Skip to main content

Cognitive Decline and Dementia in Some Chronic Disorders

  • Chapter
  • First Online:
Advanced Age Geriatric Care
  • 1326 Accesses

Abstract

The aim of this chapter is to review the association between cognitive impairment and four selected chronic conditions, namely, hearing loss, vitamin B12 and folate deficiencies, thyroid disease and diabetes mellitus. This chapter focuses on the prevalence, pathophysiology and the mechanistic effects of cognitive decline in these disorders. In the first section, hearing loss is discussed. In the second section, a comprehensive review covering the many aspects of vitamin B12 and folate deficiencies is presented. In the third section, thyroid disorders in relation to cognitive decline are discussed. The last section discusses diabetes mellitus and the many mechanisms through which diabetes mellitus increases the risk of cognitive impairment and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

I. Hearing Loss and Cognitive Decline

  1. Kravitz E, Schmeidler J, Beeri MS. Cognitive decline and dementia in the oldest-old. Rambam Maimonides Med J. 2012;3(4):e0026. https://doi.org/10.5041/RMMJ.10092.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Slavin MJ, Bridaty H, Sachdev PC. Challenges of diagnosing dementia in the oldest old population. Review Article. J Geronto A Biol Sci Med Sco. 2013;68(9):1103–11.

    Article  Google Scholar 

  3. Limongi F, Noae M, Siviero P, Crepaldi G, Maggi S. Epidenmiology of aging dementia and age-related hearing loss. Hearing Balance Commun. 2015;13(3) https://doi.org/10.3109/21695717.2015.1013260. Accessed 6 March 2017

    Article  Google Scholar 

  4. Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Jlein R, Mares-Perlman JA, et al. Prevalence of hearing loss in older adults in beaver dam, wincosin, the epidemiology of hearing loss study. Am J Epidemiol. 1998;148:874–86.

    Article  Google Scholar 

  5. Chen W, Lin FR. Prevalence of hearing aid use among older adults in the United States. Arch Intern Med. 2012;172(3):292–3.

    Article  Google Scholar 

  6. Solheim J, Shirvaeva O, Kvaerner KJ. Lack of ear care knowledge in nursing homes. J Multidiscip Healthc. 2016;9:481–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martini A. Hearing balance and communication problems in the elderly: Editorial. J Hearing Balance Commun. 2015;13(2) https://doi.org/10.3109/21695717.006431.

  8. Feder K, Michaund D, Ramage-Morin S, McNamee J, Beauregard Y. Prevalence of hearing loss among Canadians 20 to 79: audiometric results from 2012/2013. Canadian health measures survey. Health Rep. 2015;26:18–25.

    PubMed  Google Scholar 

  9. Davis A, Davis KA. Epidemiology of aging and hearing loss related to other chronic illnesses. www.phonak.com/content/dam/phonak/b2b/Events/conference_proceedings/chicago_2009/proceedings/09_P69344_Pho_Kapital_2_S23_32_pdf. Accessed 6 March 2017.

  10. Tavanai E, Mohammadkhani G. Role of antoxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol. 2017;274(4):1821–34.

    Article  PubMed  Google Scholar 

  11. Fujimoto C, Yamasoba T. Oidative stress and mitochondrial dysfunction in age-related hearing loss. Oxod Med Cell Longev. 2014;2014:582849. https://doi.org/10.1155/2014/582849.

    Article  CAS  Google Scholar 

  12. Martini A, Bovo R, Agnoletto M, Da Col M, Drusian A, Liddeo M, et al. Dichotic performance in elderly Italians with Italian stop consonant-vowel stimul. Audiology. 1988;27:1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: Epidemoiology amd mechanistic pathways. Hear Res. 2013;303:30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eckert MA, Cute SL, Vaden KL Jr, Kuchinsky SE, Dubno JR. Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol. 2012;13:703–13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res. 2011;1369:74–88.

    Article  CAS  PubMed  Google Scholar 

  16. Cardin V. Effects of aging and adult0onset hearing loss on cortical auditory regions. Front Neurosci. 2016;10:199. https://doi.org/10.3389/fnins.2016.00199.eCollection. Accessed 8 March 2017

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ouda L, Profant O, Syka J. Age-related changes in the central auditory system. Cell Tissue Res. 2015;36(1):337–58.

