Skip to main content

Caves as Oligotrophic Ecosystems

  • Chapter
  • First Online:
Book cover Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Oligotrophic caves are characterized by very limited sources of organic material and simplified trophic structure due to their predominant isolation from surface ecosystems. Trophic structure of caves depends on their connectivity and interactions with the epigean environment. The food base for biota in nutrient poor caves is mostly confined to organic substances encompassed in percolating water, which also mediates transport of microbes and microfauna into subterranean habitats. Many of the cave microbes are genetically divergent from surface microbes and adapted to the aphotic and oligotrophic cave environment. In nutrient-poor caves heterotrophic bacteria dominate accompanied by a number of chemoautotrophs that gain energy from inorganic chemicals through chemosynthesis and fix inorganic carbon. Chemoautotrophs may thus impact many geological or geochemical processes in subterranean systems and serve as the food source for microbivorous and omnivorous subterranean animals. In caves, food scarcity acts as a selective force and requires evolutionary adaptations in animals related to their morphological and biological traits. In warmer regions of the globe, oligotrophic habitats are characterized by high proportions of the community being troglobiotic or stygobiotic. The amount and nature of the food supply control the presence of troglo- and stygobionts and the overall composition of animal assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque EF, Coineau N (2004) Interstitial habitats (aquatic). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 979–983

    Google Scholar 

  • Andersen T, Baranov V, Hagenlund LK et al (2016) Blind flight? A new troglobiotic orthoclad (Diptera, Chironomidae) from the Lukina Jama – Trojama Cave in Croatia. PLoS One 11:e0152884

    PubMed  PubMed Central  Google Scholar 

  • Aubrecht R, Barrio-Amorós CL, Breure ASH et al (2012) Venezuelan tepuis: their caves and biota. Acta Geologica Slovaca – Monograph. Comenius University, Bratislava

    Google Scholar 

  • Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20

    Article  CAS  Google Scholar 

  • Barton HA, Taylor NM, Kreate MP et al (2007) The impact of host rock geomicrobiology on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104

    Article  Google Scholar 

  • Barton HA, Giarrizzo JG, Suarez P et al (2014) Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front Microbiol 5:1–14

    Article  Google Scholar 

  • Bedek J, Lukić M, Jalžić B et al (2012) Subterranean community from Lukina jama – Trojama Cave System, the deepest cave in Dinaric Karst (Northern Velebit Mt., Croatia). In: Kováč Ľ, Uhrin M, Mock A, Ľuptáčik P (eds) Abstract book, 21st international conference on subterranean biology, 2–7 September 2012, Košice, Slovakia. P. J. Šafárik University, Košice, pp 26–27

    Google Scholar 

  • Christiansen KA (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537

    Article  Google Scholar 

  • Christiansen KA (2012) Morphological adaptations. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 517–528

    Chapter  Google Scholar 

  • Cuezva S, Sanchez-Moral S, Saiz-Jimenez C et al (2009) Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int J Speleol 38:83–92

    Article  Google Scholar 

  • Culver DC (1982) Cave life – evolution and ecology. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Brancelj A, Pipan T (2012) Epikarst communities. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 288–295

    Chapter  Google Scholar 

  • De Mandal S, Chatterjee R, Kumar NS (2017) Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol 17:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Deharveng L (2004a) Asia, Southeast: biospeleology. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 229–234

    Google Scholar 

  • Deharveng L (2004b) Insecta: Apterygota. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 962–965

    Google Scholar 

  • Deharveng L, Bedos A (2000) The cave fauna of Southeast Asia, origin, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 603–632

    Google Scholar 

  • Derka T, Fedor P (2010) Hydrolutos breweri sp. n., a new aquatic Lutosini species (Orthoptera: Anostostomatidae) from Churí-tepui (Chimantá Massif, Venezuela). Zootaxa 2653:51–59

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel AS (2012) Microbes. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 490–499

    Chapter  Google Scholar 

  • Fenolio D (2016) Life in the dark. Illuminating biodiversity in the shadowy faunts of planet Earth. John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. BioScience 52:473–481

    Article  Google Scholar 

  • Hervant F, Malard F (2012) Responses to low oxygen. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 651–658

    Chapter  Google Scholar 

  • Hoese G, Addison A, Toulkeridis T et al (2015) Observation of the catfish Chaetostoma microps climbing in a cave in Tena, Ecuador. Subt Biol 15:29–35

