Skip to main content

Abstract

Forest-based biorefinery is a multiplatform unit converting lignocellulosic biomass into several intermediates and final products according to different transformation pathways. Among intermediates and final products, cellulose, lignin, biofuels, and simple sugars stand out as commodities, while some general examples of specialties are flavoring agents, intermediates for chemical synthesis, and building blocks for polymers. Most of these specialties come from further conversion of commodities via different conversion and separation routes. Similarly, to a refinery, these units start with a complex and multicomponent matrix (crude oil versus biomass) and its fractionation and conversion into a variety of products which will serve as feedstock to another industrial step. Different levels of conversion platforms can be considered in a single biorefinery, from high production (low price) to small production for a specific market (high price).

Pulp industry has been recognized as the leading industrial sector in biorefining since a long time ago due to the raw materials and to the integrated production of pulp (cellulose) and energy, mostly provided by burning lignin of the black liquor. In a more extended sense, pulp and paper industry is an example of realistic circular (bio)economy implementation, considering energy cycle, water recycle in the process, and chemical recovery cycle and on-site production. In the following sections, a general overview about chemical pulping will be given. The most common side stream and chemical recovery processes will be addressed along with the main steps for integration of biorefinery processes in pulp mills. Finally, recent advances of lignin end uses and new perspectives will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvazi B, Cloutier É, Wojciechowicz O, Ngo T-D (2016) Lignin profiling: a guide for selecting appropriate lignins as precursors in biomaterials development. ACS Sustain Chem Eng 4:5090–5105

    Article  CAS  Google Scholar 

  • Alma MH, Kelley SS (2000) Conversion of barks of several tree species into bakelite-like thermosetting materials by their phenolysis. J Polym Eng 20(5):365–380

    Article  CAS  Google Scholar 

  • Alriols MG, García A, Llano-Ponte R, Labidi J (2010) Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chem Eng J 157(1):113–120

    Article  CAS  Google Scholar 

  • American Process Inc (2015) https://americanprocess.com/bioplus/news/. Accessed 08 Feb 2018

  • American Science and Technology (2017) http://www.amsnt.com/organosolv/. Accessed 08 Feb 2018

  • Amidon TE (1981) Effect of wood properties of hardwoods on kraft paper properties. TAPPI J 64:123–126

    CAS  Google Scholar 

  • Argyropoulos DS, Abacherli A, Rincón AG, Arx UV (2009) Quantitative 31P nuclear magnetic resonance (NMR) spectra of lignin. International Lignin Institute, Lausanne, Switzerland

    Google Scholar 

  • Arteaga-Pérez LE, Segura C, Bustamante-García V, Jiménez R (2015) Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy 93:1731–1741

    Article  CAS  Google Scholar 

  • AVAPCO (2011) Technology – A sugar platform. http://avapco.com/technology.html. Accessed 07 Feb 2018

  • Axegård P (2016) Lignin processing and lignin applications. In: BPM Lignin Satelite Workshop, Wageningen, June 17

    Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  • Babayi H, Kolo I, Okogun JI, Ijah UJJ (2004) The antimicrobial activities of Methanolic extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms. Biokemistri 16:106–111

    Google Scholar 

  • Bagh FSG, Lalman J, Seth R, Ray S, Biswas N (2017) Using deep eutectic solvents (DESs) to extract lignin from black liquor. In: 17 AIChE annual meeting, Minneapolis, U.S.A., October 29– November 3

    Google Scholar 

  • Barbash VA, Yaschenko OV, Shniruk OM (2017) Preparation and properties of nanocellulose from organosolv straw pulp. Nanoscale Res Lett 12:241

    Google Scholar 

  • Barsberg S, Matousek P, Towrie M (2005) Structural analysis of lignin by resonance Raman spectroscopy. Macromol Biosci 5:743–752

    Article  CAS  PubMed  Google Scholar 

  • Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18:1839

    Article  CAS  Google Scholar 

  • Berlin A, Balakshin M (2014) Chapter 18 - industrial lignins: analysis, properties, and applications. In: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam, pp 315–336

    Chapter  Google Scholar 

  • Biofuels Digest (2014) Stora Enso acquires Virdia in (up to) $62M deal. http://www.biofuelsdigest.com/bdigest/2014/06/23/stora-enso-acquires-virdia-in-up-to-62m-deal/. Accessed 08 Feb 2018

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259

    Article  CAS  Google Scholar 

  • Burgo Group (2013) Ligninsulphonates. http://www.burgo.com/en/group/figures/ls. Accessed 08 Feb 2018

  • Cadahía E, Conde E, Simon BF, GarciaVallejo MC (1997) Tannin composition of Eucalyptus camaldulensis, E. globulus and E. rudis. Part II. Bark. Holzforsch. - Int J Biol Chem Phys Technol Wood 51:125–129

    Google Scholar 

  • Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3:1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Canabarro N, Soares JF, Anchieta CG, Kelling CS, Mazutti MA (2013) Thermochemical processes for biofuels production from biomass. Sustainable Chem Processes 1:22

    Article  CAS  Google Scholar 

  • Capanema EA, Balakshin MY, Chen CL, Gratzl JS, Gracz H (2001) Structural analysis of residual and technical lignins by 1H-13C correlation 2D NMR-spectroscopy. Holzforsch. – Int J Biol Chem Phys Technol Wood 55:302–308

    Google Scholar 

  • Capanema EA, Balakshin MY, Kadla JF (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem 52:1850–1860

    Article  CAS  PubMed  Google Scholar 

  • Celzard A, Zhao W, Pizzi A, Fierro V (2010) Mechanical properties of tannin-based rigid foams undergoing compression. Mater Sci Eng A 527:4438–4446

    Article  CAS  Google Scholar 

  • CEPI (2017) Key statistics 2016. http://www.cepi.org/system/files/public/documents/publications/statistics/2017/KeyStatistics2016_Final.pdf. Accessed 08 Feb 2018

  • Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20:131–141

    Article  CAS  Google Scholar 

  • Chang CF et al (2014) Carbon Fibers Derived from Lignin. Patent Application PCT/US2013/055654. https://patentimages.storage.googleapis.com/84/5f/56/1d18819ff9088a/WO2014046826A1.pdf

  • Chempolis (2017) http://www.chempolis.com/. Accessed 08 Feb 2018

  • Chen H (2014) Biotechnology of lignocellulose. Theory and practice. In: Springer (ed), Dordrecht, Netherlands

    Google Scholar 

  • Clariant (2018) Clariant to build flagship sunliquid® cellulosic ethanol plant in Romania. https://www.clariant.com/en/Corporate/News/2017/10/Clariant-to-build-flagship-sunliquid-cellulosic-ethanol-plant-in-Romania. Accessed 09 Feb 2018

  • Clayton D et al (1983) Overview. In: Grace TM, Leopold B, Malcolm E, Kocurek MJ (eds) Pulp and paper manufacture. Alkaline pulping, vol 5. TAPPI/CPPA, Atlanta/Montreal, TAPPI - Atlanta; CPPA - Montreal, pp 3–14

    Google Scholar 

  • Conde E, Cadahia E, Diez-Barra R, García-Vallejo MC (1996) Polyphenolic composition of bark extracts from Eucalyptus camaldulensis, E. globulus and E. rudis. Eur J Wood Wood Prod 54:175–181

    Article  CAS  Google Scholar 

  • Conde E, Cadahía E, García-Vallejo MC, Tomás-Barberán F (1995) Low molecular weight polyphenols in wood and bark of Eucalyptus globulus. Wood Fiber Sci 27:379–383

    CAS  Google Scholar 

  • Constant S et al (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18:2651–2665

    Article  CAS  Google Scholar 

  • Costa CAE, Coleman W, Dube M, Rodrigues AE, Pinto PCR (2016) Assessment of key features of lignin from lignocellulosic crops: stalks and roots of corn, cotton, sugarcane, and tobacco. Ind Crop Prod 92:136–148

    Article  CAS  Google Scholar 

  • Costa CAE, Pinto PCR, Rodrigues AE (2014) Evaluation of chemical processing impact on E. globulus wood lignin and comparison with bark lignin. Ind Crop Prod 61:479–491

    Article  CAS  Google Scholar 

  • Costa CAE, Pinto PCR, Rodrigues AE (2015) Radar tool for lignin classification on the perspective of its valorization. Ind Eng Chem Res 54:7580–7590

    Article  CAS  Google Scholar 

  • Costa CAE, Pinto PCR, Rodrigues AE (2018) Lignin fractionation from E. Globulus kraft liquor by ultrafiltration in a three stage membrane sequence. Sep Purif Technol 192:140–151

    Article  CAS  Google Scholar 

  • de Melo MMR, Oliveira ELG, Silvestre AJD, Silva CM (2012) Supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark. J Supercrit Fluids 70:137–145

    Google Scholar 

  • Dale B (2018) Time to rethink cellulosic biofuels? Biofuels Bioprod Biorefin 12:5–7

    Article  CAS  Google Scholar 

  • Domingues R, Sousa G, Freire C, Silvestre A, Neto C (2009) Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds. Ind Crop Prod 31:65–70

    Article  CAS  Google Scholar 

  • Domingues RMA et al (2012) Supercritical fluid extraction of Eucalyptus globulus bark-a promising approach for triterpenoid production. Int J Mol Sci 13:7648–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingues RMA, Sousa GDA, Freire CSR, Silvestre AJD, Neto CP (2010) Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds. Ind Crop Prod 31:65–70

    Article  CAS  Google Scholar 

  • Domtar (2013) BioChoice™ lignin. http://www.upmbiochemicals.com/SiteCollectionDocuments/BioChoice-brochure.pdf. Accessed 15 Feb 2018

  • Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96

    Article  CAS  Google Scholar 

  • El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab 94:1632–1638

    Article  CAS  Google Scholar 

  • El Hage R, Brosse N, Sannigrahi P, Ragauskas A (2010) Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stab 95:997–1003

    Article  CAS  Google Scholar 

  • Evtuguin DV, Neto CP, Silva AMS, Domingues PM, Amado FML, Robert D, Faix O (2001) Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J Agric Food Chem 49:4252–4261

    Article  CAS  PubMed  Google Scholar 

  • Eyles A, Davies N, Mohammed C (2004) Traumatic oil glands induced by pruning in the wound-associated phloem of Eucalyptus globulus: chemistry and histology. Trees: Struct Funct 18:204–210

    Article  Google Scholar 

  • Eyles A, Davies N, Yuan Z, Mohammed C (2003) Host responses to natural infection by Cytonaema sp. in the aerial bark of Eucalyptus globulus. For Pathol 33:317–331

    Article  Google Scholar 

  • Ek M, Gellerstedt, G, Henriksson (2009) Pulp and Paper Chemistry and Technology, Pulping Chemistry and Technology, vol 2. de Gruyter, Berlin

    Google Scholar 

  • Faix O, Argyropoulos Dimitris S, Robert D, Neirinck V (1994) Determination of hydroxyl groups in lignins evaluation of 1H, 13C, 31P NMR, FTIR and wet chemical methods. Holzforsch. – Int J Biol Chem Phys Technol Wood 48:387

    Google Scholar 

  • Feng S, Cheng S, Yuan Z, Leitch M, Xu C (2013) Valorization of bark for chemicals and materials: a review. Renew Sust Energ Rev 26:560–578

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Lignin. In: Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, New york, pp 132–181

    Google Scholar 

  • Fernández-Costas C, Gouveia S, Sanromán MA, Moldes D (2014) Structural characterization of Kraft lignins from different spent cooking liquors by 1D and 2D nuclear magnetic resonance spectroscopy. Biomass Bioenergy 63:156–166

    Article  CAS  Google Scholar 

  • Fraser W (2018) Lignin. https://www.westfraser.com/products/lignin-0. Accessed 15 Feb 2018

  • Freire C, Silvestre A, Neto C (2002a) Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforsch. – Int J Biol Chem Phys Technol Wood 56:143–149

    Google Scholar 

  • Freire C, Silvestre A, Neto C, Cavaleiro J (2002b) Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforsch. – Int J Biol Chem Phys Technol Wood 56:372–379

    Google Scholar 

  • Froass PM, Ragauskas AJ, Jiang J (1998) Nuclear magnetic resonance studies. 4. Analysis of residual lignin after kraft pulping. Ind Eng Chem Res 37:3388–3394

    Article  CAS  Google Scholar 

  • Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Gandini A (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 201–224

    Chapter  Google Scholar 

  • Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392

    Article  Google Scholar 

  • Gooding C (2012) Comparison of the LignoBoost and SLRP lignin recovery process. In: Interbational Bioenergy & Bioproducts Conference (IBBC), Savannah, Georgia, October 17–19

    Google Scholar 

  • Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assesment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83:155–165

    Article  CAS  Google Scholar 

  • Gosselink R (2011) Lignin as a renewable aromatic resource for the chemical industry. In: Mini-symposium organised by Wageningen UR lignin platform, Wageningen, December 6

    Google Scholar 

  • Gullichsen J (1999) Fiber line operations. In: Gullichsen J, Fogelholm CJ (eds) Chemical pulping, Papermaking science and technology, vol 6A. Fapet Oy, Jyväskylä, Finland, pp 19–243

    Google Scholar 

  • Hallac BB, Pu Y, Ragauskas AJ (2010) Chemical transformations of Buddleja davidii lignin during ethanol organosolv pretreatment. Energy Fuel 24:2723–2732

    Article  CAS  Google Scholar 

  • Harlow S (2016) Renmatix turns biomass into sugars for industrial use. articles.extension.org/pages/73638/renmatix-turnsbiomass-into-sugars-for-industrial-use. Accessed 08 Feb 2018

  • Harkin, JM, Rowe JW (1971) Bark And Its Possible Uses. Research note, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Research note 091, Madison, U.S.A.

