988.

    Article  Google Scholar 

  49. Hoekstra A. Pain relief mediated by implantable drug delivery devices, Int J Artif Organs, 17:151,1994.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Hoekstra, A. (1996). Recent Developments in Drug Delivery Systems. In: Ghista, D.N. (eds) Biomedical and Life Physics. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85017-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85017-1_28

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-85019-5

  • Online ISBN: 978-3-322-85017-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics