Skip to main content

Obesity in Kidney Disease

  • Chapter
  • First Online:
Book cover Endocrine Disorders in Kidney Disease
  • 765 Accesses

Abstract

The worldwide obesity epidemic carries not only a considerable increased risk for comorbid complications, such as hypertension, type 2 diabetes, nonalcoholic fatty liver, osteoarthritis, cancer, psychosocial complications, dyslipidemia, cardiovascular disease, and sleep apnea, but also for chronic kidney disease (CKD) and its progression to end-stage renal disease (ESRD). Proper prevention and treatment of obesity in the general population may be one of the most relevant action points in order to prevent the global increase of CKD. Since body mass index is a poor estimate of fat mass distribution in ESRD, nephrologists need to learn to use other measures of fat mass distribution, such as waist-hip ratio. Obesity is associated with better outcomes in inflamed dialysis patients, and current evidence indicates that although the risk of postoperative complications are increased, the outcome of obese patients undergoing renal transplantation are better than in obese dialysis patients who remain on dialysis. The current model that overeating of carbohydrates mixed with a sedentary lifestyle and a resulting asymmetry between energy in and out as the only explanation of the obesity epidemic have been confronted. Recent studies suggest that more complicated coexisting transformations, such as changes in the epigenome, modified neurotransmitter activity, gut dysbiosis, virus infections, and metabolic changes provoked by specific nutrients, may also contribute to overweight status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rokholm B, Baker JL, Sørensen TI. The levelling off of the obesity epidemic since the year 1999 – a review of evidence and perspectives. Obes Rev. 2010;11:835–46.

    Article  CAS  PubMed  Google Scholar 

  2. Koefoed M, Kromann CB, Juliussen SR, Hvidtfeldt D, Ekelund B, Frandsen NE, et al. Nutritional status of maintenance Dialysis patients: low lean body mass index and obesity are common, protein-energy wasting is uncommon. PLoS One. 2016;11:e0150012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stenvinkel P, Zoccali C, Ikizler TA. Obesity in CKD – what should nephrologists know? J Am Soc Nephrol. 2013;24:1727–36.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu Z, Han S, Chu J, Zhu C, Guo X. Trends in overweight and obesity among children and adolescents in China from 1981 to 2010: a meta-analysis. PLoS One. 2012;7:e51949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gupta R, Sharma KK, Gupta A, Agrawal A, Mohan I, Gupta VP, et al. Persistent high prevalence of cardiovascular risk factors in the urban middle class in India: Jaipur Heart Watch-5. J Assoc Physicians India. 2012;60:11–6.

    PubMed  Google Scholar 

  7. Schmitt AC, Cardoso MR, Lopes H, Pereira WM, Pereira EC, de Rezende DA, et al. Prevalence of metabolic syndrome and associated factors in women aged 35 to 65 years who were enrolled in a family health program in Brazil. Menopause. 2013;20:470–6.

    PubMed  Google Scholar 

  8. Kramer HJ, Saranathan A, Luke A, Durazo-Arvizu R, Guichan C, Hou S, et al. Increasing body mass index and obesity in the incident ESRD population. J Am Soc Nephrol. 2006;17:1453–9.

    Article  PubMed  Google Scholar 

  9. Obermayr RP, Temml C, Knechtelsdorfer M, Gutjahr G, Kletzmayr J, Heiss S, et al. Predictors of new-onset decline in kidney function in a general middle-european population. Nephrol Dial Transplant. 2008;23:1265–73.

    Article  PubMed  Google Scholar 

  10. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

  11. Rodrigues J, Santin F, Barbosa Brito FS, Carrero JJ, Lindholm B, Cuppari L, et al. Sensitivity and specificity of body mass index as a marker of obesity in elderly patients on hemodialysis. J Ren Nutr. 2016;26:65–71.