    Google Scholar 

  • Heitner C, Dimmel D, Schmidt J (2010) Lignin and lignans: advances in chemistry. CRC Press, Taylor & Francis, Florida, U.S.A.

    Google Scholar 

  • Heredia AJ, Jiménez A, Guillén R (1995) Composition of plant cell walls. Z Lebensm Unters Forsch 200:24–31

    Article  CAS  PubMed  Google Scholar 

  • Hillis W, Yazaki Y (1974) Kinos of Eucalyptus species and their acid degradation products. Phytochemistry 13:495–498

    Article  Google Scholar 

  • Hou A-J, Liu Y-Z, Yang H, Lin Z-W, Sun H-D (2000) Hydrolyzable tannins and related polyphenols from Eucalyptus globulus. J Asian Nat Prod Res 2:205–212

    Article  CAS  PubMed  Google Scholar 

  • Huang C, He J, Narron R, Wang Y, Yong Q (2017) Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene. ACS Sustain Chem Eng 5:11770–11779

    Article  CAS  Google Scholar 

  • Humpert D, Ebrahimi M, Czermak P (2016) Membrane technology for the recovery of lignin: a review. Membranes 6:42

    Article  PubMed Central  CAS  Google Scholar 

  • Ibarra D et al (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, fourier transform infrared, and pyrolysis−gas chromatography/mass spectrometry study. J Agric Food Chem 55:3477–3490

    Article  CAS  PubMed  Google Scholar 

  • Iogen Corporation (2015) Costa pinto project. https://www.iogen.ca/raizen-project/index.html. Accessed 09 Feb 2018

  • Jönsson J, Berntsson T 2010 Analysing the potential for CCS within the European pulp and paper industry. In: 23rd international ECOS conference, Lausanne, Switzerland, June 14–17, pp 676–683

    Google Scholar 

  • Kampa M et al (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 6:R63–R74

    Article  CAS  PubMed  Google Scholar 

  • Kautto J (2017) Evaluation of two pulping-based biorefinery concepts. Lappeenranta University of Technology. https://www.doria.fi/bitstream/handle/10024/143661/Jesse%20Kautto%20A4_ei%20artik_1.pdf?sequence=2. Accessed 08 Feb 2017

  • Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Bior 3:199–212

    Article  CAS  Google Scholar 

  • Khan MA, Ashraf SM, Malhotra VP (2004) Eucalyptus bark lignin substituted phenol formaldehyde adhesives: a study on optimization of reaction parameters and characterization. J Appl Polym Sci 92:3514–3523

    Article  CAS  Google Scholar 

  • Kim J-P, Lee I-K, Yun B-S, Chung S-H, Shim G-S, Koshino H, Yoo I-D (2001) Ellagic acid rhamnosides from the stem bark of Eucalyptus globulus. Phytochemistry 57:587–591

    Article  CAS  PubMed  Google Scholar 

  • Kouisni L, Gagné A, Maki K, Holt-Hindle P, Paleologou M (2016) LignoForce system for the recovery of lignin from black liquor: feedstock options, odor profile, and product characterization. ACS Sustain Chem Eng 4(10):5152–5159

    Article  CAS  Google Scholar 

  • Kouisni L, Holt-Hindle P, Maki K, Paleologou M (2012) The Lignoforce system™: a new process for the production of high-quality lignin from black liquor. J Sci Technol Prod Process 2:6–10

    Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Olajire Oyedun A, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sust Energ Rev 81:1742–1770

    Article  Google Scholar 

  • Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641

    Article  CAS  Google Scholar 

  • Lacoste C, Basso MC, Pizzi A, Celzard A, Ella Ebang E, Gallon N, Charrier B (2015) Pine (P. pinaster) and quebracho (S. lorentzii) tannin-based foams as green acoustic absorbers. Ind Crop Prod 67:70–73

    Article  CAS  Google Scholar 

  • Lake MA, Blackburn JC (2011) Process for recovering lignin, US Patent Application 2011/0294991

    Google Scholar 

  • Lake MA, Blackburn JC (2014) SLRP™ – an innovative lignin-recovery technology. Cellul Chem Technol 48(9–10):799–804

    CAS  Google Scholar 

  • Lange H, Schiffels P, Sette M, Sevastyanova O, Crestini C (2016) Fractional precipitation of wheat straw Organosolv lignin: macroscopic properties and structural insights. ACS Sustain Chem Eng 4:5136–5151

    Article  CAS  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  CAS  Google Scholar 

  • Lin SY, Dence CW (1992) Methods in lignin chemistry. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Lora J (2008) Industrial commercial lignins: sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 225–241

    Chapter  Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  • Lourenço A, Gominho J, Marques AV, Pereira H (2012) Variation of lignin monomeric composition curing kraft pulping of Eucalyptus globulus heartwood and sapwood. J Wood Chem Technol 33:1–18

    Article  CAS  Google Scholar 

  • Lu F, Ralph J (1997) Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. J Agric Food Chem 45:2590–2592

    Article  CAS  Google Scholar 

  • Mahmood N, Yuan Z, Schmidt J, Xu C (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energ Rev 60:317–329

    Article  CAS  Google Scholar 

  • Mansouri NE, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24:8–16

    Article  CAS  Google Scholar 

  • Mansouri NE, Salvadó J (2007) Analytical methods for determining functional groups in various technical lignins. Ind Crop Prod 26:116–124

    Article  CAS  Google Scholar 

  • McDonough TJ (1992) The chemistry of organosolv delignification. TAPPI J 76:186–193

    Google Scholar 

  • Meltzer H, Malterud K (1997) Can dietary flavonoids influence the development of coronary heart disease? Scand J Nutr 41:50–57

    Google Scholar 

  • Miller J, Faleiros M, Pilla L, Bodart AC (2016) Lignin: technology, applications and markets. Special market analysis study. RISI, Market-Intell LCC

    Google Scholar 

  • Minor JL (1996) Raw materials. Production of unbleached pulp. In: Dence CW, Reeve DW (eds) Pulp bleaching – principles and practice. Tappi Press, Atlanta, pp 27–57

    Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind Crop Prod 41:299–305

    Article  CAS  Google Scholar 

  • Miranda I, Gominho J, Pereira H (2012) Incorporation of bark and tops in Eucalyptus globulus wood pulping. Bioresources 7:4350–4361

    Google Scholar 

  • Mirra IMP (2011) Influência das diferentes granulometrias na composição química das cascas de Eucalyptus globulus Labill., Betula pendula Roth, Picea abies (L.) Karst, Pinus sylvestris L. e Pinus pinea L.. Master thesis, Universidade Técnica de Lisboa

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mota I (2011) Extracção de base aquosa de compostos polares da casca de Eucalyptus globulus na perspectiva da sua recuperação. Master thesis, Faculty of Engeneering of University of Porto

    Google Scholar 

  • Mota I et al (2012) Extraction of polyphenolic compounds from Eucalyptus globulus bark: process optimization and screening for biological activity. Ind Eng Chem Res 51:6991–7000

    Article  CAS  Google Scholar 

  • Mota I et al (2013) Eucalyptus globulus bark as a source of polyphenolic compounds with biological activity. O Papel 74:57–64

    Google Scholar 

  • Moure A et al (2001) Natural antioxidants from residual sources. Food Chem 72:145–171

    Article  CAS  Google Scholar 

  • Myerly RC, Nicholson MD, Katzen R, Taylor JM (1981) The forest refinery. ChemTech 11:186–192

    CAS  Google Scholar 

  • Neiva DM, Gominho J, Pereira H (2014) Modeling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources 9:2907–2921

    Google Scholar 

  • Nimz HH, Robert D, Faix O, Nemr M (1981) Carbon-13NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforsch. – Int J Biol Chem Phys Technol Wood 35:16–26

    Article  CAS  Google Scholar 

  • Oliveira RCP, Mateus M, Santos DMF (2016) Black liquor electrolysis for hydrogen and lignin extraction. ECS Trans 72:43–53

    Article  CAS  Google Scholar 

  • Pan X et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  CAS  PubMed  Google Scholar 

  • Pan X et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  CAS  PubMed  Google Scholar 

  • Panagiotopoulos IA, Chandra RP, Saddler JN (2012) A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresour Technol 130:570–577

    Article  PubMed  CAS  Google Scholar 

  • Pepper JM, Casselman BW, Karapally JC (1967) Lignin oxidation. Preferential use of cupric oxide. Can J Chem 45:3009–3012

