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Chapter 6
Biotechnologies from Marine Bivalves

Paola Venier, Marco Gerdol, Stefania Domeneghetti, Nidhi Sharma, 
Alberto Pallavicini, and Umberto Rosani

Abstract Bivalve molluscs comprise more than 9000 extant species. A number of 
them are traditionally farmed worldwide and are fundamental in the functioning of 
benthic ecosystems. The peculiarities of marine bivalves have inspired versatile bio-
technological tools for coastal pollution monitoring and several new biomimetic 
materials. Moreover, large amounts of sequence data available for some farmed 
bivalve species can be used to unveil the organism’s responses to environmental fac-
tors (e.g. global climate change, emergence of new infectious agents and other pro-
duction problems). In bivalves, data from genomics and transcriptomics increases 
more quickly than data from other omics, and permit new bioinformatics inferences, 
real comparative genomics and the study of molecules suitable for biotechnological 
innovations. Bivalves (and their microorganism communities) produce a variety of 
bioactive peptides, proteins and metabolites. Among them, the numerous families of 
antimicrobial peptides identified in the Mediterranean mussel likely contribute to its 
vigour and could assist with the identification of molecular scaffolds for innovative 
pharmaceuticals, nutraceuticals and constructs suitable for other applications.

海水双壳贝类相关的生物技术 双壳类软体动物由9,000多种现存物种组成。
其中一些全球分布物种有着比较悠久的养殖历史,并且是底栖生态系统的基
础物种。海水双壳贝类的生长及生理学特性为海岸污染监测和创新仿生物材
料研发提供了多种多样的生物技术工具。受到海水双壳贝类生物学特性的启
发,研究人员研发了一些用于沿海污染监测的通用生物技术工具及数种新仿
生材料。此外,大量的养殖双壳贝类的测序数据可以用来揭示生物体对环境
因素变化的响应(如全球气候变化,新型传染病和其他养殖问题)。双壳贝类
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的转录组学和基因组资源比其它组学数据的增长要快得多,从而使针对这一
动物类群的新的生物信息学预测、真正的比较基因组学和适用于生物技术创
新的分子研究成为可行。双壳贝类(及其微生物群落)会产生多种生物活性
肽、蛋白质和代谢物。其中,在地中海贻贝中鉴别出多种可能有助于增强贻
贝活力的抗菌肽家族成员,为开发新型药物、营养制品等提供了分子骨架
模 板.

Keywords Marine bivalve molluscs · Biotechnology · Mytilus · Crassostrea · 
Ruditapes · DNA microarray · High-throughput sequencing · Byssus · Biomimetic 
· Antimicrobial

关键词 软体双壳贝类 · 生物技术, 贻贝 · 牡蛎;蛤 · DNA微阵列 · 
高通量测序 · 足丝 · 仿生 · 抗菌剂

6.1  Introduction

Technologies based on the peculiarities of marine bivalves not only provide services 
and products of current use but are expected to grow in the future, owing to the great 
exploration power of current omics strategies (high-throughput production of differ-
ent sorts of molecular data aimed at the complete interpretation of biological struc-
tures, functions, and dynamics) and to the surprising advances of life sciences, 
material and nanomaterial sciences and microelectronics engineering. Undeniably, 
the growing number of bivalve-inspired innovations add value to animal species 
already identified as fundamental components of marine benthic ecosystems and 
regarded as a strategic food resource for the future (the European aquaculture pro-
duction of marine molluscs reached 572,957 tons, nearly 3.5% of the global amount, 
with an estimated value of 972,987 USD in 2016) (FAO 2018).