    Article  PubMed  Google Scholar 

  12. Zoccali C, Torino C, Tripepi G, Mallamaci F. Assessment of obesity in chronic kidney disease: what is the best measure? Curr Opin Nephrol Hypertens. 2012;21:641–6.

    Article  PubMed  Google Scholar 

  13. Silva M, Vale B, Lemos C, Torres M, Bregman R. Body adiposity index assess body fat with high accuracy in nondialyzed chronic kidney disease patients. Obesity. 2012;21:546–52.

    Article  Google Scholar 

  14. Cordeiro AC, Qureshi AR, Stenvinkel P, Heimbürger O, Axelsson J, Bárány P, et al. Abdominal fat deposition is associated with increased inflammation, protein-energy wasting and worse outcome in patients undergoing haemodialysis. Nephrol Dial Transpl. 2010;25:562–8.

    Article  Google Scholar 

  15. Honda H, Qureshi AR, Axelsson J, Heimburger O, Suliman ME, Barany P, et al. Obese sarcopenia in end-stage renal disease patients is associated with inflammation and increased mortality. Am J Clin Nutr. 2007;86:633–8.

    Article  CAS  PubMed  Google Scholar 

  16. Drong AW, Lindgren CM, McCarthy MI. The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther. 2012;92:707–15.

    Article  CAS  PubMed  Google Scholar 

  17. Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20110337.

    Article  CAS  Google Scholar 

  18. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357:370–9.

    Article  CAS  PubMed  Google Scholar 

  19. Knight JA. Physical inactivity: associated diseases and disorders. Ann Clin Lab Sci. 2012;42:320–37.

    PubMed  Google Scholar 

  20. Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK. Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab. 2009;94:4923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115:3587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SH, Plutsky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J. 2016;40:12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pan D, Mao C, Quattrochi B, Friedline RH, Zhu LJ, Jung DY, et al. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat Commun. 2014;5:4725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taube G. Treat obesity as physiology, not physics. Nature. 2012;492:155.

    Article  CAS  Google Scholar 

  25. Ludwig DS, Friedman M. Increasing adiposity: consequence or cause of overeating? JAMA. 2014;311:2167–8.

    Article  CAS  PubMed  Google Scholar 

  26. Stenvinkel P. Obesity a a disease with many etiologies disguised in the same oversized phenotype: has the overeating thery failed? Nephrol Dial Transpl. 2015;30:1656–64.

    Article  CAS  Google Scholar 

  27. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson RJ, Stenvinkel P, Martin SL, Jani A, Sanchez-Lozada LG, Hill JO, et al. Redefining metabolic syndrome as a fat storage condition based on studies of comparative physiology. Obesity. 2013;21:659–64.

    Article  PubMed  Google Scholar 

  29. Karasu SR. Of mind and matter: psychological dimensions in obesity. Am J Psychother. 2012;66:111–28.

    Article  PubMed  Google Scholar 

  30. Bays H, Scinta W. Adiposopathy and epigenetics: an introduction to obesity as a transgenerational disease. Curr Med Res Opin. 2015;31:2059–69.

    Article  CAS  PubMed  Google Scholar 

  31. Festi D, Schiumerini R, Birtolo C, Marzi L, Montrone L, Scaioli E, et al. Gut microbiota and its pathophysiology in disease paradigms. Dig Dis. 2011;29:518–24.

    Article  PubMed  Google Scholar 

  32. Mitra AK, Clarke K. Viral obesity: fact or fiction? Obesity. 2010;11:289–96.

    Article  CAS  Google Scholar 

  33. Tresserra-Rimbau A, Guasch-Ferré M, Salas-Salvadó J, Toledo E, Corella D, Castañer O, et al. Intake of total polyphenols and some classes of Polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr. 2016;146:767–77.

    CAS  Google Scholar 

  34. Heyman L, Axling U, Blanco N, Sterner O, Holm C, Berger K. Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J Nutr Metab. 2014;2014:403041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Heyman-Lindén L, Seki Y, Storm P, Jones HA, Charron MJ, Berger K, et al. Berry intake changes hepatic gene expression and DNA methylation patterns associated with high-fat diet. J Nutr Biochem. 2016;27:79–95.