    Article  CAS  Google Scholar 

  • Perchellet JP, Gali HU, Perchellet EM, Laks PE, Bottari V, Hemingway RW, Scalbert A (1994) Antitumor-promoting effects of gallotannins, ellagitannins, and flavonoids in mouse skin in vivo. In: Huang M-T, Osawa T, Ho C-T, Rosen RT (eds) Food phytochemicals for Cancer prevention I: fruits and vegetables, vol 546. ACS symposium series. American Chemical Society, Washington, DC, pp 303–327

    Google Scholar 

  • Pereira H (1988) Variability in the chemical composition of plantation eucalyptus (Eucalyptus globulus), Wood Fiber Sci 20(1):82–90

    Google Scholar 

  • Picardo MC, de Medeiros JL, Monteiro JGM, Chaloub RM, Giordano M, de Queiroz Fernandes Araújo O (2013) A methodology for screening of microalgae as a decision making tool for energy and green chemical process applications. Clean Techn Environ Policy 15:275–291

    Article  Google Scholar 

  • Pinto PC, Borges da Silva EA, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50:741–748

    Article  CAS  Google Scholar 

  • Pinto PC, Evtuguin DV, Neto CP (2005a) Effect of structural features of wood biopolymers on hardwood pulping and bleaching performance. Ind Eng Chem Res 44:9777–9784

    Article  CAS  Google Scholar 

  • Pinto PC, Evtuguin DV, Neto CP (2005b) Structure of hardwood glucuronoxylans: modifications and impact on pulp retention during wood kraft pulping. Carbohydr Polym 60:489–497

    Article  CAS  Google Scholar 

  • Pinto PC, Evtuguin DV, Neto CP, Silvestre AJD (2002a) Behavior of Eucalyptus globulus lignin during kraft pulping I. Analysis by chemical degradation methods. J Wood Chem Technol 22:93–108

    Article  CAS  Google Scholar 

  • Pinto PC, Evtuguin DV, Neto CP, Silvestre AJD, Amado FML (2002b) Behavior of Eucalyptus globulus lignin during kraft pulping II. Analysis by NMR, ESI/MS and GPC. J Wood Chem Technol 22:109–125

    Article  CAS  Google Scholar 

  • Pinto PCR, Borges da Silva EA, Rodrigues AE (2012) Lignin as source of fine chemicals: vanillin and syringaldehyde. In: Baskar C, Baskar S, Dhillon RS (eds) Biomass conversion. Springer, Berlin, Heidelberg, pp 381–420

    Chapter  Google Scholar 

  • Pinto PCR, Oliveira C, Costa CAE, Rodrigues AE (2016) Performance of side-streams from Eucalyptus processing as sources of polysaccharides and lignins by kraft delignification. Ind Eng Chem Res 55:516–526

    Article  CAS  Google Scholar 

  • Pinto PCR, Sousa G, Crispim F, Silvestre AJD, Neto CP (2013) Eucalyptus globulus bark as source of tannin extracts for application in leather industry. ACS Sustain Chem Eng 1:950–955

    Article  CAS  Google Scholar 

  • Pinto PR, Mota IF, Pereira CM, Ribeiro AM, Loureiro JM, Rodrigues AE (2017) Separation and recovery of polyphenols and carbohydrates from Eucalyptus bark extract by ultrafiltration/diafiltration and adsorption processes. Sep Purif Technol 183:96–105

    Article  CAS  Google Scholar 

  • Pizzi A (1998) Wood Bark Extracts as Adhesives and Preservatives. In: Bruce A, Palfreyman JW (eds) Forest Products Biotechnology. Taylor & Francis Ltd, London, United Kingdom

    Google Scholar 

  • Pizzi A (2008) Tannins: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Oxford, pp 179–199

    Chapter  Google Scholar 

  • PLANT (2016) West Fraser brews its black liquor. https://www.plant.ca/features/west-fraser-brews-black-liquor/. Accessed 15 Feb 2018

  • POET-DSM Advanced Biofuels (2014) POET-DSM achieves cellulosic biofuel breakthrough. http://poetdsm.com/pr/poet-dsm-achieves-cellulosic-biofuel-breakthrough. Accessed 08 Feb 2018

  • Popa V (2013) Pulping fundamentals and processing. In: Popa V (ed) Pulp Production and processing: from papermaking to high-tech products. Smithers Rapra, Shropshire, UK, pp 35–70

    Google Scholar 

  • Quesada J, Rubio M, Gomez D (1999) Ozonation of lignin rich solid fractions from corn stalks. J Wood Chem Technol 19:115–137