6.2  Living Monitors and Source of Versatile Biotechnological 
Tools

Since the mid ‘70s, filter-feeding bivalves such as mussels and clams started to be 
used as pollution sentinels because they integrate in space and time the contaminant 
mixtures present in the surrounding water and sediments, respectively (Goldberg 
and Bertine 2000). Complementary to the analysis of toxicants in the soft tissues 
(Guéguen et al. 2011; Melwani et al. 2014), various pollution biomarkers have been 
developed and a number of them has been validated (Moore et al. 2006; Banni et al. 
2007; Bolognesi and Hayashi 2011) and combined (Pytharopoulou et  al. 2008; 
Okay et al. 2016) to rank coastal sites according to the intensity of toxicant-induced 
adverse effects.
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Over time, the increasing availability of nucleotide sequence data inspired the 
production of DNA microarrays, adaptable biotechnological tools made of spotted 
DNA/cDNA or in situ synthesized oligonucleotides (Table 6.1). Such predefined 
assemblies of molecular probes allow the multiple and quantitative assessment of 
gene expression levels, among other purposes.

The hybridization of processed RNA samples on DNA microarray slides could 
discriminate Mytilus mussels and Ruditapes clams sampled at different distance 
from a petro-chemical district in the Venice lagoon area (Venier et al. 2006; Milan 
et al. 2015), supporting the use of transcriptional profiles in environmental monitor-
ing and suggesting an innovative way to assess quality and the possible illegal origin 
of traded stocks.

Tissue- stage- and sex-specific transcript profiles obtained by DNA microarrays 
can assist management actions and sustainability plans in the farming of bivalves. 
For instance, they have been used to understand the partial sterility of triploid oys-
ters and genes related to growth and reproduction (Dheilly et al. 2014; Guan et al. 
2017; Tong et al. 2015) or the oyster response to pathogens and stress factors nega-
tively impacting the production rates (Venier et  al. 2011; Anderson et  al. 2015; 
Romero et al. 2015; Pardo et al. 2016). Relevant to the growth of the pearl oyster 
Pinctada fucata, gene expression profiles obtained during larval development high-
lighted new aspects of shell formation mechanisms (Liu et al. 2015).

Both high-throughput sequencing and a DNA microarray were used to investi-
gate the early mussel response to algal toxins with the aim of developing new 

Table 6.1 Gene expression 
datasets and DNA microarray 
platforms available for 
selected marine bivalves

Datasets Microarrays

Crassostrea gigas 833 20a,b

Crassostrea virginica 668 3b

Mytilus 
galloprovincialis

480 20a

Ruditapes 
philippinarum

340 10a

Mytilus californianus 196 5a

Mytilus edulis 163 5a

Ruditapes decussatus 141 7
Mytilus trossulus 122 2a

Pinctada maxima 89 4
Pinctada fucata 34 3
Mercenaria mercenaria 32 1
Chamelea gallina 32 1
Pinctada martensii 22 2

From Gene Expression Omnibus at Aug 2018 (www.ncbi.nlm.
nih.gov)
aGPL22172 probes from Crassostrea angulata, Crassostrea 
ariakensis, C. gigas, C. virginica, M. californianus, Mytilus 
chilensis, Mytilus coruscus, M. edulis, M. galloprovincialis, M. 
trossulus and Venerupis (Ruditapes) philippinarum
bGPL3994 probes from C. gigas and C. virginica
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 monitoring tools for okadaic acid, a heat-stable phosphatase inhibitor causing 
diarrhetic shellfish poisoning (Suarez-Ulloa et  al. 2015). A total of “1,066,985” 
nucleotide sequences (at 10.08.2018) and “3,478” GEO datasets (at 10.08.2018) are 
available at NCBI for Bivalvia (10 Aug 2018) and the genomes of nine marine 
bivalves (oysters: C. gigas, C. virginica, P. fucata martensii; mussels: Bathymodiolus 
platifrons, M. galloprovincialis, Modiolus philippinarum, Limnoperna fortunei; 
scallops: Mizuhopecten yessoensis; clam Ruditapes philippinarum) have been com-
pleted or drafted (Zhang et al. 2012; Takeuchi et al. 2012; Murgarella et al. 2016; 
Mun et al. 2017; Sun et al. 2017; Wang et al. 2017a, b; Du et al. 2017).