    Article  PubMed  CAS  Google Scholar 

  36. Cardozo LF, Pedruzzi LM, Stenvinkel P, Stockler-Pinto MB, Daleprane JB, Leite M, et al. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie. 2013;95:1525–33.

    Article  CAS  PubMed  Google Scholar 

  37. Shah RV, Murthy VL, Allison MA, Ding J, Budoff M, Frazier-Wood AC, et al. Diet and adipose tissue distributions: the multi-ethnic study of atherosclerosis. Nutr Metab Cardiovasc Dis. 2016;26:185–93.

    Article  CAS  PubMed  Google Scholar 

  38. Spencer EA, Appleby PN, Davey GK, Key TJ. Diet and body mass index in 38000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int J Obes Relat Metab Disord. 2003;27:728–34.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.

    CAS  PubMed  Google Scholar 

  40. Perez-Pozo SE, Schold J, Nakagawa T, Sánchez-Lozada LG, Johnson RJ, Lillo JL. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes. 2010;34:454–61.

    Article  CAS  Google Scholar 

  41. Johnson RJ, Sanchez-Lozada LG, Nakagawa T. The effect of fructose on renal biology and disease. J Am Soc Nephrol. 2012;21:2036–9.

    Article  CAS  Google Scholar 

  42. Shapiro A, Mu W, Roncal C, Cheng KY, Johnson R, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedman MI, Harris RB, Ramirez I, Tordoff MG. Fatty acid oxidation affects food intake by altering hepatic energy status. Am J Physiol Regul Integr Comp Physiol. 1999;276:R1046–53.

    Article  CAS  Google Scholar 

  44. Lane MD, Cha SH. Effect of glucose and fructose on food intake via malonyl-CoA signaling in the brain. Biochem Biophys Res Commun. 2009;382:1–5.

    Article  CAS  PubMed  Google Scholar 

  45. Cox CL, Stanhope KL, Schwarz JM, Graham JL, Hatcher B, Griffen SC, et al. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur J Clin Nutr. 2012;66:201–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lustig RH. Fructose: It’s “alcohol without the buzz”. Adv Nutr. 2013;4:226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolf JP, Nguyen NU, Dumoulin G, Berthelay S. Influence of hypertonic monosaccharide infusions on the release of plasma arginine vasopressin in normal humans. Horm Metab Res. 1992;24:379–83.

    Article  CAS  PubMed  Google Scholar 

  48. Cabral PD, Hong NJ, Hye Khan MA, Ortiz PA, Beierwaltes WHI, Mig JD, et al. Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. Hypertension. 2014;63:e68–73.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rofe AM, Williamson DH. Metabolic effects of vasopressin infusion in the starved rat. Reversal of ketonemia. Biochem J. 1983;212:231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taveau C, Chollet C, Waeckel L, Desposito D, Bicket DG, Arthus MF, et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia. 2015;58:1081–90.

    Article  CAS  PubMed  Google Scholar 

  52. Donovan DS, Soloman CG, Seely EW, Williams GH, Simonson DC. Effect of sodium intake on insulin sensitivity. Am J Phys. 1993;264:E730–4.

    CAS  Google Scholar 

  53. Larsen SC, Ängquist L, Sørensen TI, Heitmann BL. 24h urinary sodium excretion and subsequent change in weight, waist circumference and body composition. PlosOne. 2013;8:e69689.

    Article  CAS  Google Scholar 

  54. Libuda L, Kersting M, Alexy U. Consumption of dietary salt measured by urinary sodium excretion and its association with body weight status in healthy children and adolescents. Public Health Nutr. 2012;15:433–41.

    Article  PubMed  Google Scholar 

  55. An R, McCaffrey J. Plain water consumption in relation to energy intake and diet quality among US adults, 2005–2012. J Hum Nutr Diet. 2016;29(5):624–32.

    Article  CAS  PubMed  Google Scholar 

  56. Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PlosOne. 2012;7:e35240.

    Article  CAS  Google Scholar 

  57. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  CAS  Google Scholar 

  59. Sommer F, Ståhlman MI, Lkayeva O, Arnemo JM, Kindberg J, Josefsson J, et al. The gut microbiota modulates energy metabolism in the hibernating Brown bear Ursus arctos. Cell Rep. 2016;14:1655–61.

    Article  CAS  PubMed  Google Scholar 

  60. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell Rep. 2015;163:1079–94.

    CAS  Google Scholar 

  61. Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe. 2016;19:12–20.

    Article  CAS  PubMed  Google Scholar 

  62. Gupta A, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016;9:229–39.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, et al. Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab (Lond). 2016;13:14.

    Article  CAS  Google Scholar 

  64. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6.

    Article  CAS  PubMed  Google Scholar 

  65. Principi N, Esposito S. Antibiotic administration and the development of obesity in children. Int J Antimicrob Agents. 2016;47(3):171–7.

    Article  CAS  PubMed  Google Scholar 

  66. Atkinson RL. Could viruses contribute to the worldwide epidemic of obesity? In t J Pediatr Obes. 2008;3(Suppl 1):37–43.

    Article  Google Scholar 

  67. Xy MY, Cao B, Wang DF, Guo JH, Chen KL, Shi M, et al. Human adenovirus 36 infection increased the risk of obesity: a meta-analysis update. Medicine (Baltimore). 2015;94:e2357.

    Article  Google Scholar 

  68. Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB, et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes. 2005;29:281–6.

    Article  CAS  Google Scholar 

  69. Gilbert CA, Slingerland JM. Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med. 2013;64:45–57.

    Article  CAS  PubMed  Google Scholar 

  70. You T, Nicklas BJ. Chronic inflammation: role of adipose tissue and modulation by weight loss. Curr Diabetes Rev. 2006;2:29–37.

    Article  PubMed  Google Scholar 

  71. Axelsson J, Qureshi AR, Suliman ME, Honda H, Pecoits-Filho R, Heimbürger O, et al. Truncal fat mass as a contributor to inflammation in end-stage renal disease. Am J Clin Nutr. 2004;80:1222–9.

    Article  CAS  PubMed  Google Scholar 

  72. Greenberg JA. Obesity and early mortality in the U.S. Obesity (Silver Spring). 2013;21:405–12.

    Article  Google Scholar 

  73. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu JL, Kalantar-ZAdeh K, Ma JZ, Quarles LD, Kovesdy CP. Association of body mass index with outcomes in patients with CKD. J Am Soc Nephrol. 2014;25:2088–96.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Navaneethan SD, Schold JD, Arrigain S, Kirwan JP, Nally JV. Body mass index and causes of death in chronic kidney disease. Kidney Int. 2016;89:675–82.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Blüher M. Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes. 2012;19:341–6.

    Article  PubMed  Google Scholar 

  77. Chertow GM, Hsu C-Y, Johansen KL. The enlarging body of evidence: obesity and chronic kidney disease. J Am Soc Nephrol. 2006;17:1501–2.

    Article  PubMed  Google Scholar 

  78. Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. J Am Soc Nephrol. 2006;17:1695–702.

    Article  CAS  PubMed  Google Scholar 

  79. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.

    Article  PubMed  Google Scholar 

  80. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844–50.

    Article  CAS  PubMed  Google Scholar 

  81. Pinto-Sietsma SJ, Navis G, Janssen WM, de Zeeuw D, Gans RO, de Jong PE, et al. A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis. 2003;41:733–41.

    Article  PubMed  Google Scholar 

  82. Drechsler C, de Mutsert R, Grootendorst DC, Boeschoten EW, Krediet RT, le Cessie S, et al. Association of body mass index with decline in residual kidney function after initiation of dialysis. Am J Kidney Dis. 2009;53:1014–23.

    Article  PubMed  Google Scholar 

  83. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.

    Article  PubMed  Google Scholar 

  84. Wickman C, Kramer H. Obesity and kidney disease: potential mechanisms. Semin Nephrol. 2013;33:14–22.

    Article  CAS  PubMed  Google Scholar 

  85. Kramer H, Gutiérrez OM, Judd SE, Muntner P, Warnock DG, Tanner RM, et al. Waist circumference, body mass index, and ESRD in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study. Am J Kidney Dis. 2016;67:62–9.

    Article  PubMed  Google Scholar 

  86. Brenner BM. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int. 1983;23:647–55.

    Article  CAS  PubMed  Google Scholar 

  87. Warnke RA, Kempson RL. The nephrotic syndrome in massive obesity: a study by light, immunofluorescence, and electron microscopy. Arch Pathol Lab Med. 1978;102:431–8.

    CAS  PubMed  Google Scholar 

  88. Wolf G, Ziyadeh FN. Leptin and renal fibrosis. Contrib Nephrol. 2006;151:175–83.

    Article  PubMed  Google Scholar 

  89. de Boer IH, Zelnick L, Afkarian M, Ayers E, Curtin L, Himmelfarb J, Ikizler TA, et al. Impaired glucose and insulin homeostasis in moderate-severe CKD. J Am Soc Nephrol. 2016;27(9):2861–71.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Navaneethan SD, Yehnert H, Moustarah F, Schreiber MJ, Schauer PR, Beddhu S. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:1565–74.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tong PC, Lee ZS, Sea MM, Chow CC, Ko GT, Chan WB, et al. The effect of orlistat-induced weight loss, without concomitant hypocaloric diet, on cardiovascular risk factors and insulin sensitivity in young obese Chinese subjects with or without type 2 diabetes. Arch Intern Med. 2002;162:2428–35.

    Article  CAS  PubMed  Google Scholar 

  92. Coutinho AK, Glancey GR. Orlistat, an under-recognised cause of progressive renal impairment. Nephrol Dial Transplant. 2013;(Suppl 4):iv172–4.

    Google Scholar 

  93. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  CAS  PubMed  Google Scholar 

  94. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  95. Kiortis DN, Christou MA. Management of obesity-induced kidney disease: a critical review of the literature. Obes Facts. 2012;5:821–32.

    Article  Google Scholar 

  96. Alexander JW, Goodman HR, Hawver LR, Cardi MA. Improvement and stabilization of chronic kidney disease after gastric bypass. Surg Obes Relat Dis. 2009;5:237–41.

    Article  PubMed  Google Scholar 

  97. Hou CC, Shyu RS, Lee WJ, Ser KH, Lee YC, Chen SC. Improved renal function 12 months after bariatric surgery. Surg Obes Relat Dis. 2012;9:202–6.

    Article  PubMed  Google Scholar 

  98. Bueter M, Dubb SS, Gill A, Joannou L, Ahmed A, Frankel AH, et al. Renal cytokines improve early after bariatric surgery. Br J Surg. 2010;97:1838–44.

    Article  CAS  PubMed  Google Scholar 

  99. Amor A, Jiménez A, Moizé V, Ibarzabal A, Flores L, Lacy AM, et al. Weight loss independently predicts urinary albumin excretion normalization in morbidly obese type 2 diabetic patients undergoing bariatric surgery. Surg Endosc. 2013;27:2046–51.

    Article  PubMed  Google Scholar 

  100. Heneghan HM, Cetin D, Navaneethan SD, Orzech N, Brethauer SA, Schauer PR. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013;9:7–14.

    Article  PubMed  Google Scholar 

  101. Turgeon NA, Perez S, Mondestin M, Davis SS, Lin E, Tata S, et al. The impact of renal function on outcomes of bariatric surgery. J Am Soc Nephrol. 2012;23:885–94.

    Article  PubMed  Google Scholar 

  102. Jamal MH, Corcelles R, Daigle CR, Rogula T, Korh M, Schauer PR, et al. Safety and effectiveness of bariatric surgery in dialysis patients and kidney transplantation candidates. Surg Obes Relat Dis. 2015;11:419–23.

    Article  PubMed  Google Scholar 

  103. Fleischmann E, Teal N, Dudley J, May W, Bower JD, Salahudeen AK. Influence of excess weight on mortality and hospital stay in 1346 hemodialysis patients. Kidney Int. 1999;55:1560–7.

    Article  CAS  PubMed  Google Scholar 

  104. de Mutsert R, Snijder MB, van der Sman-de Beer F, Seidell JC, Boeschoten EW, Krediet RT, et al. Association between body mass index and mortality is similar in the hemodialysis population and the general population at high age and equal duration of follow-up. J Am Soc Nephrol. 2007;18:967–74.

    Article  PubMed  Google Scholar 

  105. Kalantar-Zadeh K, Kopple JD, Kilpatrick RD, McAllister CJ, Shinaberger CS, Gjertson DW, et al. Association of morbid obesity and weight change over time with cardiovascular survival in hemodialysis patients. Am J Kidney Dis. 2005;46:489–500.

    Article  PubMed  Google Scholar 

  106. Johansen KL, Kutner NG, Young B, Chertow GM. Association of body size with health status in patients beginning dialysis. Am J Clin Nutr. 2006;83:543–9.

    Article  CAS  PubMed  Google Scholar 

  107. Chazot C, Gassia JP, Di Benedetto A, Cesare S, Ponce P, Marcelli D. Is there any survival advantage of obesity in southern European haemodialysis patients? Nephrol Dial Transpl. 2009;24:2871–6.

    Article  Google Scholar 

  108. Stenvinkel P, Gillespie IA, Tunks J, Addison J, Kronenberg F, Drueke TB, et al. Inflammation modifies the paradoxical association between body mass index and mortality in hemodialysis patients. J Am Soc Nephrol. 2016;27(5):1479–86.

    Article  CAS  PubMed  Google Scholar 

  109. Park J, Jin DC, Molnar MZ, Dukkipati R, Kim YL, Jing J, et al. Mortality predictability of body size and muscle mass surrogates in Asian vs white and African American hemodialysis patients. Mayo Clin Proc. 2013;88:479–86.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vashistha T, Mehrotra R, Park J, Streja E, Dukkipati R, Nissenson AR, et al. Effect of age and dialysis vintage on obesity paradox in long-term hemodialysis patients. Am J Kidney Dis. 2014;63:612–22.

    Article  PubMed  Google Scholar 

  111. Madero M, Sarnak MJ, Wang X, Castaneda Sceppa C, Greene T, Beck GJ, et al. Body mass index and mortality in CKD. Am J Kidney Dis. 2007;50:404–11.

    Article  PubMed  Google Scholar 

  112. Noori N, Kopple JD, Kovesdy CP, Feroze U, Sim JJ, Murali SB, et al. Mid-arm muscle circumference and quality of life and survival in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2010;5:2258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Beddhu S, Pappas LM, Ramkumar N, Samore MH. Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol. 2003;14:2366–72.

    Article  PubMed  Google Scholar 

  114. Sakao Y, Ojima T, Yasuda H, Hashimoto S, Hasegawa T, Iseki K, et al. Serum creatinine modifies associations between body mass index and mortality and morbidity in prevalent hemodialysis patients. PlosOne. 2016;11:e0150003.

    Article  CAS  Google Scholar 

  115. Carrero JJ, Qureshi AR, Axelsson J, Avesani CM, Suliman ME, Kato S, et al. Comparison of nutritional and inflammatory markers in dialysis patients with reduced appetite. Am J Clin Nutr. 2007;85:695–70.