    Article  Google Scholar 

  18. Rigters SC, Bos D, Metselaar M, Roshchupkin GV, Baatenburg de Jong RJ, Ikram MA, et al. Hearing impairment is associated with smaller brain volume in aging. Front Aging Neurosci. 2017;9:2. https://doi.org/10.3389/fnagi.2017.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, et al. Association of hearing impairment with brain volume changes in older adults. NeuroImage. 2014;90:84–92.

    Article  CAS  PubMed  Google Scholar 

  20. Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction implication in the pathophysiology of aging. Exp Biol Med (Maywood). 2013;238(5):450–60.

    Article  CAS  Google Scholar 

  21. Seidman MD, Khan MJ, Bai U, Shirwany N, Quirk WS. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol. 2000;21(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lin FR. Hearing loss and cognition among older adults in the United States. J Gerontol A Biol Sci Med Sci. 2011;66(10):1131–6.

    Article  PubMed  Google Scholar 

  23. Uhlmann RF, Larson EB, Rees TS, Koepsell TD, Duckert LG. Relationship of hearing impairment to dementia and cognitive dysfunction in older adults. JAMA. 1989;261:1916–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lin FR, Metter EJ, O’Brien RJ, Resnick SM, Zonderman AB, Ferrrucci L. Hearing loss and incident dementia. Arch Neurol. 2013;68(2):214–20.

    Google Scholar 

  25. Martini A, Comacchio F, Magnavita V. Auditory evoked responses (ABR<MLR<SVR) and brain mapping I the elderly. Acta Otolaryngol Suppl. 1990;476:97–103.

    CAS  PubMed  Google Scholar 

  26. Lin FR, Yaffe K, Xia J, Xue QL, Harris TB, Purchase-Helzner E, et al. Hearing impairment and cognitive decline in adults. JAMA Intern Med. 2013;173(4):293–9.

    Article  PubMed  Google Scholar 

  27. Panza F, Solfrizzi V, Logroscino G. Age-related hearing impairment – a risk factor and frailty marker for dementa and AD. Nat Rev Neurol. 2015;11:166–75.

    Article  PubMed  Google Scholar 

  28. Ives DG, Bonino P, Traven ND, Kuller LH. Characteristics and co-morbidities of rural older adults with hearing impairment. J Am Geriatr Soc. 1995;43:803–80.

    Article  CAS  PubMed  Google Scholar 

  29. Lin FR, Thorpe R, Gordon-Salant S, Ferrucci L. Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci. 2011;66:582–90.

    Article  PubMed  Google Scholar 

  30. Kochkin S, Rogin CMA. Quantifying the obvious: The impact of hearing instruments on quality of life. Hearing Review. 2000;7(1):34.

    Article  Google Scholar 

  31. Oyler AL. Untreated hearing loss in adults -a Growing National Epidemic. http://www.asha.ord/Aud/articles/Untreated -Hearing-Loss-in-Adults/ Accessed 2 Oct 2015.

II. Vitamin B12 and Folate and the Risk of Cognitive Decline

  1. Wahlin A, Backman L, Hultdin J, Adolfsson R, Nilsson L-G. Reference values for serum levels of vitamin B12 and folic aid in a population-based sample of adults between 35 and 80 years ofage. Public Health Nutr. 2002;5(3):505–11.

    Article  PubMed  Google Scholar 

  2. Wolters M, Strohle A, Hahn A. Age-associated changes in the metabolism of vitamin B(12) and folic acid: prevalence, aetiopathogenesis and pathophysiological consequences. Gerontol Geriatr. 2004;37(2):109–35.

    Article  CAS  Google Scholar 

  3. Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A III. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veteran’s affaires normative aging study 1′2’3′4. Am J Clin Nutr. 2005;82(3):627–35.

    Article  CAS  PubMed  Google Scholar 

  4. Brzozowska A, Sicinska E, Roszkowski W. Role of folates ithe nutrition of the elderly. Rocz Panstw Zaki Hig. 2004;55(2):159–64.

    CAS  Google Scholar 

  5. Koehler KM, Pareo-Tubbeh SL, Romero LJ, Baumgartener RN, Garry PJ. Folate nutrition ad older adults: challenges and opportunities. J Am Diet Assoc. 1997;97(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  6. Flood VM, Smith WT, Webb KL, Rochtchina E, Anderson V, Mitchell P. Prevalence of low serum folate and vitamin B12 in older Australian population. Aust NZ J Public Health. 2006;30(1):38–41.