Different from the DNA microarray analysis, high-throughput sequencing can 
lead to gene discovery and to the validation of population genetics markers for 
breeding programmes. The identification of single nucleotide polymorphisms 
(SNPs, codominant-inherited molecular features very abundant in animal genomes) 
in bivalves is just a preliminary step, before starting to validate their association 
with valuable quantitatively inherited traits or with stress-responsive genes, and to 
proceed with fine linkage mapping and population genetics analyses (Coppe et al. 
2012; Ge et al. 2015; Nie et al. 2015; Dong et al. 2016; Fan et al. 2016; Wang et al. 
2016a, b; Qi et al. 2017; Gutierrez et al. 2017; Azéma et al. 2017).

Although proteomics, metabolomics and epigenetics studies in marine bivalves 
are at their onset (Gómez-Chiarri et al. 2015; Digilio et al. 2016; Dineshram et al. 
2016; Vincenzetti et al. 2017), in the near future they could reinforce and widen the 
existing assortment of bivalve services and products. In essence, the comprehensive 
knowledge of the vital processes in marine bivalves is a fundamental research strat-
egy, consistent with the growth of a sustainable and innovative blue economy for the 
future. To confirm the continuous attention to marine bivalves and their expanding 
roles, they have been proposed in Northern Europe as living monitors of multidrug- 
resistant Escherichia coli and other Enterobacteriaceae spp. (Grevskott et al. 2017).

In the following section, we present a paradigmatic case which illustrates how 
the natural properties of bivalve byssus has guided the development of new materi-
als of practical use.

6.3  Byssal Threads and Adhesive Plaques as Archetypes 
for New Biomimetics

Some freshwater and marine bivalves such as Dreissena polymorpha, Perna viridis 
and Mytilus spp. anchor themselves to hard substrates by means of silk-like byssus 
threads, having remarkable mechanical properties, and adhesive plaque proteins, 
functioning as an underwater superglue.

Descriptions of the general structure and microscopical anatomy of mussel bys-
sus date back to 1711 and 1877, respectively, but only in the early 1950s investiga-
tions based on mechanical, chemical and enzymatic assays, histological and 
histochemical techniques, polarized light and X-ray diffraction, paved the way to 
bivalve-inspired materials for medical and non-medical applications (Fig.  6.1) 
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(Brown 1952; Smyth 1954; Deming 1999; Lee et al. 2011; Kord Forooshani and 
Lee 2017).

The proteinaceous byssus fibers comprise a proximal stem region, a mid-thread 
region and the terminal adhesive plaque. Mussel byssogenesis occurs in the post- 
larval stages within minutes by coordinated secretion and extracellular solidifica-
tion of a composite fluid released by three pedal glands into the distal depression 
and ventral groove of the foot organ (Silverman and Roberto 2010; Priemel et al. 
2017). More than ten types of secreted proteins compose the mussel byssus, includ-
ing fibrillar collagens, non-collagenous thread matrix proteins and polyphenolic 
proteins of the thin cuticle surrounding the stretchy fibrous core and the adhesive 
plaque. As a result of post-translational hydroxylation of tyrosine, L-3,4- 
dihydroxyphenylalanine (L-DOPA) is a main component of the latter proteins, com-
monly named mussel foot proteins (Mfp, not to be confused with other proteins 
with the same acronym) or mussel adhesive proteins.

The unusual resistance of such fibrous and adhesive structure against predators 
and the mechanical force of waves and currents has considerably stimulated multi-
disciplinary investigations aimed to develop innovative biomimetic materials 
(Degtyar et al. 2014; Reinecke et al. 2016; Priemel et al. 2017). In the byssus thread, 
non-covalent protein–metal interactions stabilize the main constituent proteins and 
contribute to their tensile strength and self-healing properties. In detail, the thread 
core is made by bundles of collagenous proteins (preCols) having a central collagen 
domain with a typical Gly-X-Y triple helical repeat and flanking domains. Among 

