Skip to main content

Stem Cell Therapy and Regenerative Medicine in the Cornea

  • Chapter
  • First Online:
Regenerative Medicine and Stem Cell Therapy for the Eye

Abstract

Currently, full-thickness transplantation with human donor corneas is the most widely accepted treatment for corneal blindness. However, due to a severe shortage of human donor corneas as well as problems associated with the storage, screening, and immune response to allogeneic tissues, there has been a push to develop alternative therapies and materials for corneal tissue repair. Here, we review a range of stem cell-based therapies, prosthetics, and extracellular matrix-derived scaffolds, which have been utilized or are being developed for corneal regeneration in vitro, animal models, and human clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meek, K. M., & Knupp, C. (2015). Corneal structure and transparency. Progress in Retinal and Eye Research, 49, 1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jonas, J. B., & Holbach, L. (2005). Central corneal thickness and thickness of the lamina cribrosa in human eyes. Investigative Ophthalmology & Visual Science, 46, 1275–1279.

    Article  Google Scholar 

  3. Maurice, D. M. (1957). The structure and transparency of the cornea. The Journal of Physiology, 136, 263–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McDermott, A. M. (2009). The role of antimicrobial peptides at the ocular surface. Ophthalmic Research, 41, 60–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Van Buskirk, E. M. (1989). The anatomy of the limbus. Eye, 3, 101–108.

    Article  PubMed  Google Scholar 

  6. Chen, S., Mienaltowski, M. J., & Birk, D. E. (2015). Regulation of corneal stroma extracellular matrix assembly. Experimental Eye Research, 133, 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tuft, S. J., & Coster, D. J. (1990). The corneal endothelium. Eye, 4, 389–424.

    Article  PubMed  Google Scholar 

  8. Oliva, M. S., Schottman, T., & Gulati, M. (2012). Turning the tide of corneal blindness. Indian Journal of Ophthalmology, 60, 423–427.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gain, P., Jullienne, R., He, Z., et al. (2016). Global survey of corneal transplantation and eye banking. JAMA Ophthalmology, 134, 167–173.

    Article  PubMed  Google Scholar 

  10. Williams, K. A., Esterman, A. J., Bartlett, C., Holland, H., Hornsby, N. B., Coster, D. J., et al. (2006). How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation, 81, 896–901.

    Article  PubMed  Google Scholar 

  11. Lass, J. H., Benetz, B. A., Gal, R. L., Kollman, C., Raghinaru, D., Dontchev, M., et al. (2013). Donor age and factors related to endothelial cell loss ten years after penetrating keratoplasty: Specular Microscopy Ancillary Study. Ophthalmology, 120, 2428–2435.

    Article  PubMed  Google Scholar 

  12. Arenas, E., Esquenazi, S., Anwar, M., & Terry, M. (2012). Lamellar corneal transplantation. Survey of Ophthalmology, 57, 510–529.

    Article  PubMed  Google Scholar 

  13. Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3, 589–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen, Y., Liao, C., Gao, M., Belin, M. W., Wang, M., Yu, H., et al. (2015). Efficacy and safety of corneal transplantation using corneas from foreign donors versus domestic donors: A prospective, randomized, controlled trial. Journal of Ophthalmology, 2015, 178289.

    PubMed  PubMed Central  Google Scholar 

  15. Dua, H. S., & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Survey of Ophthalmology, 44, 415–425.

    Article  CAS  PubMed  Google Scholar 

  16. Dua, H. S., Gomes, J. A., & Singh, A. (1994). Corneal epithelial wound healing. The British Journal of Ophthalmology, 78, 401–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tseng, S. G., Prabhasawat, P., Barton, K., Gray, T., & Meller, D. (1998). Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Archives of Ophthalmology, 116, 431–441.

    Article  CAS  PubMed  Google Scholar 

  18. Atallah, M. R., Palioura, S., Perez, V. L., & Amescua, G. (2016). Limbal stem cell transplantation: Current perspectives. Clinical Ophthalmology, 10, 593–602.

    PubMed  PubMed Central  Google Scholar 

  19. Baradaran-Rafii, A., Eslani, M., Haq, Z., Shirzadeh, E., Huvard, M. J., & Djalilian, A. R. (2017). Current and upcoming therapies for ocular surface chemical injuries. The Ocular Surface, 15, 48–64.

    Article  PubMed  Google Scholar 

  20. Holland, E. J. (2015). Management of limbal stem cell deficiency: A historical perspective, past, present, and future. Cornea, 34, S9–S15.

    Article  PubMed  Google Scholar 

  21. Ramachandran, C., Basu, S., Sangwan, V. S., & Balasubramanian, D. (2014). Concise review: The coming of age of stem cell treatment for corneal surface damage. Stem Cells Translational Medicine, 3, 1160–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vazirani, J., Mariappan, I., Ramamurthy, S., Fatima, S., Basu, S., & Sangwan, V. S. (2016). Surgical management of bilateral limbal stem cell deficiency. The Ocular Surface, 14, 350–364.

    Article  PubMed  Google Scholar 

  23. Thoft, R. A. (1977). Conjunctival transplantation. Archives of Ophthalmology, 95, 1425–1427.

    Article  CAS  PubMed  Google Scholar 

  24. Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96, 709–722 discussion 722–723.

    Article  CAS  PubMed  Google Scholar 

  25. Clearfield, E., Muthappan, V., Wang, X., & Kuo, I. C. (2016). Conjunctival autograft for pterygium. Cochrane Database of Systematic Reviews, 2, CD011349.

    PubMed  Google Scholar 

  26. Rao, S. K., Rajagopal, R., Sitalakshmi, G., & Padmanabhan, P. (1999). Limbal autografting: Comparison of results in the acute and chronic phases of ocular surface burns. Cornea, 18, 164–171.

    Article  CAS  PubMed  Google Scholar 

  27. Holland, E. J., & Schwartz, G. S. (1996). The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea, 15, 549–556.

    Article  CAS  PubMed  Google Scholar 

  28. Croasdale, C. R., Schwartz, G. S., Malling, J. V., & Holland, E. J. (1999). Keratolimbal allograft: Recommendations for tissue procurement and preparation by eye banks, and standard surgical technique. Cornea, 18, 52–58.

    Article  CAS  PubMed  Google Scholar 

  29. Kwitko, S., Marinho, D., Barcaro, S., Bocaccio, F., Rymer, S., Fernandes, S., et al. (1995). Allograft conjunctival transplantation for bilateral ocular surface disorders. Ophthalmology, 102, 1020–1025.

    Article  CAS  PubMed  Google Scholar 

  30. Biber, J. M., Skeens, H. M., Neff, K. D., & Holland, E. J. (2011). The cincinnati procedure: Technique and outcomes of combined living-related conjunctival limbal allografts and keratolimbal allografts in severe ocular surface failure. Cornea, 30, 765–771.

    Article  PubMed  Google Scholar 

  31. Chan, C. C., Biber, J. M., & Holland, E. J. (2012). The modified Cincinnati procedure: Combined conjunctival limbal autografts and keratolimbal allografts for severe unilateral ocular surface failure. Cornea, 31, 1264–1272.

    Article  PubMed  Google Scholar 

  32. Espana, E. M., Di Pascuale, M., Grueterich, M., Solomon, A., & Tseng, S. C. G. (2004). Keratolimbal allograft in corneal reconstruction. Eye, 18, 406–417.

    Article  CAS  PubMed  Google Scholar 

  33. Basu, S., Sureka, S. P., Shanbhag, S. S., Kethiri, A. R., Singh, V., & Sangwan, V. S. (2016). Simple limbal epithelial transplantation: Long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology, 123, 1000–1010.

    Article  PubMed  Google Scholar 

  34. Sangwan, V. S., Basu, S., Macneil, S., & Balasubramanian, D. (2012). Simple limbal epithelial transplantation (SLET): A novel surgical technique for the treatment of unilateral limbal stem cell deficiency. The British Journal of Ophthalmology, 96, 931–934.

    Article  PubMed  Google Scholar 

  35. Vazirani, J., Ali, M. H., Sharma, N., Gupta, N., Mittal, V., Atallah, M., et al. (2016). Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: Multicentre results. The British Journal of Ophthalmology, 100, 1416–1420.

    Article  PubMed  Google Scholar 

  36. Amescua, G., Atallah, M., Nikpoor, N., Galor, A., & Perez, V. L. (2014). Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. American Journal of Ophthalmology, 158, 469–475.

    Article  CAS  PubMed  Google Scholar 

  37. Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell, 6, 331–343.

    Article  CAS  PubMed  Google Scholar 

  38. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 349, 990–993.

    Article  CAS  Google Scholar 

  39. Sangwan, V. S., Basu, S., Vemuganti, G. K., Sejpal, K., Subramaniam, S. V., Bandyopadhyay, S., et al. (2011). Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: A 10-year study. The British Journal of Ophthalmology, 95, 1525–1530.

    Article  PubMed  Google Scholar 

  40. Deshpande, P., Ramachandran, C., Sangwan, V. S., & Macneil, S. (2013). Cultivation of limbal epithelial cells on electrospun poly (lactide-co-glycolide) scaffolds for delivery to the cornea. In B. Wright & C. J. Connon (Eds.), Corneal regenerative medicine: Methods and protocols. Totowa, NJ: Humana Press.

    Google Scholar 

  41. Fasolo, A., Pedrotti, E., Passilongo, M., Marchini, G., Monterosso, C., Zampini, R., et al. (2016). Safety outcomes and long-term effectiveness of ex vivo autologous cultured limbal epithelial transplantation for limbal stem cell deficiency. The British Journal of Ophthalmology, 101(5), 640–649.

    Article  PubMed  Google Scholar 

  42. Rama, P., Bonini, S., Lambiase, A., Golisano, O., Paterna, P., De Luca, M., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72, 1478–1485.

    Article  CAS  PubMed  Google Scholar 

  43. Sangwan, V. S., Matalia, H. P., Vemuganti, G. K., Fatima, A., Ifthekar, G., Singh, S., et al. (2006). Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian Journal of Ophthalmology, 54, 29–34.

    Article  PubMed  Google Scholar 

  44. Tsai, R. J.-F., Li, L.-M., & Chen, J.-K. (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. The New England Journal of Medicine, 343, 86–93.

    Article  CAS  PubMed  Google Scholar 

  45. Eslani, M., Baradaran-Rafii, A., & Ahmad, S. (2012). Cultivated limbal and oral mucosal epithelial transplantation. Seminars in Ophthalmology, 27, 80–93.

    Article  PubMed  Google Scholar 

  46. Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351, 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. The British Journal of Ophthalmology, 88, 1280–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inatomi, T., Nakamura, T., Koizumi, N., Sotozono, C., Yokoi, N., & Kinoshita, S. (2006). Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. American Journal of Ophthalmology, 141, 267–275.

    Article  PubMed  Google Scholar 

  49. Prabhasawat, P., Ekpo, P., Uiprasertkul, M., Chotikavanich, S., Tesavibul, N., Pornpanich, K., et al. (2016). Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell and Tissue Banking, 17, 491–503.

    Article  CAS  PubMed  Google Scholar 

  50. Satake, Y., Higa, K., Tsubota, K., & Shimazaki, J. (2011). Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology, 118, 1524–1530.

    Article  PubMed  Google Scholar 

  51. Dobrowolski, D., Wylegala, E., Wowra, B., & Orzechowska-Wylegala, B. (2011). Cultivated oral mucosa epithelium transplantation (COMET) in bilateral limbal stem cell deficiency. Acta Ophthalmologica. Supplement, 89. https://doi.org/10.1111/j.1755-3768.2011.4374.x

    Article  Google Scholar 

  52. Sotozono, C., Inatomi, T., Nakamura, T., Koizumi, N., Yokoi, N., Ueta, M., et al. (2013). Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology, 120, 193–200.

    Article  PubMed  Google Scholar 

  53. Liu, J., Sheha, H., Fu, Y., Giegengack, M., & Tseng, S. C. (2011). Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. American Journal of Ophthalmology, 152, 739–47.e1.

    Article  PubMed  Google Scholar 

  54. Katikireddy, K. R., Dana, R., & Jurkunas, U. V. (2014). Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells, 32, 717–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, L., Coulson-Thomas, V. J., Ferreira, T. G., & Kao, W. W. Y. (2015). Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmology, 15, 155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Meyer-Blazejewska, E. A., Call, M. K., Yamanaka, O., Liu, H., Schlötzer-Schrehardt, U., Kruse, F. E., et al. (2011). From hair to cornea: Towards the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells, 29, 57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Monteiro, B. G., Serafim, R. C., Melo, G. B., Silva, M. C. P., Lizier, N. F., Maranduba, C. M. C., et al. (2009). Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Proliferation, 42, 587–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Erbani, J., Aberdam, D., Larghero, J., & Vanneaux, V. (2016). Pluripotent stem cells and other innovative strategies for the treatment of ocular surface diseases. Stem Cell Reviews, 12, 171–178.