    Article  Google Scholar 

  7. Meziere A, Audureau E, Vairelles S, Krypciak S, Docko M, Monie M, et al. B12 deficiency increases with age in hospitalized patients. A study on 14,904 samples. J Gerontol Abiol Med Sci. 2014;69(12):1576–85.

    Article  CAS  Google Scholar 

  8. Baik HW. Russel: Vitamin B12 deficiency in the elderly. Annu Rev Nutr. 1999;19:357–7.

    Article  CAS  PubMed  Google Scholar 

  9. Andres E, Lukili MH, Noel E, Kaltenbach G, Abdelgheni MB, Perrin AE, et al. Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ. 2004;171(3):251–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pennypacker LC, Allen RH, Kelly JP, et al. High prevalence of cobalamin deficiency in elderly outpatients. J Am Geriatr Soc. 1992;40(12):1197–961.

    Article  CAS  PubMed  Google Scholar 

  11. Hausman D, Johnson MA, Davey A, Stabler S. The oldest old: red blood cell and plasma folate in African American and white octagenarians and centenarians in Georgia. J Nutr Health Aging. 2011;15(9):744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Risch M, Meier DW, Sakem B, Escobar PM, Risch C, Nydegger U, Risch L. Vitamin B12 and folate levels in healthy Swiss senior citizens: a prospective study evaluating reference intervals and decision limits. BMC Geriatrcs. 15:82. https://doi.org/10.1186/s12877-015-0060-x.

  13. Mooijaart SP, Gussekloo J, Frolich M, Jolles J, Stott DJ, Weatendorp RJ, de Craen AJM. Homocysteine vitamin b12 and folic acid and the risk of cognitive decline in old age: the Leiden 85-Plus Study 1’2’3. Am J Clin Nutr. 2005;82(4):866–71.

    Article  CAS  PubMed  Google Scholar 

  14. Hutto BR. Folate and cobalamin in psychiatric illness. Comp Psychiatry. 1997;6:305–14.

    Article  Google Scholar 

  15. Carney MWP, Toone BK, Reynolds EH. S- Sdenosylmethionine and affective disorder. Am J Med. 1987;83(Suppl 5A):104–6.

    Article  CAS  PubMed  Google Scholar 

  16. Levitt AJ, Joffe RT. Vitamin B12 and life course of depressive illness. Biol Psychiatry. 1989;25:867–72.

    Article  CAS  PubMed  Google Scholar 

  17. Shane B, Stokstad ELR. Vitamin B-12 –folate interrelationships. Annu Rev Nutr. 1995;5:115–41.

    Article  Google Scholar 

  18. Lewerin C, Ljungman S, Nilsson-Ehle H. Glomerular filtration rate as measured by serum cystatin C is an important determinant of plasma homocysteine and serum methylmalonic acid in the elderly. J Intern Med. 2007;261(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  19. Miller JW. Assessing the association between vitamin B12 status and cognitive function in older adults. Am J Clin Nutr. 2006;84(6):1259–60.

    Article  CAS  PubMed  Google Scholar 

  20. D’Anci KE, Rosenberg IH. Folate and brain function in the elderly. Curr Opin Clin Nutr Metab Care. 2004;7(6):659–64.

    Article  PubMed  Google Scholar 

  21. Mischoulon D, Raab MF. The role of folate in depression and dementia. J Clin Psychiatry. 2007;68(Suppl 10):28–33.

    CAS  PubMed  Google Scholar 

  22. Ramos M, Allen LH, Mungas DM, Jagust WJ, Haan M, Green R, et al. Low folate states is associated with impaired cognitive function and dementia in the Sacromento area Latino study in aging. Am J Clin Nutr. 2005;82:1346–52.

    Article  CAS  PubMed  Google Scholar 

  23. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12 and serum total homocysteine levels in confirmed Alzheimer’s disease. Arch Neurol. 1998;55(11):1449–55.

    Article  CAS  PubMed  Google Scholar 

  24. Quadri P, Fragiacomo C, Pezzati R, Zanol L, Forloni C, Tettamanti M, et al. Homocysteine, folate and vitamin B12 in mild cognitive impairment, Alzheimer’s disease and vascular dementia. Am J Clin Nutr. 2004;80:114–22.