    Article  CAS  Google Scholar 

  • Quilhó T, Pereira H (2001) Within and between-tree variation of bark content and wood density of Eucalyptus globulus in commercial plantations. IAWA J 22:255–265

    Article  Google Scholar 

  • Quilhó T, Pereira H, Richter HG (1999) Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA J 20:171–180

    Article  Google Scholar 

  • Quilhó T, Pereira H, Richter HG (2000) Within-tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. IAWA J 22:255–265

    Article  Google Scholar 

  • Ragauskas AJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  PubMed  CAS  Google Scholar 

  • Rayonier Advanced Materials (2018) http://rayonieram.com/. Accessed 08 Feb 2018

  • Reeve DW (2002) The kraft recovery cycle. Tappi kraft recovery operations short course. Tappi Press, Atlanta, U.S.A.

    Google Scholar 

  • Ritchie TJ, Ertl P, Lewis R (2011) The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov Today 16:65–72

    Article  CAS  PubMed  Google Scholar 

  • Rowell RM (ed) (2005) Handbook of wood chemistry and wood composites. CRC Press, Florida

    Google Scholar 

  • Saito T, Perkins JH, Vautard F, Meyer HM, Messman JM, Tolnai B, Naskar AK (2014) Methanol fractionation of softwood Kraft lignin: impact on the lignin properties. ChemSusChem 7:221–228

    Article  CAS  PubMed  Google Scholar 

  • Sannigrahi P, Ragauskas AJ, Miller SJ (2009) Lignin structural modifications resulting from ethanol organosolv treatment of Loblolly Pine. Energy Fuel 24:683–689

    Article  CAS  Google Scholar 

  • Santos GG, Alves JCN, Rodilla JML, Duarte AP, Lithgow AM, Urones JG (1997) Terpenoids and other constituents of Eucalyptus globulus. Phytochemistry 44:1309–1312

    Article  CAS  Google Scholar 

  • Santos OS, Freire C, Domingues MR, Silvestre A, Neto P (2011) Characterization of phenolic components in polar extracts of Eucalyptus globulus labill. Bark by high-performance liquid chromatography–mass spectrometry. J Agric Food Chem 59:9386–9393

    Article  CAS  PubMed  Google Scholar 

  • Santos SAO, Pinto RJB, Rocha SM, Marques PAAP, Neto CP, Silvestre AJD, Freire CSR (2014) Unveiling the chemistry behind the green synthesis of metal nanoparticles. ChemSusChem 7:2704–2711

    Article  CAS  PubMed  Google Scholar 

  • Santos SAO, Vilela C, Freire CSR, Neto CP, Silvestre AJD (2013) Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J Chromatogr B 938:65–74

    Article  CAS  Google Scholar 

  • Santos SAO, Villaverde JJ, Freire CSR, Domingues MRM, Neto CP, Silvestre AJD (2012) Phenolic composition and antioxidant activity of Eucalyptus grandis, E. Urograndis (E. grandis × E. Urophylla) and E. maidenii bark extracts. Ind Crop Prod 39:120–127

    Article  CAS  Google Scholar 

  • Sevastyanova O, Lange H, Crestini C, Dobele G, Helander M, Chang L (2014) Selective isolation of technical lignin from the industrial side-streams – structure and properties. In: NWBC – Nordic wood biorefinery conference, Stockholm, 25–27 March

    Google Scholar 

  • Shatalov AA, Evtuguin DV, Pascoal Neto C (1999) (2-O-α-D-Galactopyranosyl-4-O-methyl-α-D-glucurono)-D-xylan from Eucalyptus globulus Labill. Carbohydr Res 320:93–99

    Article  CAS  PubMed  Google Scholar 

  • Silva ARG, Errico M, Rong BG (2017) Process alternatives for bioethanol production from organosolv pretreatment using lignocellulosic biomass. Chem Eng Trans 57:1–6

    Google Scholar 

  • Sjostrom E (1981) Pulping chemistry. In: Wood chemistry: fundamentals and applications. Academic Press, New York, pp 104–145

    Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press, Inc., London

    Google Scholar 

  • Smolarski N (2012) High-value opportunities for lignin: unlocking its potential. Frost & Sullivan. https://www.greenmaterials.fr/wp-content/uploads/2013/01/high-value-opportunities-for-lignin-unlocking-its-potential-market-insights.pdf

  • Snelders J et al (2014) Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour Technol 156:275–282

    Article  CAS  PubMed  Google Scholar 

  • Stoklosa RJ, Velez J, Kelkar S, Saffron CM, Thies MC, Hodge DB (2013) Correlating lignin structural features to phase partitioning behavior in a novel aqueous fractionation of softwood Kraft black liquor. Green Chem 15:2904–2912

    Article  CAS  Google Scholar 

  • Stora Enso (2015) http://biomaterials.storaenso.com/AboutUs-Site/Pages/Innovation-centre-for-biomaterials.aspx. Accessed 09 Feb 2018

  • Stora Enso (2018) Lignin solutions. http://biomaterials.storaenso.com/ProductsServices-Site/Pages/Lignin.aspx. Accessed 09 Feb 2018

  • Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv 4:25310–25318

    Article  CAS  Google Scholar 

  • Sun XF, Jing Z, Fowler P, Wu Y, Rajaratnam M (2011) Structural characterization and isolation of lignin and hemicelluloses from barley straw. Ind Crop Prod 33:588–598

    Article  CAS  Google Scholar 

  • Takuo O (2005) Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry 66:2012–2031

    Article  CAS  Google Scholar 

  • Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE (2013) Biomass for thermochemical conversion: targets and challenges. Front Plant Sci 4:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao J et al (2016) Effects of organosolv fractionation time on thermal and chemical properties of lignins. RSC Adv 6:79228–79235

    Article  CAS  Google Scholar 

  • Téguia CD, Albers R, Stuart PR (2017) Analysis of economically viable lignin-based biorefinery strategies implemented within a kraft pulp mill. TAPPI J 16:157–169

    Google Scholar 

  • Teixeira MA, Rodríguez O, Rodrigues AE (2010) Perfumery radar: a predictive tool for perfume family classification. Ind Eng Chem Res 49:11764–11777

    Article  CAS  Google Scholar 

  • Tembec (2002) Lignosulfonates from Tembec. http://kemtekindustries.com/Tembec-Lignosulfonates-Brochure.pdf. Accessed 08 Feb 2018

  • Valdivia M, Galan JL, Laffarga J, Ramos J-L (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9:585–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Vankar PS, Srivastava J, Molčanov K, Kojic-Prodić B (2009) Withanolide a series steroidal lactones from Eucalyptus globulus bark. Phytochem Lett 2:67–71

    Article  CAS  Google Scholar 

  • Vázquez G, Fontenla E, Santos J, Freire MS, González-Álvarez J, Antorrena G (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and Eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 28:279–285

    Article  CAS  Google Scholar 

  • Vázquez G, González-Alvarez J, Santos J, Freire MS, Antorrena G (2009) Evaluation of potential applications for chestnut (Castanea sativa) Shell and Eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 29:364–370

    Article  CAS  Google Scholar 

  • Vázquez G, Santos J, Freire M, Antorrena G, González-Álvarez J (2012) Extraction of antioxidants from Eucalyptus (Eucalyptus globulus) bark. Wood Sci Technol 46:443–457

    Article  CAS  Google Scholar 

  • Verma M, Godboutl S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012:1–18

    Article  CAS  Google Scholar 

  • Wallmo H (2017) The next generation LignoBoost – tailor made lignin production for different lignin bio-product market. In: 7th Nordic wood biorefinery conference (NWBC), Stockholm, Sweden, March 28–30

    Google Scholar 

  • Wen JL, Xue BL, Sun SL, Sun RC (2013a) Quantitative structural characterization and thermal properties of birch lignins after auto-catalyzed organosolv pretreatment and enzymatic hydrolysis. J Chem Technol Biotechnol 88:1663–1671

    Article  CAS  Google Scholar 

  • Wen JL, Sun SL, Xue BL, Sun RC (2013b) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen JL, Xue BL, Xu F, Sun RC (2012) Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique. Bioenergy Res 5:886–903

    Article  CAS  Google Scholar 

  • Whitmore TC (1962) Studies in systematic bark morphology. New Phytol 61:191–207

    Article  Google Scholar 

  • Xiao B, Sun XF, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319

    Article  CAS  Google Scholar 

  • Xu F, Sun JX, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crop Prod 23:180–193

    Article  CAS  Google Scholar 

  • Zhao L-Q, Sun Z-H, Zheng P, He J-Y (2006) Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem 41:1673–1676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, A.E., Pinto, P.C.d.O.R., Barreiro, M.F., Esteves da Costa, C.A., Ferreira da Mota, M.I., Fernandes, I. (2018). Chemical Pulp Mills as Biorefineries. In: An Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-99313-3_1

Download citation

Publish with us

Policies and ethics