Fig. 6.1 Graphical representations of mussel byssus threads (left, as reported in Deming 1999) 
and anatomy of the byssus production in Mytilus (right, as reported in Smyth 1954). Gland tissue 
cells, detectable in precise zones of the mussel foot, emit a thread-like protein secretion along the 
foot groove whereas cells coating the foot groove secrete the protein components of the terminal 
adhesive plaque (disk). The byssus thread is released when it occupies the whole groove length
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other features, all preCols have N- and C-termini enriched in histidine, the amino 
acid most likely involved in coordination bonds with transition metal ions such as 
Zn and Cu. In essence, highly directional and dynamic protein–metal coordination 
bonds generate cross-linking and hierarchical structuring of byssal protein blocks, 
with the metal site geometry and activity governed by local charges, helical dipoles 
and other conformational protein elements. Rupture and rapid restructuring of coor-
dination bonds between histidine residues and Zn2+ sustain the self-healing of 
 byssus and, as expected, such self-healing can be inhibited by removing metal ions 
with ethylenediaminotetraacetic acid or by lowering the pH, a condition known to 
hamper histidine–metal bonding (Degtyar et al. 2014; Reinecke et al. 2016).

In the byssus plaque of Mytilus species, at least six Mfp rich in DOPA and cat-
ionic amino acids contribute with specialized roles to the adhesion in wet conditions 
to hard substrates (Table 6.2). The catechol moiety of L-DOPA permits the forma-
tion of hydrogen bonds and the interactions with other aromatic rings and with posi-
tively charged ions such as Cu2+, Zn2+, Mn2+ and Fe3+ among others. At sea water pH 
(mildly basic), these chemical events result in stable coordination complexes (e.g. 
DOPA oxidation coupled with the reduction of coordinated Fe3+ ions) and cross- 
linking (e.g. catechols oxidized to quinones can react with various nucleophilic 
groups and produce intermolecular/interfacial covalent bonds). After secretion, the 
spontaneous DOPA-Fe cross-linking in the byssus coating acts like a protective 
varnish as a result of attained hardness and extensibility. The local distribution of 
different Mfp and the significant presence of positively charged ions in the byssus 
plaque additionally stabilize its foamy structure and boost cohesive interactions 
and, hence, enhance the strong (wet) adhesion to hard surfaces (Lee et al. 2011; 
Reinecke et al. 2016; Kord Forooshani and Lee 2017; Priemel et al. 2017).

Using Mf3 as an example, the multiple alignment of 36 protein sequences avail-
able in GenBank highlights fully conserved amino acid residues and variable 
sequence traits (Fig. 6.2).

In essence, the byssus threads and their terminal plaques have emerged as a 
model for the development of self-healing polymers and water-resistant adhesive 
materials (Holten-Andersen et al. 2011; Danner et al. 2012; Guerette et al. 2013; 
Park et al. 2013; Liu et al. 2014; Fullenkamp et al. 2014; Schmidt et al. 2014; Wu 
et al. 2014; Nichols 2015; Ryu et al. 2015; Grindy et al. 2015; Miller et al. 2015; 
Tian et al. 2015; Krogsgaard et al. 2016; Liu et al. 2016; Xu et al. 2016; Zhang et al. 
2017b; Waite 2017). In both cases, the coordination of metal ions plays a fundamen-
tal role; however, the occurring chemical events and final material properties depend 
on metals and ligands, their molar ratio, pH and redox reactions. Actually, catechols 
are regarded as suitable anchoring groups for surface modification, although their 
metal-binding strength depends on the oxidation status. Other byssogenic bivalves 
produce somewhat different foot proteins yet capable of strong adhesion, e.g. pvfp-1 
from Perna viridis contains C(2)-mannosyl-7-hydroxytryptophan, Man7OHTrp, 
instead of DOPA, and trimerized chains instead of monomeric chains (Hwang et al. 
2012). Deep understanding of the complex chemico-physical processes underlying 
the byssus formation as well as comparative data deriving from the omics technolo-
gies (Schultz and Adema 2017) should provide additional hints for a step-by-step 
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development of useful novelties. As long as the new materials mimic natural sub-
stances and processes, they should have a great chance to be efficiently produced in 
environmentally friendly conditions and to be biodegradable. The development of 
wet adhesive materials using molluscan models could enable the development of 
new surgical adhesives, artificial joints, contact lenses, dental sealants and hair and 
skin conditioners (Wu et al. 2014; Nichols 2015; Ryu et al. 2015; Grindy et al. 2015; 
Miller et  al. 2015; Tian et  al. 2015). Moreover, byssus-inspired bioadhesive 
 polymers, polymer blends and micro- or nano-structures have been proposed to 
fabricate new drug delivery or diagnostic systems including the encapsulation of 

Table 6.2 Some data on the mussel foot proteins (from Kord Foreooshani and Lee 2017)

Mfp-1 Mfp-2 Mfp-3 Mfp-4 Mfp-5 Mfp-6

Molecular 
weight 
(Kda)

108a 42–47a 5–7a,b 90–93c 8.9 11c

Isoelectric 
pointc

10.5 9.5 nd nd 9 9.5

Secondary 
structure

Very little Highly 
repetitive 
motifs; 6 
mol % 
Cys

No repeats; 
30–35 variants 
rich in DOPA 
(>20 to 28 
mol %): 
MFP-3f and 
Mfp-3s are 
rich in Gly 
(25–29 mol 
%), MFP-3f is 
highly 
hydrophililic; 
MFP-3s is 
polar but 
hydrophobic

His-rich 
decapeptide 
tandeml y 
repeated 
more than 
36 times

Just 2 closely 
related 
variants; rich 
in DOPA (30 
mol%), 
cationic ami 
no acids (27.7 
mol %) and 
phosphoserine 
(≈4.8 mol%); 
hydrophilic

Rich in Tyr 
(20 mol %) 
mostly not 
converted in 
DOPA (3 
mol %) and 
in Cys (11 
mol%); the 
richest in 
charged 
aminoacids 
(23 mol% 
cationic, 16 
mol% 
anionic)

Proposed 
role

Protective 
coating

It is the 
most 
abundant 
protein 
(≈25 wt 
%); its 
disulphide 
bonds 
support 
plaque 
integrity

It contributes 
to adhesion at 
the plaque- 
surface 
interphase

Exceptional 
binding to 
transition 
metal ions, 
functional 
bridge 
between 
thread 
(PreCol) 
and plaque 
proteins

It contributes 
to adhesion at 
the plaque- 
surface 
interphase

It 
contributes 
to adhesion 
at the 
plaque- 
surface 
interphase; 
it likely 
controls the 
redox 
chemistry 
of DOPA in 
the other 
plaque 
proteins

ain Mytilus edulis
bin Mytilus californianus
cfrom Lee et al. (2011)
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therapeutic, prophylactic, diagnostic agents to deliver bioactive components 
expected to be released upon contact with mucosal tissues of aquatic organisms. 
One could also imagine the development of biodegradable and nutritionally attrac-
tive feed formulations containing biocidal or antibiotic compounds and/or microbes, 
for the prevention and control of invasive non-indigenous species or for selective 
nutritional feed ingredients for more efficient growth of farmed species (Ma et al. 
2016; Wang et al. 2016a, b, 2017a, b; Li et al. 2017; Luo and Liu 2017; Zhang et al. 
2017a). Patents describing byssus-inspired inventions are exemplified in Table 6.3.

Reversing the scope, new lubricant-infused coatings are now suggested as an 
effective strategy to prevent the mussel adhesion and, hence, to mitigate marine 
biofouling (Amini et al. 2017).

6.4  Antimicrobials and Other Bioactive Molecules 
from Marine Bivalves Are Valuable Assets

The search of bioactive molecules of marine origin dates back to the past century 
but continues to generate pharmaceutics of human use and new compounds (1340 in 
2015) (Liu et al. 2009; Mayer et al. 2010; García-Fernández et al. 2016; Kwon et al. 
2016; Anjum et al. 2017; Blunt et al. 2017; Kang et al. 2017).

Fig. 6.2 Multiple alignment of amino acid sequences of 36 mussel foot proteins (Mfp 3). GenBank 
accession number, consensus sequence and sequence logo (i.e. graphical representation of the 
conservation extent of each protein residue) are reported

P. Venier et al.
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Marine species including plants, animals and microorganisms (mostly uncultur-
able and unknown) are a rich source of gene-encoded products and metabolites 
whose molecular moieties mediate biological activities potentially exploitable for 
new inventions or for the repositioning/reinvention of known bioactive components 
(pharmaceuticals and nutraceuticals, among others). For instance, inhibitors of pro-
teases and voltage-gated ion channels have been isolated from marine venomous 
animals such as sea anemones and Conus snails and are currently studied for their 
therapeutical and biotechnological potential (Liu et  al. 2009; García-Fernández 
et al. 2016; Kwon et al. 2016). In the ‘90s, the cloning of the green florescent protein 
from the jellyfish Aequoria victoria and production of mutants opened the way to 
use these chromo proteins as probes in cell and tissue imaging (Prasher et al. 1992; 
Verkhusha and Lukyanov 2004; Chen et  al. 2013). Both discoveries have driven 
significant advancements in the field of life sciences. In the discovery phase, the 
bioactivity is often claimed following in vitro demonstration of antibacterial/ anti-
fungal/ antiviral, anti-proliferative and anti-tumor properties, although the latter 
must be demonstrated in vivo with adequate study design and high costs. It should 
be noted that different human ethnic groups have traditionally used molluscs and 
mollusc extracts for their anti-inflammatory, immune-modulatory and wound heal-
ing properties. Molluscan species were estimated to be the source of more than 
1145 products by 2014. Liprinol® and Biolane Seatone from the green-lipped mus-
sel Perna canaliculus exemplify marketed products of current use, the potent 
 analgesic ziconotide from Conus snails has been clinically tested and approved by 
the Food and Drug Administration whereas other compounds are under trial (Ahmad 
et al. 2018).

Table 6.3 Examples of patents describing byssus-inspired inventions (from Google patents)

Patent
Registration 
date

Pubblication 
date

Candidate 
Appointee Title

US5049504 30/05/1990 17/09/1991 Genex 
Corporation

Bioadhesive coding 
sequences

US5202236 25/05/1990 13/04/1993 Enzon Labs Inc. Method of producing 
bioadhesive protein

US6987170B1 09/08/2004 17/01/2006 Battelle Energy 
Alliance, Llc.

Cloning and expression of 
recombinant adhesive 
protein Mefp-1 of the blue 
mussel, Mytilus edulis

WO2005056708A2 09/12/2004 23/06/2005 Spherics, Inc. Bioadhesive polymers 
with catechol functionality

WO2007002318A2 23/06/2006 04/01/2007 Spherics, Inc. Bioadhesive polymers
CA 2864891A1 21/02/2013 29/08/2013 Advanced 

Bionutrition 
Corporation and 
others

Compositions and 
methods for target 
delivering a bioactive 
agent to aquatic organisms

US20160115196A1 28/05/2014 28/04/2016 Ramot At 
Tel-Aviv 
University Ltd.

Self-assembled micro-and 
nanostructures
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Owing to their filtering activity, marine bivalves interact with putative pathogens 
including bacteria and viruses, and, thus, are expected to possess effective defence 
mechanisms. Nowadays, bioinformatic approaches accelerate the identification and 
guide the functional characterization of bioactive molecules from non-model 
bivalve species. In Mytilus galloprovincialis, the Mediterranean mussel, many fami-
lies of putative cysteine-stabilized antimicrobials have been described. Mytilins, 
defensins, myticins and mytimycins were reported in the ‘90s (Hubert et al. 1996; 
Charlet et al. 1996) whereas big defensins, mytimacins, CRP I and the linear myti-
calin peptides were more recently discovered (Gerdol et  al. 2012; Gerdol et  al. 
2015; Leoni et al. 2017). Among all of them, myticin C displayed high gene tran-
script polymorphism, constitutive and microbe-inducible expression, chemokine- 
like and antiviral activities. Although the action mode of myticin C is still unclear, 
an engineered construct with superior antiviral activity has been developed 
(Pallavicini et al. 2008; Novoa et al. 2016). As additional example, Mytichitin CB 
from Mytilus coruscus is a chitotriosidase-like antimicrobial which displays anti-
fungal activity whose recombinant production should permit its full characteriza-
tion (Qin et al. 2014; Meng et al. 2016).