    CAS  PubMed  Google Scholar 

  25. Vogel T, Dali-Youcef N, Kaltenbach G, Andrea E. Homocystene,vitamin B12,folate and cognitive functions: a syatematic and critical review of the literature. Int J Clin Pract. 2009; https://doi.org/10.1111/j.1742-1241,2009.02026x.

  26. Hin H, Clarke R, Sherliker P, Atoyebi W, Emmes K, Birks J, et al. Clinical relevance of low serum B12 concentrations in older people: the Babbury B12 Study. Age Aging. 2006;35:4116–22.

    Article  Google Scholar 

  27. Lei F, Ng T-P, Chuah L, Niti M, KuaE-H. Homocysteine,folate and vitamin B12 and cognitive performance in older Chinese adults: findings fro the Singapore Longitudinal Ageing Study1’2’3. Am J Clin Nutr. 2006;84(6):1506–12.

    Article  Google Scholar 

  28. Allen RH, Stabler SP, Savage DL, Lindenhaum J. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J. 1993;7:1344–53.

    Article  CAS  PubMed  Google Scholar 

  29. Miller JW, Green R, Ramos MI, Allen LH, Mungas DM, Jagust WJ, et al. Homocysteine and cognitive function in the Sacromento area Latino study on aging. 1′2’3′4. Am J Clin Nutr. 2003;7:441–7.

    Article  Google Scholar 

  30. Prins ND, Den Heyer T, Holman A, Kondstaat PJ, Joless J, Clarke R, et al. Homocysteine and cognitive function in the elderly. The Rotterdam Study. Neurology. 2002;59:1375–80.

    Article  CAS  PubMed  Google Scholar 

  31. Malouf R, Grimley Evans J, Areosa ASastra A. Folic acid with and without vitamin B12 for cognition and dementia (Cochrane Review). In: et al. The Cochrane Library, Issue 3. Chichester, UK: Wiley & Sons Ltd; 2004.

    Google Scholar 

  32. Malouf R, Areosa ASastra A. Vitamin B12 for cognition and dementia (Cochrane Review). In: et al. The Cochrane Library, Issue 3. Chichester, UK: Wiley & Sons Ltd; 2004.

    Google Scholar 

III. Some Aspects of Thyroid Dysfunction in the Elderly

  1. Chiovato L, Mariotti S, Pinchera A. Thyroid diseases in the elderly. Bailliere Clin Endocrinol Metab. 1997;11(2):251–70.

    Article  CAS  Google Scholar 

  2. Faggiano A, Del Prete M, Marciello F, Marrotta V, Ramundo V, Colao A. Thyroid diseases in the elderly. Minnerva Endocrinol. 2011;36(3):211–31.

    CAS  Google Scholar 

  3. Ozbakir O, Dogukan A, Kelestimur F. The prevalence of thyroid dysfunction among elderly subjects inendemic goiter area of Central Anatolia. Endocr J. 1995;42(5):713–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar H, Singh VB, Meena BL, Gaur S, Singla R, Sisdiva MS. Clinical profile of thyroid dysfunction in elderly: an overview. Thyroid Res Pract. 2016;13:101–5.

    Article  Google Scholar 

  5. Clarnette RM, Patterson CJ. Hypothyroidism : does treatment cure dementia? J Geriatr Psychiatry Neurol. 1994;7:23–7.

    Article  CAS  PubMed  Google Scholar 

  6. Formiga F, Ferrer A, Padros G, Contra A, Crbella X, Pjol R, et al. Thyroid status and functional and cognitive status at baseline and survival after 3 tears of follow-up: the OCTABAIX study. Eur J Endocrinol. 2013;170(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson GR, Curry RW Jr. Subclinical thyyroid disease. Am Fam Physician. 2005;72(8):1517–24.

    PubMed  Google Scholar 

  8. Mariotti S. Editorial. Thyroid function and aging: Do serum 3,4,3’-triiodothyronine and thyroid-stimulating hormone concentrations give the Janus response? J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2005-2214.

    Article  CAS  Google Scholar 

  9. Aghini-Lombardi F, Antonangeli L, Martino E, Vitti P, Maccherini D, Leoli F, et al. The spectrum of thyroid disorders in an iodine-deficient community the Pescopagano survey. J Clin Endorinol Metb. 1999;84:51–566.

    Google Scholar 

  10. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29:76–131.

    Article  CAS  PubMed  Google Scholar 

  11. Wijsman LW, de Craen AJ, Trompet S, Gussekloo J, Stott DJ, Rodondi N, et al. Subclincal thyroid dysfunction and cognitive decline in old age. PloS One. 2013;8(3):e59199. https://doi.org/10.1371/journal.pone.0059199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitchell AL, Razvi S, Pearce SH, & 85+Study Core Team. Thyroid function in a cohort of eighty five year olds: the Newcastle 85+study. Endocrine Abstracts. 2009;19:363.

    Google Scholar 

  13. Begin ME, Langlois MF, LorrainD CSC. Thyroid function and cognition with aging. Curr Gerontol Geriatr Res. 2008;2008:474868. https://doi.org/10.1155/2008/474868.

    Article  CAS  PubMed Central  Google Scholar 

  14. Mariotti S, Franceschi C, Cossarizza A, Pinchera A. The aging thyroid. Endocr Rev. 1995;16:686–715.

    Article  CAS  PubMed  Google Scholar 

  15. Ceresini G, Lauretani F, Maggio M, Ceda GP, Morganti S, Usberti E, et al. Thyroid function abnormalities and cognitive impairment in elderly people: results of the Invecchiare chianti study. J Am Geriatr Soc. 2009;57(1):89–93.

    Article  PubMed  Google Scholar 

  16. Nakajima Y, Yamada M. Subclinical thyroid disease. Nihon Rinsho. 2012;70(11):1865–71.

    PubMed  Google Scholar 

  17. Cooper DS, Biondi B. Sunclinical y=thyroid disease. Lancet. 2012;379:1142–54.

    Article  PubMed  Google Scholar 

  18. Surks MI, Boucai L. Age-and-race-based serum thyrotropin reference limits. J Clin Endocrinol Metab. 2010;95:496–502.

    Article  CAS  PubMed  Google Scholar 

  19. Ochs N, Auer R, Bauer DC, Nanchen D, Gussekloo J, Cornuz J, et al. Met-analysis: subclinical thyroid dydfuction ad risk for coronary heart disease and mortality. Ann Intern Med. 2008;148:832–45.

    Article  PubMed  Google Scholar 

  20. Chahal HS, Drake WM. The endocrine system and ageing. J Pathol. 2007;211:173–18.

    Article  CAS  PubMed  Google Scholar 

  21. Over R, Mannan S, Nsouli-Marktabi H, Burman KD, Jonklass J. Age and thyrotropin response tohypothyroxinemia. J Clin Endocrinol Metab. 2010;95:3675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benal J. Thyroid hormones amd brain development. Viram Harm. 2005;71:95–122.

    Google Scholar 

  23. Annerbo S, Lokk J. A clinical review of the association of thyroid stimulating hormone and cognitive impairment. ISRN Enocrinol. 2013;2013:1. https://doi.org/10.1155/2013/856017.

    Article  CAS  Google Scholar 

  24. Gan EH, Pearce SHS. The thyroid in mild cognitive impairment and low thyrotropin in older people. J Clin Endocrinol Metab. 2012;97(10):3431–49.

    Article  CAS  Google Scholar 

  25. Ceresini G, Lauretani F, Maggio M, Cappola AR. Subclinical hyperthyroidism is the most prevalent thyroid dysfunction in older Italians and is associated with cognitive impairment. www.researchgate.net/publication/242589786_subclinical _hyperthyroidism_is_the_most_prevalent_thyroid_dysfunction_in_older_Italians_and_is_associated_with cognitive_impairment.

    Google Scholar 

  26. Gesing A, Lewinski A, Karbownik-Lewinska M. The thyroid gland and the process of aging; what is new? Thyroid Research. 2012;5:16. https://doi.org/10.1186/756-6614-5-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Jongh RT, Lips P, van Schoor NM, Rijs KJ, Deeg DJ, Comijs HC, et al. Endogenous subclinical thyroid disorders, physical and cognitive function., depression and mortality in older individuals. Eur J Endocrinol. 2011;165:545–54. https://doi.org/10.1530/EJE-11-0430.

    Article  CAS  PubMed  Google Scholar 

  28. Park YJ, Lee EJ, Lee YJ, Choi SH, Park JH, Lee SB, et al. Subclincal hypothyroidism (SCH) is not associated with metabolic derangement cognitive impairment depression or poor quality of life (QoL) in elderly subjects. Arch Geronto Geriatr. 2010;50:e68–73. https://doi.org/10.1016/j.arhger.2009.05.015.

    Article  CAS  Google Scholar 

  29. Ganguli M, Burmeister LA, Seaberg EC, Belle S, DeKosky ST. Association between dementia and TASH. A community based study. Biol Psychiatry. 1996;40:714–25.

    Article  CAS  PubMed  Google Scholar 

  30. Van Osch LADM, Hogervorst E, Combrinck M, Smith AD. Low thyroid-stimulating hormone as an independent risk factor for Alzheimer’s disease. Neurology. 2004;62:1967–71.

    Article  PubMed  CAS  Google Scholar 

  31. Kalmijn S, Mehta KM, Pols HAP, Hofman A, Drexhage HA, Breteler MM. Subclinical hyperthyroidism and the risk of dementia: the Rotterdam study. Clin Endorinol. 2000;53:733–7.

    Article  CAS  Google Scholar 

  32. Davis JD, Stern RA, Flashman LA. Cognitive and neuropsychiatric aspects of subclinical hypothyrpidism: significance in the elderly. Curr Psychiatry Rep. 2003;5(5):384–90.

    Article  PubMed  Google Scholar 

  33. Pasqualetti G, Tognini S, Polini A, Caraccio N, Monzani E. Subclinical hypothydroism and heart failure in older people. Endocr Metab Immune Disord Drug Targets. 2013;13(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  34. Turner MR, Camacho X, Fischer HD, Austin PC, Anderson GM, Rochon PA, et al. Levothroxine dose and the risk of fractures in older adults: nested case –control study. BMJ. 2011;342:d2238. https://doi.org/10.1136/bmj.d2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Collet TH, Gussekloo J, Bauer DC, den Elzen WP, Cappola AR, Balmer P, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172:799–809.

    Article  CAS  PubMed  Google Scholar 

  36. Rosario PW. Natural history of subclinical hyperthyroidism in elderly patients with TSH between 0.1 and 0,.4 mIU/l: a prospective study. Clin Endocrinol. 2010;72:685–8.

    Article  CAS  Google Scholar 

IV. Diabetes Mellitus and Cognitive Impairment

  1. Mastro A, Caouto JB, Vagula MC. Cognitive impairment and dementia in type 2 diabetes mellitus. US Pharmacis. 2014;39:33–7.

    Google Scholar 

  2. Van den Berg E, Kessels RP, Kappelle LJ, de Haan EH, Biessels GJ, et al. Type 2 diabetes cognitive impairment and dementia: vascular and metabolic determinants. Drugs Today (Barc). 2006;42(11):741–54.

    Article  Google Scholar 

  3. Dash SK. Cognitive impairment and diabetes. Recent Pat Endocr Metab Immune Drug Discov. 2013;7(2):155–16.

    Article  CAS  PubMed  Google Scholar 

  4. Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. Diabetes in older adults: a consensus report. J Am Geriatr Soc. 2012;60:2342.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abbatcola AM, Maggi S, Paolisso G. New approaches to treating type2 diabetes mellitus in the elderly: role of incretin therapies. Drugs Aging. 2008;25(11):913–25.

    Article  Google Scholar 

  6. Abbatecola AM, Paolisso G, Sinclair AJ. Treating diabetes mellitus in older and oldest old patients. Curr Pharm Des. 2015;21(13):1665–71.

    Article  CAS  PubMed  Google Scholar 

  7. Paolisso G. Pathophysiology of diabetes in elderly people. Acta Biomed. 2010;81(Suppl 1):47–53.

    PubMed  Google Scholar 

  8. Pratley RE, Gilbert M. Clinical management of the elderly patients with type 2 diabetes mellitus. Postgrad Med. 2012;124(1):133–43.

    Article  PubMed  Google Scholar 

  9. Kawamura T. Cognitive impairment in diabetic patients: Can diabetic control prevent.http://onlinelibrary.wiley.com/doi/10.111/j.2040-1124.201.00234.x/full. Accessed 19 March 2017.

  10. Saedi E, Gheini MR, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes. 2016;7(17):412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Du YF, Ou HY, Beverly EA, Chiu CJ. Achieving glycaemic control in elderly patients with type 2 diabetes: a critical comparison of current options. Clin Interv Aging. 2014; https://doi.org/10.2147/CIA.S53482.

  12. Ferrer A, Padros G, Formiga F, Pujol R. Diabetes mellitus: prevalence and effect of morbidities in the oldest old. The Octabaix study. J Am Ger Soc. 2012;60(3):462–7.

    Article  Google Scholar 

  13. Zhang X, Decker FH, Luo H, Geiss LS, Pearson WS, Saaddine JB, et al. Trends in the prevalence and comorbidities of diabetes mellitus in nursing home residents in the United States. 1995–2004. J Am Geriatr Soc. 2010;58:724.

    Article  PubMed  Google Scholar 

  14. Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocri Rev. 2008;29(4):494–511.

    Article  CAS  Google Scholar 

  15. Vijayakumar TM, Sirisha GBN, Begam MDF, Dhan MD. Mechanism linking cognitive impairment and diabetes mellitus. https://www.researchgate.nrt/publivation/231537655_Mechanism_Linking_Cognitive_Impairment_and_Diabetes_mellitus. Accessed 19 March 2017.

  16. Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycaemic episodes and risk of dementia in older patientstype 2 diabetes mellitus. JAMA. 2009;301(5):1565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ojo O, Brooke J. Evaluating the association between diabetes cognitive impairment and dementia. Int J Environ Res Public Health. 2015;12:8281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iglseder B. Diabetes mellitus and cognitive decline. Wirn Med Wochenschr. 2011;161(21–22):524–30.

    Article  Google Scholar 

  19. Clayton W, Elasy TA, Tom A. A review of the pathophysiology classification and treatment of foot ulcers in diabetic patients. Clin Diabetes. 2009;27(2):52–8.

    Article  Google Scholar 

  20. Koya KD, Haneda M, Nakakawa H, Isshiki K, Sato H, Maeda S, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with PKC beta inhibitor in diabetic db/db mice, a rodent model of type 2 diabetes. FASEB J. 2000;3:2329–37.

    Google Scholar 

  21. Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischaemic damage in diabetes an inflammatory perspective. J Neuroinflammation. 2017;14(1):21. https://doi.org/10.1186/s12974-016-0774-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. King KD, Jones JD, Warthen J. Microvascular and macrovascular complications in diabetes mellitus. Amer J Pharm Edu. 2005;69(5):Article 87.

    Article  Google Scholar 

  23. Warren RE, Frier BM. Hypoglycaemia and cognitive function. Diabetes Obes Metab. 2005;7(5):493–503.

    Article  PubMed  Google Scholar 

  24. Frier BM. Hypoglycaemia and cognitive function in diabetes. Int J Clin Pract Suppl. 2001;123:30–7.

    Google Scholar 

  25. Rehni AK, Natiyal N, Perez-Pinzon MA, Dave KR. Hyperglycaemia/hypoglycaemia- induced mitochondrial dysfunction and cerebral ischaemic damage in diabetics. Metab Brain Dis. 2015;30(2):437–47.

    Article  CAS  PubMed  Google Scholar 

  26. Bioemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanism of memory loss. Prog Mol Biol Transl Sci. 2014;121:413–49.

    Article  CAS  Google Scholar 

  27. Alagiakrishnan K, Sakaralingam S, Ghosh M, Mereu L, Senior P. Antibiotic drugs and their potential role in treating mild cognitive impairment and Alzheimer’ s disease. Discovery Medicine. http://www.discovery medicine.com/Kannayiram-Alagiakrishnan/2013/…e-in-treating-mild-cognitive-impairment-and-alzheimers-disease

  28. Shapakov AO, Derkach KV, Berstein LM. Brain signalling systems in the Type2 diabetes and metabolic synjdrome: promising target to treat and prevent theses diseases. Future Sci OA. 2015;1(3) https://doi.org/10.4155/fso.15.23.

  29. Ma L, Wang J, Li Y. Insulin resistance and cognitivedysfunction. Clin Chim Acta. 2015;444:18–23.

    Article  CAS  PubMed  Google Scholar 

  30. de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res. 2012;9(1):35–66.

    Google Scholar 

  31. Cummings JL, Cole G. Alzheimer disease. JAMA. 2002;287(18):2335–8.

    Article  CAS  PubMed  Google Scholar 

  32. Park S, Kim DS, Kang S, Moon NR. Bet-Amyloid-induced cognitive dysfunction impairs glucose homeostasis by increasing insulin resistance and decreasing beta-cell mass in non-diabetic and diabetic rats. Metabolism. 2013;62(2):1749–2013.

    Article  CAS  PubMed  Google Scholar 

  33. Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, et al. Insulin resistance brain atrophy and cognitive performance in late middle-aged adults. Diabetes Care. 2013;36:443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jia X, Olson DJ, Ross AR, Wu L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB J. 2006;20(9):1555–7.

    Article  CAS  PubMed  Google Scholar 

  35. Craft S, Watson GS. Insulin and neurodegenerative disease shared and specific mechanisms. Lancet Neurol. 2004;3:169–86.

    Article  CAS  PubMed  Google Scholar 

  36. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660–71.

    Article  CAS  PubMed  Google Scholar 

  37. Gerold C, Frisoni GB, Paolissa G. Insulin resistance in cognitive impairment. The InCHANTI Study Arch Neurol. 2005;62(2):1067–72.

    Article  Google Scholar 

  38. Duron E, Hanon O. Vascular risk factors cognitive decline and dementia. Vasc Health Risk Manag. 2008;4(2):363–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Duron E, Hanon O. Hypertension cognitive decline and dementia. Arch Cardiovasc Dis. 2008;101(3):181–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nages Nagaratnam .

Editor information

Editors and Affiliations

Multiple Choice Questions

Multiple Choice Questions

  1. 1.

    The following are true of hearing loss in the elderly, EXCEPT:

    1. A.

      Hearing loss in older adults is associated with accelerated cognitive decline and incident dementia.

    2. B.

      Decline in the peripheral auditory system does not have effects on the central auditory system and function.

    3. C.

      Adults with hearing loss who were not wearing hearing aids had higher rates of anxiety, depression and psychosocial disorders.

    4. D.

      In older adults hearing loss may be associated with dementia by decreasing stimulatory input and impeding social interaction.

  1. 2.

    The following are true of B12 and folate deficiencies, EXCEPT:

    1. A.

      In elderly persons B12 and folate deficiencies are common.

    2. B.

      Cognitive decline and some forms of dementia including Alzheimer’s dementia (AD) are associated with low folate levels.

    3. C.

      Decreased concentration of homocysteine has been associated with increased prevalence of poor cognitive function and increased risk of developing dementia and AD.

    4. D.

      The measurement of total vitamin B12 has limitations for it has been shown that the individuals with neurological and vascular abnormalities may present with normal range of B12.

  1. 3.

    The following ate true of thyroid dysfunction, EXCEPT:

    1. A.

      Decreased cognitive functioning such as memory and reaction time has been associated with overt hyperthyroidism.

    2. B.

      Decreased cognitive functioning is associated with both clinical and subclinical hypothyroidism in middle-aged and the elderly.

    3. C.

      In older adults subclinical hyperthyroidism is not associated with coronary heart disease and atrial fibrillation.

    4. D.

      TSH increases with age even with older people without thyroid disease.

  1. 4.

    The following are true with diabetes, EXCEPT:

    1. A.

      Repeated severe hypoglycaemia has been attributed to cause brain damage and cognitive deterioration.

    2. B.

      There is no evidence to support the concept that insulin resistance has an important role in the pathogenesis of cognitive impairment.

    3. C.

      Studies have found a close association between hypertension, cognitive decline and dementia in late life.

    4. D.

      One of the serious complications of diabetes is intensifying ischaemic brain damage.

Answers to MCQs

  1. 1.

    B

  2. 2.

    C

  3. 3.

    C

  4. 4.

    B

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagaratnam, N., Cheuk, G. (2019). Cognitive Decline and Dementia in Some Chronic Disorders. In: Nagaratnam, N., Nagaratnam, K., Cheuk, G. (eds) Advanced Age Geriatric Care. Springer, Cham. https://doi.org/10.1007/978-3-319-96998-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96998-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96997-8

  • Online ISBN: 978-3-319-96998-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics