Skip to main content

Drug Encapsulation and Nanocarriers for Targeted Delivery in Animals

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

Recent years more and more research is going on nanotechnology and associated science, which mainly focused on human welfare and clinical field. Different nanocarriers have not only used in targeted drug or nucleotides or proteins delivery, but they also demonstrated upgraded advancement over conventional techniques. Therefore, we have divided this chapter into four parts, in which the first part completely introduced nanocarriers and their laboratory-based synthesis methods. Second part explained the characteristic of nanocarriers along with merits and demerits of different nanocarriers in use in several severe disorders. Third part is important elaborates regarding the type of nanocarriers, their use in drug or nucleic acid delivery in different disorders and most importantly commercialized therapy in different diseases and their current status in the market. Fourth and last part of chapter mainly focused on rules and regulations of nanomedicine preparation and characterization in Indian scenario, along with future concern in reference to use of nanocarriers in complex disorders and their potential growth in the clinical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad Nor Y et al (2015) Shaping nanoparticles with hydrophilic compositions and hydrophobic properties as nanocarriers for antibiotic delivery. ACS Cent Sci 1:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Vepuri SB, Kalhapure RS, Govender T (2016) Interactions of dendrimers with biological drug targets: reality or mystery–a gap in drug delivery and development research. Biomater Sci 4:1032–1050

    Article  CAS  PubMed  Google Scholar 

  • Ahmed W, Elhissi A, Dhanak V, Subramani K (2018) Carbon nanotubes: applications in cancer therapy and drug delivery research. In: Emerging nanotechnologies in dentistry, 2nd ed. Elsevier, pp 371–389

    Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ana R, Mendes M, Sousa J, Pais A, Falcão A, Fortuna A, Vitorino C (2019) Rethinking carbamazepine oral delivery using polymer-lipid hybrid nanoparticles. Int J Pharm 554:352–365

    Article  CAS  PubMed  Google Scholar 

  • Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7:1253–1271

    Article  CAS  PubMed  Google Scholar 

  • Barratt GM (2000) Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 3:163–171

    Article  CAS  PubMed  Google Scholar 

  • Barrera DA, Zylstra E, Lansbury PT Jr, Langer R (1993) Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-co-lysine). J Am Chem Soc 115:11010–11011

    Article  CAS  Google Scholar 

  • Béduneau A et al (2006) Pegylated nanocapsules produced by an organic solvent-free method: evaluation of their stealth properties. Pharm Res 23:2190–2199

    Article  PubMed  CAS  Google Scholar 

  • Bee S-L, Hamid ZA, Mariatti M, Yahaya B, Lim K, Bee S-T, Sin LT (2018) Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polym Rev 58:495–536

    Article  CAS  Google Scholar 

  • Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63:141–163

    Article  CAS  PubMed  Google Scholar 

  • Behnam MA et al (2018) Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model. Adv Pharm Bull 8:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhadj Z et al (2017) Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. J Controlled Release 255:132–141

    Article  CAS  Google Scholar 

  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V (2016) Nanostructured lipid carriers: promising drug delivery systems for future clinics nanomedicine: nanotechnology. Biol Med 12:143–161

    CAS  Google Scholar 

  • Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. In: Application of nanotechnology in drug delivery. InTech, https://doi.org/10.5772/58422. Available from: https://www.intechopen.com/books/application-of-nanotechnology-in-drug-delivery/polymer-nanoparticles-for-smart-drug-delivery

    Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bhargav E, Madhuri N (2013) Targeted drug delivery-a review. World J Pharm Pharm Sci 3:150–159

    Google Scholar 

  • Bhattacharya K et al (2018) Nitric oxide dependent degradation of polyethylene glycol-modified single-walled carbon nanotubes: implications for intra-articular delivery. Adv Healthc Mater 7:1700916

    Article  CAS  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9:12

    Article  PubMed Central  CAS  Google Scholar 

  • Caminade A-M, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44:3870–3873

    Article  CAS  PubMed  Google Scholar 

  • Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T (1997) Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Controlled Release 48:157–164

    Article  CAS  Google Scholar 

  • Campos-Martorell M, Cano-Sarabia M, Simats A, Hernández-Guillamon M, Rosell A, Maspoch D, Montaner J (2016) Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. Int J Nanomed 11:3035

    CAS  Google Scholar 

  • Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 7:1700845

    Article  CAS  Google Scholar 

  • Carradori D et al (2018) Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomed: Nanotechnol Biol Med 14:609–618

    Article  CAS  Google Scholar 

  • Ceña V, Játiva P (2018) Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine 13:1513–1516

    Article  PubMed  Google Scholar 

  • Chandrasekhar P (2018) CNT applications in drug and biomolecule delivery. In: Conducting polymers, fundamentals and applications. Springer, pp 61–64

    Google Scholar 

  • Chang H-I, Yeh M-K (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed 7:49

    CAS  Google Scholar 

  • Chen C et al (2017) Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interfaces 9:5864–5873

    Article  CAS  Google Scholar 

  • Chen Y, McCulloch R, Gray B (1994) Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anticancer drug doxorubicin. J Controlled Release 31:49–54

    Article  CAS  Google Scholar 

  • Chen Z, Tai Z, Gu F, Hu C, Zhu Q, Gao S (2016) Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of antitumor efficacy. Eur J Pharm Biopharm 107:130–141

    Article  CAS  PubMed  Google Scholar 

  • Chereddy KK, Payen VL, Préat V (2018) PLGA: from a classic drug carrier to a novel therapeutic activity contributor. J Controlled Release 289:10–13

    Article  CAS  Google Scholar 

  • Chetoni P et al (2016) Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 109:214–223

    Article  CAS  PubMed  Google Scholar 

  • Chi Y et al (2017) Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Controlled Release 261:113–125

    Article  CAS  Google Scholar 

  • Couvreur P, Barratt G, Fattal E, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  • Couvreur P, Grislain L, Lenaerts V, Brasseur F, Guiot P, Biernacki A (2018) Biodegradable polymeric nanoparticles as drug carrier for antitumor agents. In: Polymeric nanoparticles and microspheres. CRC Press, pp 27–94

    Google Scholar 

  • Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y (2016) Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–32169

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca LS, Silveira RP, Deboni AM, Benvenutti EV, Costa TM, Guterres SS, Pohlmann AR (2008) Nanocapsule@ xerogel microparticles containing sodium diclofenac: a new strategy to control the release of drugs. Int J Pharm 358:292–295

    Article  PubMed  CAS  Google Scholar 

  • Daneshmand S, Golmohammadzadeh S, Jaafari MR, Movaffagh J, Rezaee M, Sahebkar A, Malaekeh-Nikouei B (2018) Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J Cell Biochem 119:4251–4264

    Article  CAS  PubMed  Google Scholar 

  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells, Nanomed, and Biotechnol 44:381–391

    Article  CAS  Google Scholar 

  • Davda J, Labhasetwar V (2002) Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 233:51–59

    Article  CAS  PubMed  Google Scholar 

  • Deepak A, Goyal AK, Rath G (2018) Nanofiber in transmucosal drug delivery. J Drug Deliv Sci Technol 43:379–387

    Article  CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Desai N (2012) Challenges in development of nanoparticle-based therapeutics. The AAPS J 14:282–295

    Article  CAS  PubMed  Google Scholar 

  • Desai PP, Date AA, Patravale VB (2012) Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov Today: Technol 9:e87–e95

    Article  CAS  Google Scholar 

  • Dhaundiyal A, Jena SK, Samal SK, Sonvane B, Chand M, Sangamwar AT (2016) Alpha‐lipoic acid–stearylamine conjugate‐based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in‐vivo pharmacokinetic and hepatotoxicity study. J Pharm Pharmacol 68:1535–1550

    Article  CAS  PubMed  Google Scholar 

  • Diaspro A, Krol S, Cavalleri O, Silvano D, Gliozzi A (2002) Microscopical characterization of nanocapsules templated on ionic crystals and biological cells towards bio-medical applications. In: Molecular, cellular and tissue engineering, 2002. Proceedings of the IEEE-EMBS special topic conference on. IEEE, pp 147–148

    Google Scholar 

  • Dolatabadi JEN, Omidi Y (2016) Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends Anal Chem 77:100–108

    Article  CAS  Google Scholar 

  • Dong X, Sun Z, Wang X, Zhu D, Liu L, Leng X (2017a) Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv 24:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Wei C, Liang J, Liu T, Kong D, Lv F (2017b) Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery. Colloids Surf, B 154:253–262

    Article  CAS  Google Scholar 

  • dos Santos RB, Oue H, Banerjee A, Kanekiyo T, Singh J (2018) Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Controlled Release 286:264–278

    Article  CAS  Google Scholar 

  • Du X, Yin S, Wang Y, Gu X, Wang G, Li J (2018) Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr Polym 202:513–522

    Article  CAS  PubMed  Google Scholar 

  • Dunn SE, Brindley A, Davis SS, Davies MC, Illum L (1994) Polystyrene-poly (ethylene glycol)(PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm Res 11:1016–1022

    Article  CAS  PubMed  Google Scholar 

  • El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 13:953–971

    Article  CAS  PubMed  Google Scholar 

  • El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP (2018) Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12:10636–10664

    Article  PubMed  CAS  Google Scholar 

  • Elzoghby AO, Freag MS, Elkhodairy KA (2018) Biopolymeric nanoparticles for targeted drug delivery to brain tumors. In: Nanotechnology-based targeted drug delivery systems for brain tumors. Elsevier, pp 169–190

    Google Scholar 

  • Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Shi B, Pei Y-Y, Hong M-H, Wu J, Chen H-Z (2006) In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    Article  CAS  PubMed  Google Scholar 

  • Fang J-Y, Fang C-L, Liu C-H, Su Y-H (2008) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70:633–640

    Article  CAS  PubMed  Google Scholar 

  • Fishbein I et al (2001) Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol 21:1434–1439

    Article  CAS  PubMed  Google Scholar 

  • Fournier E, Dufresne M-H, Smith DC, Ranger M, Leroux J-C (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21:962–968

    Article  CAS  PubMed  Google Scholar 

  • Gan L et al (2013) Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today 18:290–297

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Z, Zhang S, Pang Z, Liu Q, Jiang X (2014) Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomater 10:858–867

    Article  CAS  PubMed  Google Scholar 

  • Garcês A, Amaral M, Lobo JS, Silva A (2018) Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci 112:159–167

    Article  PubMed  CAS  Google Scholar 

  • Ge H, Hu Y, Jiang X, Cheng D, Yuan Y, Bi H, Yang C (2002) Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly (ε-caprolactone)-poly (ethylene oxide)-poly (ε-caprolactone) amphiphilic triblock copolymer micelles. J Pharm Sci 91:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Geszke-Moritz M, Moritz M (2016) Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng, C 68:982–994

    Article  CAS  Google Scholar 

  • Goodwin S, Peterson C, Hoh C, Bittner C (1999) Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J Magn Magn Mater 194:132–139

    Article  CAS  Google Scholar 

  • Goodwin SC, Bittner CA, Peterson CL, Wong G (2001) Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci 60:177–183

    Article  CAS  PubMed  Google Scholar 

  • Gothwal A, Nakhate KT, Alexander A, Ajazuddin Gupta U (2018) Boosted memory and improved brain bioavailability of rivastigmine: targeting effort to the brain using covalently tethered lower generation PAMAM dendrimers with lactoferrin. Mol Pharm 15:4538–4549

    Article  CAS  PubMed  Google Scholar 

  • Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, Davis SS (2000) Defining the drug incorporation properties of PLA–PEG nanoparticles. Int J Pharm 199:95–110

    Article  CAS  PubMed  Google Scholar 

  • Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Controlled Release 57:171–185

    Article  CAS  Google Scholar 

  • Gu F, Hu C, Xia Q, Gong C, Gao S, Chen Z (2018) Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J Nanopart Res 20:303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Q et al (2017) Functional single-walled carbon nanotubes ‘CAR’ for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 9:10832–10845

    Article  CAS  PubMed  Google Scholar 

  • Haddish-Berhane N, Rickus JL, Haghighi K (2007) The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems. Int J Nanomed 2:315

    CAS  Google Scholar 

  • Hasnain M, Imam SS, Aqil M, Ahad A, Sultana Y (2018) Application of lipid blend-based nanoparticulate Scaffold for oral delivery of antihypertensive drug: implication on process variables and in vivo absorption assessment. J Pharm Innov 13:341–352

    Article  Google Scholar 

  • Herrero-Vanrell R, Rincon A, Alonso M, Reboto V, Molina-Martinez I, Rodriguez-Cabello J (2005) Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Controlled Release 102:113–122

    Article  CAS  Google Scholar 

  • Hu J, Hu K, Cheng Y (2016) Tailoring the dendrimer core for efficient gene delivery. Acta Biomater 35:1–11

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Wu D (2018) Biodegradable dendrimers for drug delivery. Mater Sci Eng, C 90:713–727

    Article  CAS  Google Scholar 

  • Hunter AC, Moghimi SM (2017) Smart polymers in drug delivery: a biological perspective. Polym Chem 8:41–51

    Article  CAS  Google Scholar 

  • Igarashi E (2008) Factors affecting toxicity and efficacy of polymeric nanomedicines. Toxicol Appl Pharmacol 229:121–134

    Article  CAS  PubMed  Google Scholar 

  • Igartúa DE, Martinez CS, Temprana CF, Alonso SdV, Prieto MJ (2018) PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int J Pharm 544:191–202

    Article  PubMed  CAS  Google Scholar 

  • Inozemtseva OA, German SV, Navolokin NA, Bucharskaya AB, Maslyakova GN, Gorin DA (2018) Encapsulated magnetite nanoparticles: preparation and application as multifunctional tool for drug delivery systems. In: Nanotechnology and biosensors. Elsevier, pp 175–192

    Google Scholar 

  • Irby D, Du C, Li F (2017) Lipid–drug conjugate for enhancing drug delivery. Mol Pharm 14:1325–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ittrich H, Peldschus K, Raabe N, Kaul M, Adam G (2013) Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 12:1149–1166

    Google Scholar 

  • Jäger A, Stefani V, Guterres SS, Pohlmann AR (2007) Physico-chemical characterization of nanocapsule polymeric wall using fluorescent benzazole probes. Int J Pharm 338:297–305

    Article  PubMed  CAS  Google Scholar 

  • Johnston-Peck AC, Takeuchi S, Bharathi KK, Herzing AA, Bendersky LA (2018) Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films. J Mater Sci 53:1365–1379

    Article  CAS  Google Scholar 

  • Joshi A, Chaudhari R, Jayant RD (2017) On-demand controlled drug delivery. In: Advances in personalized nanotherapeutics. Springer, pp 131–156

    Google Scholar 

  • Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R (2017) Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem 1:0063

    Article  CAS  Google Scholar 

  • Thukral DK, Dumoga S, Mishra AK (2014) Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr Drug Deliv 11:771–791

    Article  CAS  PubMed  Google Scholar 

  • Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanjavkar J, Rathod S, Dhumal A (2016) Dendrimer: a novel approach for drug delivery systems. Indian J Pharm Biol Res 4(3):39–49

    Google Scholar 

  • Karimi M et al (2015) Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv 12:1071–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116:4850–4883

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Goindi S, Katare OP (2016) Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. J Microencapsul 33:475–486

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Jain K, Mehra NK, Jain N (2017) Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif Cells, Nanomed, Biotechnol 45:414–425

    Article  CAS  Google Scholar 

  • Kayat J, Mehra NK, Gajbhiye V, Jain NK (2016) Drug targeting to arthritic region via folic acid appended surface-engineered multi-walled carbon nanotubes. J Drug Target 24:318–327

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20:536–547

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  • Khan A, Aqil M, Imam SS, Ahad A, Sultana Y, Ali A, Khan K (2018) Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: characterization, nasal absorption, histopathology and cell line study. Int J Biol Macromol 116:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lee S-M, Park K-H, Mun CH, Park Y-B, Yoo K-H (2015) Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials 61:95–102

    Article  CAS  PubMed  Google Scholar 

  • Kossatz S et al (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreuter J (2014) Colloidal drug delivery systems. vol 66. CRC press, https://doi.org/10.1201/9781498710565

    Book  Google Scholar 

  • Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7:243

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar N, Chen W, Cheng C-A, Deng T, Wang R, Zink JI (2018) Stimuli-responsive nanomachines and caps for drug delivery. The Enzymes 43:31–65

    Article  PubMed  Google Scholar 

  • Kumar P et al (2019) Oral delivery of methylthioadenosine to the brain employing solid lipid nanoparticles: pharmacokinetic. Behav, Histopathol Evid AAPS PharmSciTech 20:74

    Article  CAS  Google Scholar 

  • Lafond J-F, Shimoji M, Ramaswamy B, Shukoor MI, Malik P, Shapiro B, Depireux DA (2018) Middle ear histopathology following magnetic delivery to the cochlea of prednisolone-loaded iron oxide nanoparticles in rats. Toxicol Pathol 46:101–106

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht A et al (2001) Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 299:775–781

    CAS  PubMed  Google Scholar 

  • Lee G-W et al (2008) Structural characterization of carboxylated multi-walled carbon nanotubes. Thin Solid Films 516:5781–5784

    Article  CAS  Google Scholar 

  • Leong NJ et al (2018) Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats. J Pharm Sci 107:2509–2513

    Article  CAS  PubMed  Google Scholar 

  • Lewinski N (2005) Nanotechnology policy and environmental regulatory issues. J Eng Public Pol 9:1–37

    Google Scholar 

  • Li E et al (2018) Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics 2:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2015) Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 51:161–172

    Article  CAS  PubMed  Google Scholar 

  • Li S et al (2019) ROS-response-induced zwitterionic dendrimer for gene delivery. Langmuir 35(5):1613–1620

    Article  PubMed  CAS  Google Scholar 

  • Li Z, de Barros ALB, Soares DCF, Moss SN, Alisaraie L (2017) Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm 524:41–54

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lim J (2018) Biodegradable polyhydroxyalkanoates nanocarriers for drug delivery applications. In: Stimuli responsive polymeric nanocarriers for drug delivery applications, vol 1. Elsevier, pp 607–634

    Google Scholar 

  • Liang P-C, Chen Y-C, Chiang C-F, Mo L-R, Wei S-Y, Hsieh W-Y, Lin W-L (2016) Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int J Nanomed 11:2021

    CAS  Google Scholar 

  • Lim E-K, Chung BH, Chung SJ (2018) Recent advances in ph-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 19:300–317

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Liu Y, Kambhampati SP, Hsu C-C, Kannan RM, Yiu SC (2018) Subconjunctival dendrimer-drug therapy for the treatment of dry eye in a rabbit model of induced autoimmune dacryoadenitis. The ocular Surf 16:415–423

    Article  Google Scholar 

  • Lin L et al (2018b) UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics 8:1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Du H, Zhang W, Zhai G (2017a) Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications. Mater Sci Eng, C 71:1267–1280

    Article  CAS  Google Scholar 

  • Liu X-L, Yao H-F, Chai M-H, He W, Huang Y-P, Liu Z-S (2018) Green Synthesis of Carbon Nanotubes-reinforced molecularly imprinted polymer composites for drug delivery of Fenbufen. AAPS PharmSciTech 19:3895–3906

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu C-F, Iqbal S, Yang X-Z, Wang J (2017b) Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Adv Drug Deliv Rev 115:98–114

    Article  CAS  PubMed  Google Scholar 

  • Löbenberg R, Araujo L, von Briesen H, Rodgers E, Kreuter J (1998) Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after iv injection to rats. J Controlled Release 50:21–30

    Article  Google Scholar 

  • Long Z, Wu Y-P, Gao H-Y, Li Y-F, He R-R, Liu M (2018) Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjug Chem 29:2606–2618

    Article  CAS  PubMed  Google Scholar 

  • Lu J-W, Yang F, Ke Q-F, Xie X-T, Guo Y-P (2018a) Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomed: Nanotechnol Biol Med 14:811–822

    Article  CAS  Google Scholar 

  • Lu Y et al (2018b) A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. Int J Nanomed 13:5937

    Article  CAS  Google Scholar 

  • Lübbe AS et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Can Res 56:4686–4693

    Google Scholar 

  • Luong D, Kesharwani P, Deshmukh R, Amin MCIM, Gupta U, Greish K, Iyer AK (2016) PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 43:14–29

    Article  CAS  PubMed  Google Scholar 

  • Macks C, Gwak S-J, Lynn M, Lee JS (2018) Rolipram-loaded polymeric micelle nanoparticle reduces secondary injury after rat compression spinal cord injury. J Neurotrauma 35:582–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advan Enzyme Regul 41:189–207

    Article  CAS  Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Controlled Release 74:47–61

    Article  CAS  Google Scholar 

  • Magenheim B, Levy M, Benita S (1993) A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int J Pharm 94:115–123

    Article  CAS  Google Scholar 

  • Mahmud A, Xiong X-B, Aliabadi HM, Lavasanifar A (2007) Polymeric micelles for drug targeting. J Drug Target 15:553–584

    Article  CAS  PubMed  Google Scholar 

  • Marchesan S, Prato M (2013) Nanomaterials for (nano) medicine. ACS medicinal chemistry letters, 4(2):147–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marturano V, Cerruti P, Giamberini M, Tylkowski B, Ambrogi V (2016) Light-responsive polymer micro-and nano-capsules. Polymers 9:8

    Article  PubMed Central  CAS  Google Scholar 

  • McCarthy TD et al (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2:312–318

    Article  CAS  PubMed  Google Scholar 

  • Meher JG, Kesharwani P, Chaurasia M, Singh A, Chourasia MK (2018) Carbon nanotubes (CNTs): a novel drug delivery tool in brain tumor treatment. In: Nanotechnology-based targeted drug delivery systems for brain tumors. Elsevier, pp 375–396

    Google Scholar 

  • Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta D et al (2018) Reducing dendrimer generation and PEG chain length increases drug release and promotes anticancer activity of PEGylated polylysine dendrimers conjugated with doxorubicin via a cathepsin-cleavable peptide linker. Mol Pharm 15:4568–4576

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  • Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Müller R, Maaben S, Weyhers H, Mehnert W (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170

    Article  PubMed  Google Scholar 

  • Nakamura Y, Mochida A, Choyke PL, Kobayashi H (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27:2225–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam S, Bahadur D (2018) Doxorubicin-loaded dendritic-Fe3O4 supramolecular nanoparticles for magnetic drug targeting and tumor regression in spheroid murine melanoma model. Nanomed: Nanotechnol Biol Med 14:759–768

    Article  CAS  Google Scholar 

  • Nilewar G, Mute P, Talhan P, Thakre S (2017) Nanocapsules: nano novel drug delivery system. PharmaTutor 5:14–16

    CAS  Google Scholar 

  • Nirbhavane P, Sharma G, Singh B, Khuller GK, Goni VG, Patil A, Katare OP (2018) Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of CFA-induced rheumatoid arthritis in Wistar rats. AAPS PharmSciTech 19:3187–3198

    Article  CAS  PubMed  Google Scholar 

  • Nooli M, Chella N, Kulhari H, Shastri NR, Sistla R (2017) Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation. Drug Dev Ind Pharm 43:611–617

    Article  CAS  PubMed  Google Scholar 

  • Olivier J-C (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto DP, Otto A, de Villiers MM (2015) Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery. Expert Opin Drug Deliv 12:763–777

    Article  CAS  PubMed  Google Scholar 

  • Palomba R et al (2018) Modulating phagocytic cell sequestration by tailoring nanoconstruct softness. ACS Nano 12:1433–1444

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  • Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V (2003) Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (d, l-lactide-co-glycolide) nanoparticles. Int J Pharm 262:1–11

    Article  CAS  PubMed  Google Scholar 

  • Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V (2004) Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 93:1804–1814

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A, Yeo Y (2016) Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak Y, Thassu D (2016) Drug delivery nanoparticles formulation and characterization, vol 191. CRC press, USA

    Google Scholar 

  • Pathakoti K, Manubolu M, Hwang H-M (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25:245–253

    Article  CAS  PubMed  Google Scholar 

  • Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966

    Article  CAS  PubMed  Google Scholar 

  • Pham TT et al (2018) Tissue adhesive FK506–loaded polymeric nanoparticles for multi–layered nano–shielding of pancreatic islets to enhance xenograft survival in a diabetic mouse model Biomaterials 154:182–196

    Article  CAS  PubMed  Google Scholar 

  • PIB (2014) Continuation of the mission on nano science and technology in the 12th plan period, Press Information Bureau (PIB), 20 February. Available at, http://pib.nic.in/newsite/PrintRelease.aspx?relid=103969

  • Pitt G, Gratzl M, Kimmel G, Surles J, Sohindler A (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 2:215–220

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S (2011) Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 63:1340–1351

    Article  CAS  PubMed  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2007) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Qin J, Fan Y, Qin X, Jiang Y, Wu Z (2016) Carboxymethyl chitosan-modified polyamidoamine dendrimer enables progressive drug targeting of tumors via pH-sensitive charge inversion. J Biomed Nanotechnol 12:667–678

    Article  CAS  PubMed  Google Scholar 

  • Rajabnezhad S et al (2016) Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol 291:366–374

    Article  CAS  Google Scholar 

  • Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf, B 139:52–61

    Article  CAS  Google Scholar 

  • Ray M, Lee Y-W, Scaletti F, Yu R, Rotello VM (2017) Intracellular delivery of proteins by nanocarriers. Nanomedicine 12:941–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  CAS  PubMed  Google Scholar 

  • Redhead H, Davis S, Illum L (2001) Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Controlled Release 70:353–363

    Article  CAS  Google Scholar 

  • Reis CP, Neufeld RJ, Veiga F (2017) Preparation of drug-loaded polymeric nanoparticles. In: Nanomedicine in cancer. Pan Stanford, pp 197–240

    Google Scholar 

  • Reiss G, Hütten A (2016) Magnetic nanoparticles. In: Handbook of nanophysics. CRC press, pp 28–40

    Google Scholar 

  • Rengaraj A et al (2017) PAMAM/5-fluorouracil drug conjugate for targeting E6 and E7 oncoproteins in cervical cancer: a combined experimental/in silico approach. RSC Adv 7:5046–5054

    Article  CAS  Google Scholar 

  • Rizvi SA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70

    Article  PubMed  Google Scholar 

  • Ruan S et al (2015) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83

    Article  PubMed  Google Scholar 

  • Rupp R, Rosenthal SL, Stanberry LR (2007) VivaGel™(SPL7013 Gel): A candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int J Nanomed 2:561

    CAS  Google Scholar 

  • Saez A, Guzman M, Molpeceres J, Aberturas M (2000) Freeze-drying of polycaprolactone and poly (d, l-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm 50:379–387

    Article  CAS  PubMed  Google Scholar 

  • Sahoo S, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, Maeda H (2002) Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem 13:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SK, Misra R, Parveen S (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In: Nanomedicine in cancer. Pan Stanford, pp 73–124