While no mussel antimicrobial peptide (AMP) has been commercially exploited 
yet, some pilot studies have been carried out over the years, demonstrating the 
potential biotechnological applications of engineered peptides. Indeed, synthetic 
mytilin-derived peptides were capable or reducing mortality in virus-infected 
shrimp (white-spot syndrome) (Dupuy et al. 2004). Interesting antiviral, antibacte-
rial and antiprotozoan activities also have been demonstrated for engineered defen-
sin and mytilin variants (Dupuy et al. 2004; Liu et al. 2010).

Additional bivalve molecules could be regarded as having therapeutic potential. 
For instance, the mussel MytiLec-1 is a galactose-binding lectin able to inhibit the 
growth of both Gram-positive and Gram-negative bacteria (Hasan et al. 2016) and, 
at the same time, able to bind Burkitt’s lymphoma and breast cancer cells expressing 
globotriose on their surface, significantly inducing apoptosis (Hasan et  al. 2015; 
Liao et al. 2016; Chernikov et al. 2017). These remarkable properties have led to the 
computational design of an artificial β-trefoil lectin, named Mitsuba, capable of 
recognizing globotriose-expressing cancer cells, as an initial step for the develop-
ment of effective MytiLec-1-based cancer treatment or diagnostics tools (Terada 
et al. 2017).

Other molluscan lectins with biotechnological potential are two C-type lectins 
from C. gigas (CgCLec-4, CgCLec-5), which exhibited anti-microbial (agglutinat-
ing) activity against bacteria and fungi (Jia et  al. 2016). One extrapallial protein 
(C1Q-domain containing protein) of the mussel hemolymph serum (MgEP) was 
also demonstrated to act as an opsonin and to promote interactions between a sus-
pected Vibrio pathogen and Mytilus hemocytes (Canesi et al. 2016).

In addition to ethanolic extracts, hydrolysates obtained by enzymatic digestion 
from bivalves and other marine invertebrates, revealed tens of antioxidant peptides 
which could benefit health or be used to produce novel food products (Chai et al. 
2017; Odeleye et al. 2016; Wu and Huang 2017). Almost certainly, there are many 
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more bioactive mollusc/bivalve components yet to be investigated. Regardless of 
the current state of knowledge of molluscan bioactives, we should never forget the 
possibility of toxic substances co-occurring in the same biological matrix.

6.5  Conclusions and Perspectives

This paper has presented a historical and conceptual timeline of the products and 
services provided by marine bivalve molluscs, focusing the attention to biotechno-
logical innovations for a sustainable future. Marine bivalves with their associated 
microorganisms are central in the marine trophic networks, from the shoreline to the 
deep ocean. Bivalve species are traditionally fished and farmed worldwide as sea-
food since ancient times whereas their use as water pollution sentinels was estab-
lished far more recently. Our time testifies great progresses in life sciences and, 
accordingly, further research on marine bivalves will likely confirm them as rich 
source of bioactive compounds and as interesting models for technological innova-
tions (Imhoff et al. 2011; Desriac et al. 2014; Newman 2016). Today, the CRISP/
CAS genome editing biotechnology represents a new revolutionary strategy also to 
engineer and implement bivalve-inspired products (Mojica and Montoliu 2016; 
Singh et al. 2018). As our knowledge base expands based on a multifaceted blue 
economy, there is little doubt that discoveries in this field will lead to societal and 
economic benefit in the near future.
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