    Article  CAS  Google Scholar 

  59. Hayashi, R., Ishikawa, Y., Ito, M., Kageyama, T., Takashiba, K., Fujioka, T., et al. (2012). Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One, 7, e45435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kelaini, S., Cochrane, A., & Margariti, A. (2014). Direct reprogramming of adult cells: Avoiding the pluripotent state. Stem Cells Cloning, 7, 19–29.

    PubMed  PubMed Central  Google Scholar 

  61. Casaroli-Marano, R. P., Nieto-Nicolau, N., Martínez-Conesa, E. M., Edel, M., & Alvarez-Palomo, A. B. (2015). Potential role of induced pluripotent stem cells (IPSCs) for cell-based therapy of the ocular surface. Journal of Clinical Medicine, 4, 318–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Delmonte, D. W., & Kim, T. (2011). Anatomy and physiology of the cornea. Journal of Cataract and Refractive Surgery, 37, 588–598.

    Article  PubMed  Google Scholar 

  63. Beales, M. P., Funderburgh, J. L., Jester, J. V., & Hassell, J. R. (1999). Proteoglycan synthesis by bovine keratocytes and corneal fibroblasts: Maintenance of the keratocyte phenotype in culture. Investigative Ophthalmology & Visual Science, 40, 1658–1663.

    CAS  Google Scholar 

  64. Funderburgh, J. L., Mann, M. M., & Funderburgh, M. L. (2003). Keratocyte phenotype mediates proteoglycan structure: A role for fibroblasts in corneal fibrosis. The Journal of Biological Chemistry, 278, 45629–45637.

    Article  CAS  PubMed  Google Scholar 

  65. Karamichos, D., Funderburgh, M. L., Hutcheon, A. E. K., Zieske, J. D., Du, Y., Wu, J., et al. (2014). A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells. PLoS One, 9, e86260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Du, Y., Funderburgh, M. L., Mann, M. M., Sundarraj, N., & Funderburgh, J. L. (2005). Multipotent stem cells in human corneal stroma. Stem Cells, 23, 1266–1275.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Du, Y., Sundarraj, N., Funderburgh, M. L., Harvey, S. A., Birk, D. E., & Funderburgh, J. L. (2007). Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Investigative Ophthalmology & Visual Science, 48, 5038–5045.

    Article  Google Scholar 

  68. Basu, S., Hertsenberg, A. J., Funderburgh, M. L., Burrow, M. K., Mann, M. M., Du, Y., et al. (2014). Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Science Translational Medicine, 6, 266RA172–266RA172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Joyce, N. C. (2003). Proliferative capacity of the corneal endothelium. Progress in Retinal and Eye Research, 22, 359–389.

    Article  CAS  PubMed  Google Scholar 

  70. Dapena, I., Ham, L., & Melles, G. R. J. (2009). Endothelial keratoplasty: DSEK/DSAEK or DMEK – The thinner the better? Current Opinion in Ophthalmology, 20, 299–307.

    Article  PubMed  Google Scholar 

  71. Proulx, S., Bensaoula, T., Nada, O., Audet, C., D’Arc Uwamaliya, J., Devaux, A., et al. (2009). Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model. Investigative Ophthalmology & Visual Science, 50, 2686–2694.

    Article  Google Scholar 

  72. De Araujo, A. L., & Gomes, J. Á. P. (2015). Corneal stem cells and tissue engineering: Current advances and future perspectives. World Journal of Stem Cells, 7, 806–814.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Proulx, S., & Brunette, I. (2012). Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Experimental Eye Research, 95, 68–75.

    Article  CAS  PubMed  Google Scholar 

  74. Kinoshita, S., Koizumi, N., Ueno, M., Okumura, N., Imai, K., Tanaka, H., Yamamoto, Y., Nakamura, T., Inatomi, T., Bush, J., Toda, M., Hagiya, M., Yokota, I., Teramukai, S., Sotozono, C., & Hamuro, J. (2018). Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. New England Journal of Medicine, 378, 995-1003.

    Article  CAS  PubMed  Google Scholar 

  75. Bostan, C., Theriault, M., Forget, K. J., Doyon, C., Cameron, J. D., Proulx, S., et al. (2016). In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a Feline model. Investigative Ophthalmology & Visual Science, 57, 1620–1634.

    Article  CAS  Google Scholar 

  76. Koizumi, N., Okumura, N., Ueno, M., & Kinoshita, S. (2014). New therapeutic modality for corneal endothelial disease using rho-associated kinase inhibitor eye drops. Cornea, 33(Suppl 11), S25–S31.

    Article  PubMed  Google Scholar 

  77. Okumura, N., Okazaki, Y., Inoue, R., Kakutani, K., Nakano, S., Kinoshita, S., et al. (2016). Effect of the rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Investigative Ophthalmology & Visual Science, 57, 1284–1292.

    Article  CAS  Google Scholar 

  78. Mccabe, K. L., Kunzevitzky, N. J., Chiswell, B. P., Xia, X., Goldberg, J. L., & Lanza, R. (2015). Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One, 10, e0145266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Song, Q., Yuan, S., An, Q., Chen, Y., Mao, F. F., Liu, Y., et al. (2016). Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: A transcriptomic analysis. Experimental Eye Research, 151, 107–114.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, K., Pang, K., & Wu, X. (2014). Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells and Development, 23, 1340–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gomaa, A., Comyn, O., & Liu, C. (2010). Keratoprostheses in clinical practice – A review. Clinical & Experimental Ophthalmology, 38, 211–224.

    Article  Google Scholar 

  82. Dohlman, C. H., Cruzat, A., & White, M. (2014). The Boston keratoprosthesis 2014: A step in the evolution of artificial corneas. Spektrum Augenheilkd, 28, 226–233.

    Article  Google Scholar 

  83. Liu, C., Paul, B., Tandon, R., Lee, E., Fong, K., Mavrikakis, I., et al. (2005). The osteo-odonto-keratoprosthesis (OOKP). Seminars in Ophthalmology, 20, 113–128.

    Article  PubMed  Google Scholar 

  84. Iakymenko, S. (2013). Forty-five years of keratoprosthesis study and application at the Filatov Institute: A retrospective analysis of 1 060 cases. International Journal of Ophthalmology, 6, 375–380.

    PubMed  PubMed Central  Google Scholar 

  85. Colby, K. A., & Koo, E. B. (2011). Expanding indications for the Boston keratoprosthesis. Current Opinion in Ophthalmology, 22, 267–273.

    Article  PubMed  Google Scholar 

  86. Hicks, C. R., Crawford, G. J., Dart, J. K. G., Grabner, G., Holland, E. J., Stulting, R. D., et al. (2006). AlphaCor: Clinical outcomes. Cornea, 25, 1034–1042.

    Article  PubMed  Google Scholar 

  87. Hassanaly, S. I., Talajic, J. C., & Harissi-Dagher, M. (2014). Outcomes following Boston type 1 keratoprosthesis implantation in aniridia patients at the University of Montreal. American Journal of Ophthalmology, 158, 270–276.e1.

    Article  PubMed  Google Scholar 

  88. Ma, J. J., Graney, J. M., & Dohlman, C. H. (2005). Repeat penetrating keratoplasty versus the Boston keratoprosthesis in graft failure. International Ophthalmology Clinics, 45, 49–59.

    Article  PubMed  Google Scholar 

  89. Lee, W. B., Shtein, R. M., Kaufman, S. C., Deng, S. X., & Rosenblatt, M. I. (2015). Boston keratoprosthesis: Outcomes and complications. Ophthalmology, 122, 1504–1511.

    Article  PubMed  Google Scholar 

  90. Rudnisky, C. J., Belin, M. W., Guo, R., Ciolino, J. B., Dohlman, C. H., Aquavella, J., et al. (2016). Visual acuity outcomes of the Boston keratoprosthesis type 1: Multicenter study results. American Journal of Ophthalmology, 162, 89–98.

    Article  PubMed  Google Scholar 

  91. Aucoin, L., Griffith, C. M., Pleizier, G., Deslandes, Y., & Sheardown, H. (2002). Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. Journal of Biomaterials Science, Polymer Edition, 13, 447–462.