    Article  CAS  PubMed  Google Scholar 

  116. Piraino B, Bernardini J, Centa PK, Johnston JR, Sorkin MI, Piraino B, Bernardini J, et al. The effect of body weight on CAPD related infections and catheter loss. Perit Dial Int. 1991;11(1):64–8.

    Google Scholar 

  117. Grzegorzewska AE, Mariak I. Differences in clinical and laboratory data of peritoneal dialysis patients selected according to body mass index. Adv Perit Dial. 2003;19:222–6.

    PubMed  Google Scholar 

  118. McDonald SP, Collins JF, Rumpsfeld M, Johnson DW. Obesity is a risk factor for peritonitis in the Australian and New Zealand peritoneal dialysis patient populations. Perit Dial Int. 2004;24:340–6.

    PubMed  Google Scholar 

  119. McDonald SP, Collins JF, Johnson DW. Obesity is associated with worse peritoneal dialysis outcomes in the Australia and New Zealand patient populations. J Am Soc Nephrol. 2003;14:1894–901.

    Article  Google Scholar 

  120. Snyder JJ, Foley RN, Gilbertson DT, Vonesh EF, Collins AJ. Body size and outcomes on peritoneal dialysis in the United States. Kidney Int. 2003;64:1838–44.

    Article  PubMed  Google Scholar 

  121. Carrero JJ, Stenvinkel P. Of persistent inflammation as a catalyst for other risk factors in chronic kidney disease; a hypothesis proposal. Clin J Am Soc Nephrol. 2009;4(Suppl1):S49–55.

    Article  CAS  PubMed  Google Scholar 

  122. Friedman AN, Miskulin DC, Rosenberg IH, Levey AS. Demographics and trends in overweight and obesity in patients at time of kidney transplantation. Am J Kidney Dis. 2003;41:480–7.

    Article  PubMed  Google Scholar 

  123. Grosso G, Corona D, Mistretta A, Zerbo D, Sinagra N, Giaquinta A, et al. The role of obesity in kidney transplantation outcome. Transplant Proc. 2012;44:1864–8.

    Article  CAS  PubMed  Google Scholar 

  124. Weissenbacher A, Jara M, Ulmer H, Biebl M, Bösmüller C, Schneeberger S, et al. Recipient and donor body mass index as important risk factors for delayed kidney graft function. Transplantation. 2012;93:524–9.

    Article  PubMed  Google Scholar 

  125. Molnar MZ, Kovesdy CP, Mucsi I, Bunnapradist S, Streja E, Krishnan M, et al. Higher recipient body mass index is associated with post-transplant delayed kidney graft function. Kidney Int. 2011;80:218–24.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hatamizadeh P, Molnar MZ, Streja E, Lertdumrongluk P, Krishnan M, Kovesdy CP, et al. Recipient-related predictors of kidney transplantation outcomes in the elderly. Clin Transpl. 2013;27:436–43.

    Article  Google Scholar 

  127. Hill CJ, Courtney AE, Cardwell CR, Maxwell AP, Lucarelli G, Veroux M, et al. Recipient obesity and outcomes after kidney transplantation: a systematic review and meta-analysis. Nephrol Dial Transpl. 2015;30:1403–11.

    Article  Google Scholar 

  128. Sever MS, Zoccali C. Moderator's view: Pretransplant weight loss in dialysis patients: cum Grano salis. Nephrol Dial Transpl. 2015;30:1810–3.

    Article  Google Scholar 

  129. Dedinska I, Laca L, Miklusica J, Rosenberger J, Zilinska Z, Galajda P, et al. Waist circumference as an independent risk factor for NODAT. Ann Transplant. 2015;20:154–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stenvinkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stenvinkel, P. (2019). Obesity in Kidney Disease. In: Rhee, C., Kalantar-Zadeh, K., Brent, G. (eds) Endocrine Disorders in Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-97765-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97765-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97763-8

  • Online ISBN: 978-3-319-97765-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics