Skip to main content

Biomass for Bioenergy

  • Chapter
  • First Online:
Introduction to Materials for Advanced Energy Systems

Abstract

Bioenergy technologies have been deployed for widespread sustainable exploitation of biomass resources in order to efficiently utilize bioenergy and at the same time to guarantee greenhouse gas emission savings for biofuels and bio-liquids. Unlike other renewable energy sources, biomass can be converted directly into biofuels to help meet transportation fuel needs, for instance. The development of advanced materials for bioenergy has been covered a wide range areas: high strength, wear- and corrosion-resistant structural materials such as steel, alloys, and protective coatings, high durability polymers and ceramics; catalysts, allowing for higher selectivity and yield, improved stability and functionality such as bi-/multifunctional catalytic systems; advanced ceramic, polymeric, or metallic membranes for gas separation and separation of inhibitory or intermediary products from biomass pretreatment, efficient separation/recycling of enzymes, the immobilization of cells, and downstream processing in continuous separation of fermentation products needs materials solutions for advanced membranes; hydrolytic enzymes and novel microorganisms; as well as photosynthesis and photosynthetic process materials. Breaking down cellulose, the chemically resistant building blocks of plants, for instance, requires aggressive chemical processes and catalysts, and materials with long lifetimes to contain and manipulate these corrosive chemistries. The cellular membranes of algae are rich in the raw materials for production of hydrocarbon chains of gasoline and diesel fuel, but need their own special chemical routes and catalytic materials for conversion. Many of these chemical processes and catalysts exist in nature, such as in the digestive systems of termites, where cellulose is converted to sugars that can be further fermented to alcohol. Advanced materials and analytical tools are needed to understand the subtleties of these natural fuel production processes, and then to design artificial analogs that directly and efficiently produce the desired end fuels. This chapter will provide a brief review about the advanced materials for biomass processing and bioenergy utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akia, M., Yazdani, F., Motaee, E., Han, D., Arandiyan, H.: A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res. J. 1, 16–25 (2014)

    Article  CAS  Google Scholar 

  • Akizuki, M., Fujii, T., et al.: Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water. J. Biosci. Bioeng. 117(1), 10–18 (2014)

    Article  CAS  Google Scholar 

  • Aquino, I.P., Hernandez, R.P.B., Chicoma, D.L., Pinto, H.P.F., Aoki, I.V.: Influence of light, temperature and metallic ions on biodiesel degradation and corrosiveness to copper and brass. Fuel. 102, 795–807 (2012)

    Article  CAS  Google Scholar 

  • Asadullah, M.: Barriers of commercial power generation using biomass gasification gas: a review. Renew. Sust. Energ. Rev. 29, 201–215 (2014)

    Article  CAS  Google Scholar 

  • Baker, R.W.: Membrane technology and applications. John Wiley & Sons, Hoboken (2012)

    Book  Google Scholar 

  • Balat, M., Balat, H., Öz, C.: Progress in bioethanol processing. Prog. Energy Combust. Sci. 34, 551–573 (2008)

    Article  CAS  Google Scholar 

  • Baroutian, S., Aroua, M.K., Raman, A.A.A., Sulaiman, N.M.: A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour. Technol. 102, 1095–1102 (2011)

    Article  CAS  Google Scholar 

  • Basu, P.: Biomass gasification and pyrolysis: practical design and theory 25, pp. 141–158. Academic Press, Cambridge, MC (2010)

    Google Scholar 

  • Bhardwaj, M., Gupta, P., Kumar, N.: Compatibility of metals and elastomers in biodiesel: a review. Int. J. Res. 1(7), 376–391 (2014)

    Google Scholar 

  • Capareda, S.C.: Biomass energy conversion. In: Nayeripour, M. (ed.) Sustainable growth and applications in renewable energy sources, pp. 209–226. InTech, Croatia (2011)

    Google Scholar 

  • CEEETA: Combustion and gasification of agricultural biomass-technologies and applications. Thermie programme action BM 40. CEEETA, Partex, Portugal (1995)

    Google Scholar 

  • Chung, T.S., Zhang, S., Wang, K.Y., Su, J., Ling, M.M.: Forward osmosis processes: yesterday, today and tomorrow. Desalination. 287, 78–81 (2012)