    Google Scholar 

  • Sala M, Diab R, Elaissari A, Fessi H (2018) Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm 535:1–17

    Article  CAS  PubMed  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  • Salehi M et al (2018) Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res Part B: Appl Biomater 106:1463–1476

    Article  CAS  Google Scholar 

  • Salvalaio M et al (2016) Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PloS one 11:e0156452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvioni L et al (2016) Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res 110:122–130

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-López E, Espina M, Doktorovova S, Souto E, García M (2017) Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye–part II-Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 110:58–69

    Article  PubMed  CAS  Google Scholar 

  • Sapsford KE et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    Article  CAS  PubMed  Google Scholar 

  • Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly (ethylene glycol)-coated vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1062:77–82

    Article  CAS  Google Scholar 

  • Senior J, Gregoriadis G (1982) Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett 145:109–114

    Article  CAS  PubMed  Google Scholar 

  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serpooshan V et al (2015) [Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. Biomaterials 37:289–298

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Singhvi G (2014) Dendrimer: A novel system in pharmaceuticals. PharmaTutor 2:83–97

    Google Scholar 

  • Sharif Makhmal Zadeh B, Niro H, Rahim F, Esfahani G (2018) Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Scientia pharmaceutica 86:16

    Article  PubMed Central  CAS  Google Scholar 

  • Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2017) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22:314–326

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Sharma N, Pathak M, Agrawala PK, Basu M, Ojha H (2018) Nanotechnology-based drug delivery systems: challenges and opportunities. In: Drug targeting and stimuli sensitive drug delivery systems. Elsevier, pp 39–79

    Google Scholar 

  • Shen Y et al (2010) Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc 132:4259–4265

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Kang HS, Park W-S, Han S-H, Kim J, Chang I-S (2004) Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Controlled Release 97:477–484

    Article  CAS  Google Scholar 

  • Singh P (2007) Dendrimers and their applications in immunoassays and clinical diagnostics. Biotechnol Appl Biochem 48:1–9

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP et al (2016) RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf, B 147:129–141

    Article  CAS  Google Scholar 

  • Singh RP, Sharma G, Singh S, Bharti S, Pandey BL, Koch B, Muthu MS (2017) Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng, C 77:446–458

    Article  CAS  Google Scholar 

  • Skoczen SL, Stern ST (2018) Improved ultrafiltration method to measure drug release from nanomedicines utilizing a stable isotope tracer. In: Characterization of nanoparticles intended for drug delivery. Springer, pp 223–239

    Google Scholar 

  • Soni S, Ruhela RK, Medhi B (2016) Nanomedicine in central nervous system (CNS) disorders: a present and future prospective. Advanced pharmaceutical bulletin 6:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinfeld U, Pauli C, Kaltz N, Bergemann C, Lee H-H (2006) T lymphocytes as potential therapeutic drug carrier for cancer treatment. Int J Pharm 311:229–236

    Article  CAS  PubMed  Google Scholar 

  • Stenström P, Manzanares D, Zhang Y, Ceña V, Malkoch M (2018) Evaluation of amino-functional polyester dendrimers based on Bis-MPA as nonviral vectors for siRNA delivery. Molecules 23:2028

    Article  PubMed Central  CAS  Google Scholar 

  • Stolnik S, Illum L, Davis S (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16:195–214

    Article  CAS  Google Scholar 

  • Sun Z et al (2017) Application of dual targeting drug delivery system for the improvement of anti-glioma efficacy of doxorubicin. Oncotarget 8:58823

    PubMed  PubMed Central  Google Scholar 

  • Sundararajan G and Rao TN (2012) Commercial prospects for nanomaterials in India. J Indian Inst Sci 89(1):35-41

    Google Scholar 

  • Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted nanoparticles for detecting and treating cancer. Drug Dev Res 67:70–93

    Article  CAS  Google Scholar 

  • Sutradhar KB, Sumi CD (2016) Implantable microchip: the futuristic controlled drug delivery system. Drug Deliv 23:1–11

    Article  CAS  PubMed  Google Scholar 

  • Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64:102–115

    Article  Google Scholar 

  • Tietze R et al (2015) Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 468:463–470

    Article  CAS  PubMed  Google Scholar 

  • Tolia GT, Choi HH (2008) The role of dendrimers in topical drug delivery. Pharm Technol 32:88–98

    CAS  Google Scholar 

  • Tong Z et al (2018) Glucose-and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Appl Mater Interfaces 10:20014–20024

    Article  CAS  Google Scholar 

  • Torchilin V (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci CMLS 61:2549–2559

    Article  CAS  PubMed  Google Scholar 

  • Tripathy S, Das MK (2013) Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci 3:142–149

    Google Scholar 

  • Tyagi P, Subramony JA (2018) Nanotherapeutics in oral and parenteral drug delivery: key learnings and future outlooks as we think small. J Controlled Release 272:159–168

    Article  CAS  Google Scholar 

  • Vaidya A, Jain S, Pathak K, Pathak D (2018) Dendrimers: nanosized multifunctional platform for drug delivery. Drug Deliv Lett 8:3–19

    CAS  Google Scholar 

  • Vakilinezhad MA, Amini A, Javar HA, Zarandi BFBaB, Montaseri H, Dinarvand R (2018) Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. DARU J Pharm Sci 26:165–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P (2003) Drug delivery to resistant tumors: the potential of poly (alkyl cyanoacrylate) nanoparticles. J Controlled Release 93:151–160

    Article  CAS  Google Scholar 

  • Verma NK, Alam G, Mishra J (2015) A review of dendrimer-based approach to novel drug delivery systems. Int J Pharm Sci Nanotechnol 8:2906–2918

    CAS  Google Scholar 

  • Virani NA et al (2017) Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology 29:035101

    Article  CAS  Google Scholar 

  • von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY (2017) Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol 35:159–171

    Article  CAS  Google Scholar 

  • Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  • Wang Q-S, Wang G-F, Zhou J, Gao L-N, Cui Y-L (2016) Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 515:176–185

    Article  CAS  PubMed  Google Scholar 

  • Whitesides GM, Kriebel JK, Mayers BT (2005) Self-assembly and nanostructured materials. In: Nanoscale assembly. Springer, pp 217–239

    Google Scholar 

  • Wissing S, Kayser O, Müller R (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Xie L et al (2016) Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103:219–228

    Article  CAS  PubMed  Google Scholar 

  • Xing H, Hwang K, Lu Y (2016) Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6:1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H-L et al (2016) Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale 8:14222–14236

    Article  CAS  PubMed  Google Scholar 

  • Yagoubi AS, Shahidi F, Mohebbi M, Varidi M, Golmohammadzadeh S (2018) Preparation, characterization and evaluation of physicochemical properties of phycocyanin-loaded solid lipid nanoparticles and nanostructured lipid carriers. J Food Meas Charact 12:378–385

    Article  Google Scholar 

  • Yan L et al (2018) Protoporphyrin IX (PpIX)‐coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Adv Funct Mater 28:1707030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z (2015) Two-dimensional magnetic WS2@ Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60:62–71

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21:3448–3454

    Article  CAS  Google Scholar 

  • Yang Y, Guo Q, Peng J, Su J, Lu X, Zhao Y, Qian Z (2016) Doxorubicin-conjugated heparin-coated superparamagnetic iron oxide nanoparticles for combined anticancer drug delivery and magnetic resonance imaging. J Biomed Nanotechnol 12:1963–1974

    Article  CAS  PubMed  Google Scholar 

  • You Y et al (2019) Designing dual-functionalized carbon nanotubes with high blood–brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 48:1569–1573 

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Can Res 55:3752–3756

    CAS  Google Scholar 

  • Zhang C et al (2017) Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 55:153–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang L-P, Tan X-X, Huang Y-P, Liu Z-S (2018) Floating liquid crystalline molecularly imprinted polymer coated carbon nanotubes for levofloxacin delivery. Eur J Pharm Biopharm 127:150–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu Y, Jiang X, Yang C, Lu W, Yang YH (2004) Camptothecin derivative-loaded poly (caprolactone-co-lactide)-b-PEG-b-poly (caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Controlled Release 96:135–148

    Article  CAS  Google Scholar 

  • Zhang M, Naik RR, Dai L (2015) Carbon nanomaterials for biomedical applications, vol 5. Springer International Publishing,Switzerland

    Google Scholar 

  • Zhang Y, Bai Y, Yan B (2010) Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y-Z et al (2016) Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PloS one 11:e0148848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou B et al (2018) Drug-mediation formation of nanohybrids for sequential therapeutic delivery in cancer cells. Colloids Surf, B 163:284–290

    Article  CAS  Google Scholar 

  • Zhou Y, Dai Z (2018) New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem–An Asian J 13:3333–3340

    Article  CAS  PubMed  Google Scholar 

  • Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23:3319–3329

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkarsh Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, U., Chauhan, N. (2019). Drug Encapsulation and Nanocarriers for Targeted Delivery in Animals. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_18

Download citation

Publish with us

Policies and ethics