    Google Scholar 

  • Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77

    Article  PubMed  Google Scholar 

  • Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218

    Google Scholar 

  • Humphreys WF (2000a) Background and glossary. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 3–14

    Google Scholar 

  • Humphreys WF (2000b) The hypogean fauna of the Cape Range Peninsula and Barrow Island, Northwestern Australia. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 581–601

    Google Scholar 

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Hüppop K (2012) Adaptation to low food. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 1–9

    Google Scholar 

  • Juberthie C (1984) La colonisation du milieu souterrain: théories et modéles, relations avec la spéciation et l’évolution souterraine. Mém Biospéol 11:65–102

    Google Scholar 

  • Klimchouk A, Palmer AN, De Waele J et al (2017) Hypogene karst regions and caves of the world. Springer, Cham

    Book  Google Scholar 

  • Kováč Ľ, Elhottová D, Mock A et al (2014) The cave biota of Slovakia. Speleologia Slovaca 5. State Nature Conservancy SR, Slovak Caves Administration, Liptovský Mikuláš

    Google Scholar 

  • Moldovan OT (2004) Adaptation: morphological (internal). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 19–22

    Google Scholar 

  • Moldovan OT, Jalžić B, Erichsen E (2004) Adaptation of the mouthparts in some subterranean Cholevinae (Coleoptera, Leiodidae). Natura Croatica 13:1–18

    Google Scholar 

  • Northup DA, Lavoie KH (2004) Microorganisms in caves. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 1083–1089

    Google Scholar 

  • Oliveira C, Gunderman L, Coles CA et al (2017) 16S rRNA gene-based metagenomic analysis of Ozark cave Bacteria. Diversity 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz M, Legatski A, Neilson JW et al (2014) Making a living whiles tarving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491

    Article  CAS  PubMed  Google Scholar 

  • Palmer AN (2011) Distinction between epigenic and hypogenic maze caves. Geomorphol 134:9–22

    Article  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290

    Article  Google Scholar 

  • Poulson TL (2012) Food sources. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 323–334

    Chapter  Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 231–249

    Google Scholar 

  • Romero A (2009) Cave biology – life in darkness. Cambridge University Press, Cambridge, NY

    Book  Google Scholar 

  • Sendra A, Reboleira ASPS (2012) The world’s deepest subterranean community – Krubera-Voronja Cave (Western Caucasus). Int J Speleol 41:221–230

    Article  Google Scholar 

  • Sendra A, Garay P, Ortuño VM et al (2014) Hypogenic versus epigenic subterranean ecosystem: lessons from eastern Iberian Peninsula. Int J Speleol 43:253–264

    Article  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007a) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284

    CAS  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007b) Spatial and temporal heterogeneity in the flux of organic carbon in caves. In: Groundwater and ecosystems, International Association of Hydrogeologists, Lisbon

    Google Scholar 

  • Sket B (2004) The cave hygropetric – a little known habitat and its inhabitants. Arch Hydrobiol 160:413–425

    Article  Google Scholar 

  • Sket B (2012) Diversity patterns in the Dinaric Karst. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 228–238

    Chapter  Google Scholar 

  • Thibaud J-M, Deharveng L (1994) Collembola. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Moulis-Bucarest, pp 267–276

    Google Scholar 

  • Timmermann M, Schlupp I, Plath M (2004) Shoaling behaviour in a surface-dwelling and a cave-dwelling population of a barb Garra barreimiae (Cyprinidae, Teleostei). Acta Ethol 7:59–64

    Article  Google Scholar 

  • Trajano E, Mugue N, Krejca J et al (2002) Habitat, distribution, ecology and behavior of cave balitorids from Thailand (Teleostei: Cypriniformes). Ichthyol Explor Fres 13:169–184

    Google Scholar 

  • Trontelj P (2012) Natural selection. In: White WB, Culver DC (eds) Encyclopedia of caves. Elsevier, Waltham, MA, pp 543–549

    Chapter  Google Scholar 

  • Weber A (2000) Fish and amphibian. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 109–132

    Google Scholar 

Download references

Acknowledgments

During writing this chapter, the author was supported from project of the Slovak Development and Research Agency APVV-17-0477 and the Slovak Scientific Grant Agency VEGA 1/0346/18.  I am very indebted to Oana T. Moldovan, Stuart Halse and Francis G. Howarth for the useful suggestions and comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Kováč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kováč, Ľ. (2018). Caves as Oligotrophic Ecosystems. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_13

Download citation

Publish with us

Policies and ethics