    Article  CAS  Google Scholar 

  92. Bruining, M. J., Paul Pijpers, A., Kingshott, P., & Koole, L. H. (2002). Studies on new polymeric biomaterials with tunable hydrophilicity, and their possible utility in corneal repair surgery. Biomaterials, 23, 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  93. George, A., & Pitt, W. G. (2002). Comparison of corneal epithelial cellular growth on synthetic cornea materials. Biomaterials, 23, 1369–1373.

    Article  CAS  PubMed  Google Scholar 

  94. Legeais, J.-M., & Renard, G. (1998). A second generation of artificial cornea (Biokpro II). Biomaterials, 19, 1517–1522.

    Article  CAS  PubMed  Google Scholar 

  95. Merrett, K., Griffith, C. M., Deslandes, Y., Pleizier, G., & Sheardown, H. (2001). Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces. Journal of Biomaterials Science, Polymer Edition, 12, 647–671.

    Article  CAS  Google Scholar 

  96. Noh, H. (2013). Enhanced cornea cell growth on a keratoprosthesis material immobilized with fibronectin or EGF. Macromolecular Research, 21, 169–175.

    Article  CAS  Google Scholar 

  97. Jacob, J. T., Rochefort, J. R., Bi, J., & Gebhardt, B. M. (2005). Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B, 198–205.

    Article  CAS  Google Scholar 

  98. Wallace, C., Jacob, J. T., Stoltz, A., Bi, J., & Bundy, K. (2005). Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces. Journal of Biomedical Materials Research. Part A, 72A, 19–24.

    Article  CAS  Google Scholar 

  99. Johnson, G., Jenkins, M., Mclean, K. M., Griesser, H. J., Kwak, J., Goodman, M., et al. (2000). Peptoid-containing collagen mimetics with cell binding activity. Journal of Biomedical Materials Research, 51, 612–624.

    Article  CAS  PubMed  Google Scholar 

  100. Myung, D., Koh, W., Bakri, A., Zhang, F., Marshall, A., Ko, J., et al. (2007). Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomedical Microdevices, 9, 911–922.

    Article  CAS  PubMed  Google Scholar 

  101. Myung, D., Farooqui, N., Zheng, L. L., Koh, W., Noolandi, J., Cochran, J. R., et al. (2009). Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. Journal of Biomedical Materials Research. Part A, 90, 70–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Myung, D., Duhamel, P.-E., Cochran, J., Noolandi, J., Ta, C., & Frank, C. (2008). Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnology Progress, 24, 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wilson, S. L., Sidney, L. E., Dunphy, S. E., Rose, J. B., & Hopkinson, A. (2013). Keeping an eye on decellularized corneas: A review of methods, characterization and applications. Journal of Functional Biomaterials, 4, 114–161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Daoud, Y. J., Smith, R., Smith, T., Akpek, E. K., Ward, D. E., & Stark, W. J. (2011). The intraoperative impression and postoperative outcomes of gamma-irradiated corneas in corneal and glaucoma patch surgery. Cornea, 30, 1387–1391.

    Article  PubMed  Google Scholar 

  105. Zhang, M. C., Liu, X., Jin, Y., Jiang, D. L., Wei, X. S., & Xie, H. T. (2015). Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. American Journal of Transplantation, 15, 1068–1075.

    Article  PubMed  Google Scholar 

  106. Chen, S.-C., Telinius, N., Lin, H.-T., Huang, M.-C., Lin, C.-C., Chou, C.-H., et al. (2015). Use of Fish Scale-Derived BioCornea to seal full-thickness corneal perforations in Pig Models. PLoS One, 10, e0143511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Nagai, T., Izumi, M., & Ishii, M. (2004). Fish scale collagen. Preparation and partial characterization. International Journal of Food Science & Technology, 39, 239–244.

    Article  CAS  Google Scholar 

  108. Van Essen, T. H., Lin, C. C., Hussain, A. K., Maas, S., Lai, H. J., Linnartz, H., et al. (2013). A Fish Scale–Derived Collagen Matrix as artificial cornea in rats: Properties and potential fish-derived collagen matrix as artificial cornea. Investigative Ophthalmology & Visual Science, 54, 3224–3233.

    Article  Google Scholar 

  109. Senthil, S., Rao, H. L., Babu, J. G., Mandal, A. K., & Garudadri, C. S. (2013). Comparison of outcomes of trabeculectomy with mitomycin C vs. ologen implant in primary glaucoma. Indian Journal of Ophthalmology, 61, 338–342.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Guo, X., Hutcheon, A. E. K., Melotti, S. A., Zieske, J. D., Trinkaus-Randall, V., & Ruberti, J. W. (2007). Morphological characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Investigative Ophthalmology & Visual Science, 48, 4050–4060.

    Article  Google Scholar 

  111. Proulx, S., Uwamaliya, J. D. A., Carrier, P., Deschambeault, A., Audet, C., Giasson, C. J., et al. (2010). Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Molecular Vision, 16, 2192–2201.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Karamichos, D., Rich, C. B., Hutcheon, A. E. K., Ren, R., Saitta, B., Trinkaus-Randall, V., et al. (2011). Self-assembled matrix by umbilical cord stem cells. Journal of Functional Biomaterials, 2, 213–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou, H.-X., Rivas, G., & Minton, A. P. (2008). Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 37, 375–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kumar, P., Satyam, A., Fan, X., Rochev, Y., Rodriguez, B. J., Gorelov, A., et al. (2014). Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tissue Engineering Part C: Methods, 21, 660–670.

    Article  CAS  Google Scholar 

  115. Boulze Pankert, M., Goyer, B., Zaguia, F., Bareille, M., Perron, M.-C., Liu, X., et al. (2014). Biocompatibility and functionality of a tissue-engineered living corneal stroma transplanted in the feline eye living corneal stroma transplanted in feline eye. Investigative Ophthalmology & Visual Science, 55, 6908–6920.

    Article  CAS  Google Scholar 

  116. Wray, L. S., & Orwin, E. J. (2009). Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Engineering Part A, 15, 1463–1472.

    Article  CAS  PubMed  Google Scholar 

  117. Hayes, S., Lewis, P., Islam, M. M., Doutch, J., Sorensen, T., White, T., et al. (2015). The structural and optical properties of type III human collagen biosynthetic corneal substitutes. Acta Biomaterialia, 25, 121–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rafat, M., Li, F., Fagerholm, P., Lagali, N. S., Watsky, M. A., Munger, R., et al. (2008). PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 29, 3960–3972.

    Article  CAS  PubMed  Google Scholar 

  119. Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13, 5156–5186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alaminos, M., Sánchez-Quevedo, M. A. D. C., Muñoz-Ávila, J. I., Serrano, D., Medialdea, S., Carreras, I., et al. (2006). Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Investigative Ophthalmology & Visual Science, 47, 3311–3317.

    Article  Google Scholar 

  121. De La Cruz Cardona, J., Ionescu, A.-M., Gómez-Sotomayor, R., González-Andrades, M., Campos, A., Alaminos, M., et al. (2011). Transparency in a fibrin and fibrin–agarose corneal stroma substitute generated by tissue engineering. Cornea, 30, 1428–1435.

    Article  Google Scholar 

  122. Garzón, I., Martín-Piedra, M. A., Alfonso-Rodríguez, C., González-Andrades, M., Carriel, V., Martínez-Gómez, C., et al. (2014). Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Investigative Ophthalmology & Visual Science, 55, 4073–4083.

    Article  Google Scholar 

  123. Fagerholm, P., Lagali, N. S., Merrett, K., Jackson, W. B., Munger, R., Liu, Y., et al. (2010). A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-Month follow-up of a phase 1 clinical study. Sci. Transl. Med., 2, 46ra61.

    Article  PubMed  CAS  Google Scholar 

  124. Fagerholm, P., Lagali, N. S., Ong, J. A., Merrett, K., Jackson, W. B., Polarek, J. W., et al. (2014). Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials, 35, 2420–2427.

    Article  CAS  PubMed  Google Scholar 

  125. Hackett, J. M., Lagali, N., Merrett, K., Edelhauser, H., Sun, Y., Gan, L., et al. (2011). Biosynthetic corneal implants for replacement of pathologic corneal tissue: Performance in a Controlled Rabbit Alkali Burn Model. Investigative Ophthalmology & Visual Science, 52, 651–657.

    Article  CAS  Google Scholar 

  126. Yumoto, H., Hirota, K., Hirao, K., Miyazaki, T., Yamamoto, N., Miyamoto, K., et al. (2015). Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells. Journal of Biomedical Materials Research. Part A, 103, 555–563.

    Article  PubMed  CAS  Google Scholar 

  127. Mclaughlin, C. R., Acosta, M. C., Luna, C., Liu, W., Belmonte, C., Griffith, M., et al. (2010). Regeneration of functional nerves within full thickness collagen–phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials, 31, 2770–2778.

    Article  CAS  PubMed  Google Scholar 

  128. Buznyk, O., Pasyechnikova, N., Islam, M. M., Iakymenko, S., Fagerholm, P., & Griffith, M. (2015). Bioengineered corneas grafted as alternatives to human donor corneas in three high-risk patients. Clinical and Translational Science, 8, 558–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mirazul Islam, M., Cepla, V., He, C., Edin, J., Rakickas, T., Kobuch, K., et al. (2015). Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomaterialia, 12, 70–80.

    Article  CAS  PubMed  Google Scholar 

  130. Villa-Diaz, L. G., Ross, A. M., Lahann, J., & Krebsbach, P. H. (2013). The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells, 31, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gouveia, R. M., Jones, R. R., Hamley, I. W., & Connon, C. J. (2014). The bioactivity of composite Fmoc-RGDS-collagen gels. Biomaterials Science, 2, 1222–1229.

    Article  CAS  PubMed  Google Scholar 

  132. Miotto, M., Gouveia, R. M., & Connon, C. J. (2015). Peptide amphiphiles in corneal tissue engineering. Journal of Functional Biomaterials, 6, 687–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gouveia, R. M., Hamley, I. W., & Connon, C. J. (2015). Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates. Journal of Materials Science. Materials in Medicine, 26, 242.

    Article  PubMed  CAS  Google Scholar 

  134. Uzunalli, G., Soran, Z., Erkal, T. S., Dagdas, Y. S., Dinc, E., Hondur, A. M., et al. (2014). Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomaterialia, 10, 1156–1166.

    Article  CAS  PubMed  Google Scholar 

  135. O’Leary, L. E. R., Fallas, J. A., Bakota, E. L., Kang, M. K., & Hartgerink, J. D. (2011). Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nature Chemistry, 3, 821–828.

    Article  PubMed  CAS  Google Scholar 

  136. Islam, M. M., Ravichandran, R., Olsen, D., Ljunggren, M. K., Fagerholm, P., Lee, C. J., et al. (2016). Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Advances, 6, 55745–55749.

    Article  CAS  Google Scholar 

  137. Bareiss, B., Ghorbani, M., Li, F., Blake, J. A., Scaiano, J. C., Zhang, J., et al. (2010). Controlled release of acyclovir through bioengineered corneal implants with silica nanoparticle carriers. The Open Tissue Engineering and Regenerative Medicine Journal, 3, 10–17.

    Article  CAS  Google Scholar 

  138. Riau, A. K., Mondal, D., Aung, T. T., Murugan, E., Chen, L., Lwin, N. C., et al. (2015). Collagen-based artificial corneal scaffold with anti-infective capability for prevention of perioperative bacterial infections. ACS Biomaterials Science & Engineering, 1, 1324–1334.

    Article  CAS  Google Scholar 

  139. Alarcon, E. I., Vulesevic, B., Argawal, A., Ross, A., Bejjani, P., Podrebarac, J., et al. (2016). Coloured cornea replacements with anti-infective properties: Expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale, 8, 6484–6489.

    Article  CAS  PubMed  Google Scholar 

  140. Islam, M. M., Buznyk, O., Reddy, J. C., Pasyechnikova, N., Alarcon, E. I., Hayes, S., Lewis, P., Fagerholm, P., He, C., Iakymenko, S., Liu, W., Meek, K. M., Sangwan, V. S., & Griffith, M. (2018) Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. npj Regenerative Medicine, 3, 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McTiernan, C.D., Brunette, I., Griffith, M. (2018). Stem Cell Therapy and Regenerative Medicine in the Cornea. In: Ballios, B., Young, M. (eds) Regenerative Medicine and Stem Cell Therapy for the Eye. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-98080-5_6

Download citation

Publish with us

Policies and ethics