    Article  CAS  Google Scholar 

  • Corry, B.: Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B. 112, 1427–1434 (2008)

    Article  CAS  Google Scholar 

  • Demirbas, A.: Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33, 1–18 (2007)

    Article  CAS  Google Scholar 

  • Díaz, L., López-Sansores, J.F., Maldonado, L., Garfias, L.F.: Corrosion behavior of aluminum exposed to a biodiesel. Electrochem. Commun. 11, 41–44 (2008)

    Article  Google Scholar 

  • Duan, P., Savage, P.E.: Hydrothermal liquefaction of a Microalga with heterogeneous catalyst. Ind. Eng. Chem. Res. 50, 52–61 (2011)

    Article  CAS  Google Scholar 

  • Fathizadeh, M., Aroujalian A., Raisi, A.: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process Journal of membrane science. 375, 88–95 (2011)

    Google Scholar 

  • Fazal, M.A., Haseeb, A.S.M.A., Masjuki, H.H.: Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Process. Technol. 91, 1308–1315 (2010)

    Article  CAS  Google Scholar 

  • González-Pérez, A., Stibius, K.B., Vissing, T., Nielsen, C.H., Mouritsen, O.G.: Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins. Langmuir. 25, 10447–10450 (2009)

    Article  Google Scholar 

  • Goryunov, A.G., Goryunovab, N.N., Ogunlanab, A.O., Manentic, F.: Production of energy from biomass: near or distant future prospects? Chem. Eng. Trans. 52, 1219–1224 (2016)

    Google Scholar 

  • Guerreiro, L., Pereira, P., Fonseca, I., Martin-Aranda, R., Ramos, A., Dias, J., Oliveira, R., Vital, J.: PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal. Today. 156, 191–197 (2010)

    Article  CAS  Google Scholar 

  • Guo, F., Fang, Z., Xu, C.C., Smith Jr., R.L.: Solid acid mediated hydrolysis of biomass for producing biofuels. Prog. Energ. Combust. 38, 672–690 (2012)

    Article  CAS  Google Scholar 

  • Gust, S.: Combustion of pyrolysis liquids. In: Kaltschmitt, M., Bridgwater, A. (eds.) Biomass gasification and pyrolysis, state of the art and future prospects. CPL Press, Newbury, UK (1997)

    Google Scholar 

  • Haseeb, A.S.M.A., Masjuki, H.H., Siang, C.T., Fazal, M.A.: Compatibility of elastomers in palm biodiesel. Renew. Energy. 35, 2356–2361 (2010)

    Article  CAS  Google Scholar 

  • Hermans, S., Mariën, H., Van Goethem, C., Vankelecom, I.F.: Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration. Curr. Opin. Chem. Eng. 8, 45–54 (2015)

    Article  Google Scholar 

  • Hilal, N., Kim, G., Somerfield, C.: Boron removal from saline water: a comprehensive review. Desalination. 273, 23–35 (2011)

    Article  CAS  Google Scholar 

  • Höök, M., Aleklett, K.: A review on coal to liquid fuels and its coal consumption. Int. J. Energy Res. 34(10), 848–864 (2010)

    Article  Google Scholar 

  • Höök, M., Fantazzini, D., Angelantoni, A., Snowden, S.: Hydrocarbon liquefaction: viability as a peak oil mitigation strategy. Phil. Trans. R. Soc. A. 372(2006), 20120319 (2014)

    Article  Google Scholar 

  • Hub, J.S., de Groot, B.L.: Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl. Acad. Sci. U. S. A. 105, 1198–1203 (2008)

    Article  CAS  Google Scholar 

  • Jiang, S., Cao, Z.: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010)

    Article  CAS  Google Scholar 

  • Karan, S., Jiang, Z., Livingston, A.G.: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science. 348, 1347–1351 (2015)

    Article  CAS  Google Scholar 

  • Kenney et al.: Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion pathway: biological conversion of sugars to hydrocarbons. INL/EXT-13-30342. https://inlportal.inl.gov/portal/server.pt?open=512&objID=421&parentname=CommunityPage&parentid=4&mode=2 (2013). Accessed 19 Sept 2017

  • Klass, D.L.: Biomass for renewable energy and fuels. Encyclopedia of energy. Elsevier, Inc., New York (2004)

    Google Scholar 

  • Koppejan, J., Van Loo, S.: The handbook of biomass combustion and co-firing. Routledge, Abingdon, UK (2012)

    Book  Google Scholar 

  • Kurchania, A.: Biomass energy. In: Biomass Conversion, pp. 91–122. Springer, Berlin, Germany (2012)

    Book  Google Scholar 

  • Le, N.L., Nunes, S.P.: Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 7, 1–28 (2016)

    CAS  Google Scholar 

  • Li, J., Yan, R., Xiao, B., et al.: Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuel. 22, 16–23 (2008)

    Article  Google Scholar 

  • Li, M., Na Luo, N., Lu, Y.: Biomass energy technological paradigm (BETP): trends in this sector. Sustain. For. 9, 567 (2017)

    Article  Google Scholar 

  • Luciano, M.A., Castro, M., Lins, V.: Corrosion resistance of organometallic coating aplicated in fuel tanks using electrochemical impedance spectroscopy in biofuel—part I. Tecnol. Metal. Mater. Miner. 11(3), 244–250 (2014)

    Article  CAS  Google Scholar 

  • Maab, H., Saadi, A.A., Francis, L., Livazovic, S., Ghafour, N., Amy, G.L., Nunes, S.P.: Polyazole hollow fiber membranes for direct contact membrane distillation. ACS Ind. Eng. Chem. Res. 52, 10425–10429 (2013)

    Article  CAS  Google Scholar 

  • Mahmood, T., Hussain, S.T.: Nanobiotechnology for the production of biofuels from spent tea. Afr. J. Biotechnol. 9, 858–868 (2010)

    Article  CAS  Google Scholar 

  • Mansouri, J., Harrisson, S., Chen, V.: Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J. Mater. Chem. 20, 4567–4586 (2010)

    Article  CAS  Google Scholar 

  • Maru, M., Lucchese, M., Legnani, C., Quirino, W., et al.: Biodiesel compatibility with carbon steel and HDPE parts. Fuel Process. Technol. 90, 1175–1182 (2009)

    Article  CAS  Google Scholar 

  • Mauter, M.S., Elimelech, M., Osuji, C.O.: Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. ACS Nano. 4, 6651–6658 (2010)

    Article  CAS  Google Scholar 

  • Mayaki, I.A.: Sustainable bioenergy development in UEMOA member countries. http://www.globalproblems-globalsolutions-files.org/gpgs_files/pdf/UNF_Bioenergy/UNF_Bioenergy_full_report.pdf (2008). Accessed 18 Oct 2014

  • Meier, D., Rupp, M.: Direct catalytic liquefaction technology of biomass: status and review. In: Bridgwater, A.V., Grassi, G. (eds.) Biomass pyrolysis liquids upgrading and utilization. Springer, Dordrecht (1991)

    Google Scholar 

  • Muth, D., Jacobson, J.J., Cafferty, K., Jeffers, R.: Define feedstock baseline scenario and assumptions for the $80/DT target based on INL design report and feedstock logistics projects. INL/EXT-14-31569. https://bioenergy.inl.gov/Reports/Feedstock%20Logistics%20Cost%20Target%20Milestone.pdf (2013). Accessed 20 Sept 2017

  • MYPP: Bioenergy technologies office: multi-year program plan. https://energy.gov/sites/prod/files/2015/04/f22/mypp_beto_march2015.pdf (2015). Accessed 12 Sept 2017

  • Ng, L.Y., Mohammad, A.W., Ng, C.Y., Leo, C.P., Rohani, R.: Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination. 351, 19–26 (2014)

    Article  CAS  Google Scholar 

  • Nzihou, A., Stanmore, B., Sharrock, P.: A review of catalysts for the gasification of biomass char, with some reference to coal. Energy. 58, 305317 (2013)

    Article  Google Scholar 

  • Osterman, K.: Stainless steels—Cost-effective materials for the global biofuels industries. https://www.nickelinstitute.org/~/media/Files/TechnicalLiterature/10090_StainlessSteelsCostEffectiveMaterialsForTheGlobalBiofuelsIndustries.ashx (2012). Accessed 21 Sept 2017

  • Pangarkar, B.L., Sane, M.G., Parjane, S.B., Guddad, M.: Status of membrane distillation for water and wastewater treatment—a review. Desalin. Water Treat. 52, 5199–5218 (2014)

    Article  CAS  Google Scholar 

  • Patil, V., Tran, K.-Q., Giselrød, H.R.: Towards sustainable production of biofuels from microalgae. Int. J. Mol. Sci. 9(7), 1188–1195 (2008)

    Article  CAS  Google Scholar 

  • PBworks: Bioenergy. http://mcensustainableenergy.pbworks.com/w/page/20637999/bioenergy (2014). Accessed 09 Oct 2014

  • Pelisson, C.H., Vono, L.L.R., Hubert, C., Nowicki, A.D., et al.: Moving from surfactant-stabilized aqueous rhodium colloidal suspension to heterogeneous magnetite-supported rhodium nanocatalysts: synthesis, characterization and catalytic performance in hydrogenation reactions. Catal. Today. 183, 124–129 (2012)

    Article  CAS  Google Scholar 

  • Pereira, J., Agblevor, F.A., Beis, S.H.: The influence of process conditions on the chemical composition of pine wood catalytic pyrolysis oils. ISRN Renew. Energy. 2012, 167629 (2012)

    Google Scholar 

  • Qtaishat, M., Khayet, M., Matsuura, T.: Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation. J. Membr. Sci. 329, 193–200 (2009)

    Article  CAS  Google Scholar 

  • QTR: Advancing Systems and Technologies to Produce Cleaner Fuels-Bioenergy Conversion. Quadrennial Technology Review 2015, US Department of Energy. https://energy.gov/sites/prod/files/2016/01/f28/QTR2015-7A-Bioenergy-Conversion_0.pdf (2015a). Accessed 18 Sept 2017

  • QTR: Advancing Systems and Technologies to Produce Cleaner Fuels-Biomass feedstocks and logistics. Quadrennial Technology Review 2015, US Department of Energy. https://energy.gov/sites/prod/files/2016/01/f28/QTR2015-7B-Biomass-Feedstocks-and-Logistics.pdf (2015b). Accessed 19 Sept 2017

  • Rana, D., Matsuura, T.: Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010)

    Article  CAS  Google Scholar 

  • Roberts, J.A., Sutton, P.M., Mishra, P.N.: Application of the membrane biological reactor system for combined sanitary and industrial wastewater treatment. Int. Biodeterior. Biodegrad. 46, 37–42 (2000)

    Article  CAS  Google Scholar 

  • Schnitzer, M.I., Monreal, C.M., Facey, G.A., Fransham, P.B.: The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry. J. Environ. Sci. Health B. 42, 71–77 (2007)

    Article  CAS  Google Scholar 

  • Schubert, C.: Can biofuels finally take center stage? Nat. Biotechnol. 24, 777–784 (2006)

    Article  CAS  Google Scholar 

  • Seo, M., Hillmyer, M.A.: Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336, 1422–1425 (2012)

    Google Scholar 

  • Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S., Elimelech, M.: Forward osmosis: where are we now? Desalination. 356, 271–284 (2015)

    Article  CAS  Google Scholar 

  • Sharma A., Pareek V., Zhang D.: Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 50,1081–1096 (2015)

    Google Scholar 

  • Sharma, S., Meena, R., Sharma, A., Goyal, P.K.: Biomass conversion technologies for renewable energy and fuels: a review note. IOSR J. Mechan. Civil Eng. 11(2), 28–35 (2014)

    Article  Google Scholar 

  • Sinag, A., Yumak, T., Balci, V., Kruse, A.: Catalytic hydrothermal conversion of cellulose over SnO2 and ZnO nanoparticle catalysts. J. Supercrit. Fluids. 56, 179–185 (2011)

    Article  CAS  Google Scholar 

  • Singh, B., Korstad, J., Sharma, Y.C.: A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. Renew. Sust. Energ. Rev. 16, 3401–3408 (2012)

    Article  CAS  Google Scholar 

  • Wei, P., Cheng, L.-H., Zhang, L., Xu, X.-H., Chen, H.-L., Gao, C.-J.: A review of membrane technology for bioethanol production. Renew. Sust. Energ. Rev. 30, 388–400 (2014)

    Article  CAS  Google Scholar 

  • Werber, J.R., Osuji, C.O., Elimelech, M.: Materials for next-generation desalination and water purification membranes. Nat Rev Mater. 1(5), 16018 (2016)

    Article  CAS  Google Scholar 

  • Wilcoxon, J.P.: Nanoparticles preparation, characterization and physical properties. Front. Nanosci. 3, 43–127 (2012)

    Article  Google Scholar 

  • Williams, C.L., Westover, T.L., Emerson, R.M., Tumuluru, J.S., Li, C.: Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Res. 9(1), 1–14 (2016)

    Article  CAS  Google Scholar 

  • Xu, Y., Hu, X., Li, W., Shi, Y.: Preparation and characterization of biooil. In: Shaukat, S. (ed.) Biomass, Progress in Biomass and Bioenergy Production, pp. 197–222. InTech, Croatia (2011)

    Google Scholar 

  • Yakaboylu, O., Harinck, J., et al.: Supercritical water gasification of manure: a thermodynamic equilibrium modeling approach. Biomass Bioenergy. 59, 253–263 (2013)

    Article  CAS  Google Scholar 

  • Zafar, S.: Biomass gasification process. https://www.bioenergyconsult.com/biomass-gasification/ (2013). Accessed 12 Sept 2017

  • Zaimes, G.Z., Vora, N., Chopra, S.S., Landis, A.E., Khanna, V.: Design of sustainable biofuel processes and supply chains: challenges and opportunities. PRO. 3(3), 634–663 (2015)

    CAS  Google Scholar 

  • Zhang, Y., Zhang, S., Chung, T.S.: Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 49, 10235–10242 (2015)

    Article  CAS  Google Scholar 

  • Zhao, H., Yan, H.-X., Liu, M., Sun, B.-B., Zhang, Y., Dong, S.-S., Qi, L.-B., Qin, S.: Production of bio-oil from fast pyrolysis of macroalgae Enteromorpha prolifera powder in a free-fall reactor. Energ. Source. Part A. 35, 859–867 (2013)

    Article  CAS  Google Scholar 

  • Zhou, G., Hou, Y., Liu, L., Liu, H., et al.: Preparation and characterization of NiW–nHA composite catalyst for hydrocracking. Nanoscale. 4, 7698–7703 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Exercises

Exercises

8.1.1 Part I: General Questions

  1. 8.1.

    Use appropriate units, rounding, significant figures, and show results in regular and scientific notation.

    1. (a)

      On average, a University’s steam plant consumes 21,000 US tons of dry hardwood chips per year. What is the heat content of this biomass?

    2. (b)

      In addition to wood chips, the university uses, on average, 515,000 gallons per year of #6 fuel oil to heat outlying buildings, and as backup for the wood chip system. What is the heat content of the fuel oil used annually?

    3. (c)

      What percentage of the university’s heat comes from biomass?

    4. (d)

      A small natural gas field is located just west of the University. A relatively high-yielding well in this field produces 25,000 MCF (1 MCF = 1000 standard cubic feet) of natural gas per year. How many of these wells would be needed to supply the University’s non-biomass heating needs that are currently being met by #6 fuel oil?

  2. 8.2.

    Briefly describe the development history of bioenergy technologies.

  3. 8.3.

    List major biomass conversion technologies and compare their advantages and disadvantages.

  4. 8.4.

    Describe modern bioenergy conversion pathways from feedstock to products, and their technology barriers and strategies moving forward to realize high volume production.

  5. 8.5.

    List major corrosion resistant materials compatible with biofuels, and compare their advantages and disadvantages.

  6. 8.6.

    Describe the role of nanocatalysts for conversion of biomass to biofuel, and compare main nanocatalysts’ advantages and disadvantages.

  7. 8.7.

    Why using coal liquefaction? Describe the processing pathways, current technology barriers, and strategies moving forward to realize high volume production.

8.1.2 Part II: Thought-Provoking Questions

  1. 8.8.

    Why is Algae promising for future bioenergy? Describe the bioenergy conversion pathways, current technology barriers, and strategies moving forward to realize high volume production.

  2. 8.9.

    Describe current status and future trends of membrane materials for water sustainability in bioenergy.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tong, C. (2019). Biomass for Bioenergy. In: Introduction to Materials for Advanced Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-98002-7_8

Download citation

Publish with us

Policies and ethics