Skip to main content

Breeding Climate-Resilient Bananas

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Fruit Crops

Abstract

The impact of global climate change is expected to have the most significant effects on small-scale farmers in subtropical and tropical regions of the world without access to irrigation where banana is grown as an important staple crop. As a consequence, banana breeding needs to re-evaluate priorities and dedicate resources toward producing drought-tolerant cultivars. Specific challenges to breeding bananas for drought stress include the plants’ perennial nature, non-seasonal flowering, physical size, and reproductive barriers to hybridization that complicates selection of superior genotypes in improvement schemes. While considerable efforts to obtain drought-tolerant bananas through transformation strategies have been undertaken in the past decade, they have not to date led to widely accepted cultivars. A number of recommendations for future breeding are presented including the targeted evaluation of genetic variability, an expansion of efforts toward acquiring and distributing novel material, and the greater coordination of physiological and molecular research with active breeding programs to develop a pipeline for evaluation that integrates the strengths of each in a synergistic manner toward a common goal: developing cultivars with high yield potential under drought stress condition that does not detrimentally affect plant’s performance in non-stressed environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar E, Turner D, Gibbs D, Armstrong W, Sivasithamparam K (2003) Oxygen distribution and movement, respiration and nutrient loading in banana roots (Musa spp. L.) subjected to aerated and oxygen-depleted environments. Plant Soil 253:91–102

    CAS  Google Scholar 

  • Araya M, Vargas A, Cheves A (1998) Changes in distribution of roots of banana (Musa AAA cv. ‘Valery’) with plant height, distance from the pseudostem, and soil depth. J Hortic Sci Biotechnol 73:437–440

    Google Scholar 

  • Argarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Planta 54:201–212

    Google Scholar 

  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT Mexico, DF

    Google Scholar 

  • Barker WG, Dickson DE (1961) Early flower initiation in the banana. Nature 190:1131–1132

    Google Scholar 

  • Barker WG, Steward FC (1962) Growth and development of the banana plant. I. The growing regions of the vegetative shoot. Ann Bot 26:389–411

    Google Scholar 

  • Bartels D, Sunkar S (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Blomme G (2000) The interdependence of root and shoot development in banana (Musa spp.) under field conditions and the influence of different biophysical factors on this relationship. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 183 p

    Google Scholar 

  • Blomme G, Teugels K, Blanckaert I, Sebuwufu G, Swennen R, Tenkouano A (2005) Methodologies for root system assessment in bananas and plantains (Musa spp.). In: Turner DW, Rosales FE (eds) Proceedings of international symposium, San José (CRI), 2003/11/03-05. Banana root system: towards a better understanding for its productive management. INIBAP, Montpellier, pp 43–57

    Google Scholar 

  • Blum A (2011) Plant breeding for water limited environments. Springer, New York, NY

    Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10

    CAS  PubMed  Google Scholar 

  • Brown AF, Tumuhimbise R, Amah D, Uwimana B, Nyine M, Mduma H, Talengera D, Karamura D, Kuriba J, Swennen R (2017) Genetic improvement of bananas and plantains (Musa spp.). In: Campos H, Caligari PDS (eds) Genetic improvement of tropical crops. Springer International Publishing, Cham, Switzerland, pp 219–240

    Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    CAS  PubMed  Google Scholar 

  • Calberto G, Staver C, Siles P (2015) An assessment of global banana production and suitability under climate change scenarios. In: Elbehri A (ed) Climate change and food systems: global assessments and implications for food security and trade. Food Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Carpentier S, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, et al (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105

    Google Scholar 

  • Carr MKV (2009) The water relations and irrigation requirements of banana (Musa spp.). Exp Agric 45:333–371

    Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, TaherI A, AL-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Google Scholar 

  • Cenci A, Guignon V, Roux N, Rouard M (2014) Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol 85:63–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabannes M, Baurens F-C, Duroy P-O, Bocs S, Vernerey M-S, Rodier-Goud M, Barbe V, Gayral P, Iskra-Caruana M-L (2013) Three infectious viral species lying in wait in the banana genome. J Virol 87:8624–8637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Jiang J-G (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signaling of water shortage. Plant J 52:167–174

    CAS  PubMed  Google Scholar 

  • Comstock RE (1977) Quantitative genetics and the design of breeding programs. In: Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, USA, pp 705–718

    Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for highwater-use efficiency. J Exp Bot 55:2447–2460

    CAS  PubMed  Google Scholar 

  • Davey M, Graham N, Vanholme B, Swennen R, May S, Keulemans J (2009) Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa. BMC Genom 10:436

    Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genom 14:683

    CAS  Google Scholar 

  • Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul 24:285–295

    CAS  Google Scholar 

  • Delfin EF, Ocampo ETM, dela Cueva FM, Damasco OP, de la Cruz F, Dinglasan EG, Gueco LS, Herradura LE, Molina AB (2016) Response of wild and edible Musa spp. seedlings to limiting moisture stress. Phil J Crop Sci 41:1–12

    Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengelle J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, McKain MR, Leebens-Mack J, Burgess D, Freeling M, Mbeguie-A-Mbeguie D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A-M, Weissenbach J, Ruiz M, Glaszmann J-C, Quetier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    PubMed  Google Scholar 

  • Dodd IC (2005) Root-to-shoot signaling: assessing the roles of “up” in the up and down world of long-distance signaling in plants. Plant Soil 274:251–270

    CAS  Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Google Scholar 

  • Eckstein K, Robinson JC, Fraser C (1996) Physiological responses of banana (Musa AAA; Cavendish subgroup) in the subtropics. V. Influence of leaf tearing on assimilation potential and yield. J Hortic Sci 71:503–514

    Google Scholar 

  • Ekanayake IJ, Ortiz R, Vuylsteke DR (1994) Influence of leaf age, soil moisture, VPD and time of day on leaf conductance of various Musa genotypes in a humid forest-moist savannah transition site. Ann Bot 74:173–178

    Google Scholar 

  • Ekanayake IJ, Ortiz R, Vuylsteke DR (1998) Leaf stomatal conductance and stomatal morphology of Musa germplasm. Euphytica 99:221–229

    Google Scholar 

  • FAO (2017) Food and agriculture organization of the United Nations. http://www.faostat.fao.org/site/340/default.aspx

  • Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci 2:39

    Google Scholar 

  • Feng X, Lai Z, Lin Y, Lai G, Lian C (2015) Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genom 16:1–16

    Google Scholar 

  • Fich EA, Segerson NA, Rose JKC (2016) The plant polyester cutin: biosynthesis, structure, and biological roles. Annu Rev Plant Biol 67:207–233

    Google Scholar 

  • Freeman B, Turner D (1985) The epicuticular waxes on the organs of different varieties of banana (Musa spp.) differ in form, chemistry and concentration. Aust J Bot 33:393–408

    CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    CAS  PubMed  Google Scholar 

  • Gayral P, Noa-Carrazana JC, Lescot M, Lheureux F, Lockhart BEL, Matsumoto T, Piffanelli P, Iskra-Caruana ML (2008) A single banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J Virol 82:6697–6710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stress induced plant senescence. Plant Mol Biol 82:623–633

    CAS  PubMed  Google Scholar 

  • Goel R, Pandey A, Trivedi PK, Asif MH (2016) Genome-wide analysis of the Musa WRKY gene family: evolution and differential expression during development and stress. Front Plant Sci 7:1–13

    Google Scholar 

  • Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci 6:57

    PubMed  PubMed Central  Google Scholar 

  • Hallauer AR, Miranda JH (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames, pp 124–126

    Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5:1–6

    Google Scholar 

  • He S, Shan W, Kuang J-F, Xie H, Xiao Y-Y, Lu W-J, Chen J-Y (2013) Molecular characterization of a stress-response bZIP transcription factor in banana. Plant Cell Tiss Org Cult 113:173–187

    CAS  Google Scholar 

  • Henry I, Carpentier C, Pampurova S, Van Hoylandt A, Panis B, Swennen R, Remy S (2011) Structure and regulation of the Asr gene family in banana. Planta 234:785–798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann HP, Turner DW (1993) Soil water deficits reduce the elongation rate of emerging banana leaves but the night/day elongation ratio remains unchanged. Sci Hortic 54:1–12

    Google Scholar 

  • Holder GD, Gumbs FA (1982) Effects of water supply during floral initiation and differentiation on female flower production by Robusta bananas. Exp Agric 18:183–193

    Google Scholar 

  • Hoover DL, Wilcox KR, Young KE (2018) Experimental droughts with rainout shelters: a methodological review. Ecosphere 9:e02088

    Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z (2015a) The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Front Plant Sci 6:1–16

    Google Scholar 

  • Hu W, Hiu X, Huang C, Yan Y, Tie W, Ding Z, Wei Y, Liu J, Miao H, Lu Z, Li M, Xu B, Jin Z (2015b) Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana. Intl J Mol Sci 16:19728–19751

    CAS  Google Scholar 

  • Hu W, Wang L, Tie W, Yan Y, Ding Z, Liu J, Li M, Peng M, Xu B, Jin Z (2016) Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Sci Rep 6:30203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Yan Y, Shi H, Liu J, Miao H, Tie W, Ding Z, Ding X, Wu C, Liu Y, Wang J, Xu B, Jin Z (2017) The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC Plant Biol 17:1–16

    PubMed  PubMed Central  Google Scholar 

  • Hu H, Dong C, Sun D, Hu Y, Xie J (2018) Genome-wide identification and analysis of U-Box E3 ubiquitin-protein ligase gene family in banana. Intl J Mol Sci 19:3874

    Google Scholar 

  • Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Res 49:11–37

    Google Scholar 

  • Jangale BL, Chaudhari RS, Azeez A, Sane PV, Sane AP, Krishna B (2019) Independent and combined abiotic stresses affect the physiology and expression patterns of DREB genes differently in stress-susceptible and resistant genotypes of banana. Physiol Plant 165:303–318

    CAS  PubMed  Google Scholar 

  • Janssens SB, Vandelook F, De Langhe E, Verstraete B, Smets E, Van den houwe I, Swennen R (2016) Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol 210:1453–1465

    Google Scholar 

  • Juenger TE (2013) Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol 16:274–281

    CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Ribas Carbo M, Flexas Sans J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    CAS  PubMed  Google Scholar 

  • Karamura D, Karamura E, Blomme G (2011) General morphology of Musa. In Pillay M, Tenkouano A (eds) Banana breeding progress and challenges. CRC Press, Boca Raton, FL, pp 1–17

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki Y (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    CAS  PubMed  Google Scholar 

  • Kissel E, Van Asten P, Swennen R, Lorenzen J, Carpentier S (2015) Transpiration efficiency versus growth: exploring the banana biodiversity for drought tolerance. Sci Hortic 185:175–182

    Google Scholar 

  • Kosma DK, Jenks MA (2007) Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer Publishing, Dordrecht, Netherlands, pp 91–120

    Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lu S, Joubes J et al (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Google Scholar 

  • Lu P, Woo KC, Liu ZT (2002) Estimation of whole plant transpiration of bananas using sap flow measurements. J Exp Bot 53:1771–1779

    CAS  PubMed  Google Scholar 

  • Machovina B, Feeley KJ (2013) Climate change driven shifts in the extent and location of areas suitable for export banana production. Ecol Econ 95:83–95

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mahouachi J (2007) Growth and mineral nutrient content of developing fruit on banana plants (Musa acuminate AAA, ‘Grand Nain’) subject to later stress and recovery. J Hortic Sci Biotechnol 82:839–844

    CAS  Google Scholar 

  • Mahouachi J, López-Climent MF, Gómez-Cadenas A (2014) Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. Sci World J 2014:540962

    Google Scholar 

  • Mattos-Moreira LA, Ferreira CF, Amorim EP, Pirovani CP, Andrade EM, Coelho Filho MA et al (2018) Differentially expressed proteins associated with drought tolerance in bananas (Musa spp.). Acta Physiol Planta 40:1–15

    CAS  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    CAS  PubMed  Google Scholar 

  • Mei W, Boatwright L, Feng F, Schnable JC, Barbazuk WB (2017) Evolutionarily conserved alternative splicing across monocots. Genetics 207:465–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mekwatanakarn W, Turner D (1989) A simple model to estimate the rate of leaf production in bananas in the subtropics. Sci Hortic 40:53–62

    Google Scholar 

  • Menendez T, Shepherd K (1975) Breeding new bananas. World Crops 27:104–112

    Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    PubMed  Google Scholar 

  • Miao H, Sun P, Liu Q, Miao Y, Liu J, Xu B et al (2017a) The AGPase family proteins in banana: genome-wide identification, phylogeny, and expression analyses reveal their involvement in the development, ripening, and abiotic/biotic stress responses. Int J Mol Sci 18:1–17

    Google Scholar 

  • Miao H, Sun P, Liu Q, Miao Y, Liu J, Zhang K, Hu W, Zhang J, Wang J, Wang Z, Jia C, Xu B, Jin Z (2017b) Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Sci Rep 7:1–15

    Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev 16:237–251

    CAS  Google Scholar 

  • Milburn JA, Kallarackal J, Baker DA (1990) Water relations of the banana. I. Predicting the water relations of the field-grown banana using the exuding latex. Funct Plant Biol 17:57–68

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Environment 33:453–467

    CAS  Google Scholar 

  • Msogoya TJ, Grout BW (2012) Cytosine DNA methylation changes drought stress responses in tissue culture derived banana (Musa AAA–East Africa) plants. J Appl Biosci 49:3383–3387

    Google Scholar 

  • Muthusamy M, Uma S, Backiyarani S, Saraswathi MS (2014) Computational prediction, identification, and expression profiling of microRNAs in banana (Musa spp.) during soil moisture deficit stress. J Hortic Sci Biotechnol 89:208–214

    CAS  Google Scholar 

  • Muthusamy M, Uma S, Backiyarani S, Saraswathi MS (2015) Genome-wide screening for novel, drought stress-responsive long non-coding RNAs in drought-stressed leaf transcriptome of drought-tolerant and susceptible banana (Musa spp.) cultivars using Illumina high-throughput sequencing. Plant Biotechnol Rep 9:279–286

    Google Scholar 

  • Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A (2016) Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Front Plant Sci 7:1609

    PubMed  PubMed Central  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2015) Cloning and functional characterization of MusaVND1 using transgenic banana plants. Transgenic Res 24:571–585

    CAS  PubMed  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2018) A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content. Plant Mol Biol 96:457–471

    CAS  PubMed  Google Scholar 

  • Ortiz R, Swennen R (2014) From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 32:158–169

    CAS  PubMed  Google Scholar 

  • Ortiz R, Vuylsteke D, Ogburia NM (1995) Inheritance of waxiness in the pseudostem of banana and plantain. J Hered 86:297–299

    Google Scholar 

  • Palta JA, Turner NC, French RJ, Buirchell BJ (2007) Physiological responses of lupin genotypes to terminal drought in a mediterranean-type environment. Ann Appl Biol 150:269–279

    Google Scholar 

  • Pantuwana G, Fukai S, Cooper M, Rajatasereekul S, O’Toole JC (2002) Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes. Field Crop Res 73:169–180

    Google Scholar 

  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133:295–313

    Google Scholar 

  • Perrier X, Jenny C, Bakry F, Karamura D, Kitavi M, Dubois C, Hervouet C, Philippson G, De Langhe E (2019) East African diploid and triploid bananas: a genetic complex transported from South-East Asia. Ann Bot 123:19–36

    PubMed  Google Scholar 

  • Pidgeon JD, Ober ES, Qi A, Clark CJA, Royal A, Jaggard KW (2006) Using multi-environment sugar beet variety trials to screen for drought tolerance. Field Crops Res 95:268–279

    Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledons. Longman, London

    Google Scholar 

  • Rajaram S, Braun H-J, Maarten van Ginkel M (1996) CIMMYT’s approach to breed for drought tolerance. Euphytica 92:147–153

    Google Scholar 

  • Ramirez J, Jarvis A, Van den Bergh I, Staver C, Turner D (2011) Changing climates: effects on growing conditions for banana and plantain (Musa spp.) and possible responses. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change, 1st edn. Wiley, Chichester, UK, pp 426–438

    Google Scholar 

  • Ranjitkar S, Sujakhu NM, Merz J, Kindt R, Xu J, Matin MA, Ali M, Zomer RJ (2016) Suitability analysis and projected climate change impact on banana and coffee production zones in Nepal. PLoS One 11:e0163916

    PubMed  PubMed Central  Google Scholar 

  • Raven JA, Edwards D (2004) Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystems. Elsevier, Amsterdam, Netherlands, pp 17–41

    Google Scholar 

  • Ravi I, Uma S, Vaganan MM, Mustaffa MM (2013) Phenotyping bananas for drought resistance. Front Physiol 4:9

    PubMed  PubMed Central  Google Scholar 

  • Ravishankar KV, Rekha A, Laxman RH, Savitha G, Swarupa V (2011) Gene expression analysis in leaves of ‘Bee Hee Kela’, a drought-tolerant Musa balbisiana genotype from northeast India. Acta Hort 897:279–280

    Google Scholar 

  • Richards RA (1992) Increasing salinity tolerance of grain crops: is it worthwhile? Plant Soil 146:89–98

    CAS  Google Scholar 

  • Robinson JC, Alberts AJ (1986) Growth and yield responses of banana (cultivar ‘Williams’) to drip irrigation under drought and normal rainfall conditions in the subtropics. J Sci Hortic 30:187–202

    Google Scholar 

  • Rosenzweig CJ, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci U S A 111:3268–3273

    CAS  PubMed  Google Scholar 

  • Sampangi-Ramaiah MH, Ravishankar KV, Seetharamaiah SK, Roy TK, Hunashikatti LR, Rekha A, Shilpa P (2016) Barrier against water loss: relationship between epicuticular wax composition, gene expression and leaf water retention capacity in banana. Funct Plant Biol 43:492–501

    CAS  PubMed  Google Scholar 

  • Sanders GJ, Arndt SK (2012) Osmotic adjustment under drought conditions. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, Heidelberg, pp 199–229

    Google Scholar 

  • Santos CMR, Martins NF, Horberg HM, de Almeida ERP, Coelho MCF, Togawa RC, da Silva FR, Caetano AR, Miller RNG, Souza MT (2005) Analysis of expressed sequence tags from Musa acuminata ssp. burmannicoides, var. Calcutta 4 (AA) leaves submitted to temperature stresses. Theor Appl Genet 110:1517–1522

    CAS  PubMed  Google Scholar 

  • Santos AS, Amorim EP, Ferreira CF, Pirovani CP (2018) Water stress in Musa spp.: a systematic review. PLoS One 13:e0208052

    Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomol Concepts 2:407–419

    CAS  PubMed  Google Scholar 

  • Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ (2012) Molecular characterization of banana NAC transcription factors and their interactions with ethylene signaling component EIL during fruit ripening. J Exp Bot 63:5171–5187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat UK, Ganapathi TR (2013) Musa WRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8:1–7

    Google Scholar 

  • Shekhawat UKS, Srinivas L, Ganapathi TR (2011a) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    CAS  PubMed  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L (2011b) Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep 38:4023–4035

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc Lond Bot 55:302–312

    Google Scholar 

  • Song S, Xu Y, Huang D, Miao H, Liu J, Jia C, Jia C, Hu W, Valarezo AV, Xu B, Jin Z (2018) Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. Plant Physiol Biochem 128:163–169

    CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517

    CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11:942–952

    CAS  PubMed  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stover RH, Simmonds NW (1987) Bananas, 3rd edn. Longman, Harlow, 468 p

    Google Scholar 

  • Surendar KK, Devi DD, Ravi I, Jeyakuma RP, Velayudham K (2013a) Effect of water stress on leaf temperature, transpiration rate, stomatal diffusive resistance and yield of banana. Plant Gene Trait 8:43–47

    Google Scholar 

  • Surendar KK, Devi DD, Ravi I (2013b) Water stress in banana—a review. Bull Environ Pharmacol Life Sci 2:1–18

    Google Scholar 

  • Swennen R, De Langhe E, Janssen J, Decoene D (1986) Study of the root development of some Musa cultivars in hydroponics. Fruits 41:515–524

    Google Scholar 

  • Tak H, Negi S, Ganapathi TR (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816

    Google Scholar 

  • Taylor SE, Sexton OJ (1972) Some implications of leaf tearing in Musaceae. Ecology 53:143–149

    Google Scholar 

  • Tenkouano A, Lamien N, Agogbua J, Amah D, Swennen R, Traoré S, Thiemele D, Aby N, Kobenan K, Gnonhouri G, Yao N, Astin G, Sawadogo-Kabore S, Tarpaga V, Issa W, Lokossou B, Adjanohoun A, Léandre Amadji G, Adangnitode S, Djinadou Igue K, Ortiz R (2019) Promising high-yielding tetraploid plantain-bred hybrids in West Africa. Inl J Agron 3873198

    Google Scholar 

  • Thomas DS, Turner DW (2001) Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hortic 90:93–108

    CAS  Google Scholar 

  • Thomas DS, Turner DW, Eamus D (1998) Independent effects of the environment on the leaf gas exchange of three banana (Musa sp.) cultivars of different genomic constitution. Sci Hortic 75:41–57

    Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    PubMed  PubMed Central  Google Scholar 

  • Tunnacliffe A, Wise M (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    CAS  PubMed  Google Scholar 

  • Turner D (1990) Modelling demand for nitrogen in the banana. In: International symposium on the culture of subtropical and tropical fruits and crops, vol 275, pp 497–504

    Google Scholar 

  • Turner DW (1995) The response of the plant to the environment. In: Gowen S (ed) Bananas and plantains. Chapman and Hall, London, pp 206–229

    Google Scholar 

  • Turner DW, Hunt N (1984) Growth, yield and leaf nutrient composition of 30 banana varieties in subtropical New South Wales. Technical Bulletin 31. Department of Agriculture, New South Wales

    Google Scholar 

  • Turner DW, Lahav E (1983) The growth of banana plants in relation to temperature. Aust J Plant Physiol 10:43–53

    Google Scholar 

  • Turner DW, Fortescue JA, Thomas DS (2007) Environmental physiology of the bananas (Musa spp.). Braz J Plant Physiol 19:463–484

    CAS  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    CAS  PubMed  Google Scholar 

  • Van den Bergh I, Ramirez J, Staver C, Turner D, Jarvis A, Brown D (2012) Climate change in the subtropics: the impacts of projected averages and variability on banana productivity. Acta Hortic 928:89–99

    Google Scholar 

  • Van Wesemael J, Kissel E, Eyland D, Lawson T, Swennen R, Carpentier SC (2019) Using growth and transpiration phenotyping under controlled conditions to select water efficient banana genotypes. Front Plant Sci 10:352

    PubMed  PubMed Central  Google Scholar 

  • Vanhove AC, Vermaelen W, Panis B, Swennen R, Carpentier SC (2012) Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Front Plant Sci 3:176

    PubMed  PubMed Central  Google Scholar 

  • Vanhove AC, Vermaelenb W, Swennen R, Carpentier SC (2015) A look behind the screens: characterization of the HSP70 family during osmotic stress in a non-model crop. J Proteomics 119:10–20

    CAS  PubMed  Google Scholar 

  • Wei Y, Hu W, Xia F, Zeng H, Li X, Yan Y, He C, Shi H (2016) Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response. Sci Rep 6:1–11

    CAS  Google Scholar 

  • Wimalasekera R (2016) Breeding crop plants for drought tolerance. In: Ahmad P (ed) Water stress and crop plants. Wiley, Chichester, UK, pp 543–557

    Google Scholar 

  • Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, Xu B, Jin Z (2014) A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:59

    PubMed  PubMed Central  Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen ZH (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yang QS, Wu JH, Li CY, Wei YR, Sheng O, Hu CH, Kuang RB et al (2015) Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genom 16:446

    Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youm JW, Jeon JH, Choi D, Yi SY, Joung H, Kim HS (2008) Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization. Planta 228:701–708

    CAS  PubMed  Google Scholar 

  • Zait Y, Shapira O, Schwartz A (2017) The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves. Plant Cell Environ 40:1143–1152

    CAS  PubMed  Google Scholar 

  • Zaman-Allah M, Zaidi PH, Trachsel S, Cairns JE, Vinayan MT, Seetharam K (2016) Phenotyping for abiotic stress tolerance in maize: drought stress. A field manual. CIMMYT, India

    Google Scholar 

  • Zorrilla-Fontanesi J, Rouard M, Cenci A, Kissel E, Do H, Dubois E, Nidelet S, Roux N, Swennen R, Carpentier S (2016) Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep 6:22583

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, A., Carpentier, S.C., Swennen, R. (2020). Breeding Climate-Resilient Bananas. In: Kole, C. (eds) Genomic Designing of Climate-Smart Fruit Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97946-5_4

Download citation

Publish with us

Policies and ethics