Skip to main content

Applying Circulant Matrices Properties to Synchronization Problems

  • Chapter
  • First Online:
Modern Mathematics and Mechanics

Part of the book series: Understanding Complex Systems ((UCS))

  • 1144 Accesses

Abstract

In this chapter, we use circulant matrices to study discrete dynamical systems of higher dimension than one. We show how these matrices are a common framework which is useful to investigate some dynamical properties of some models provided by natural and social sciences. In particular, discrete models from Biology, Economy and Chemistry are considered and analyzed with tools coming from the properties of circulant matrices. More precisely, the special shape of eigenvalues and eigenvectors of circulant matrices is very useful to check whether the dynamics of systems on phase spaces with dimension greater than two can be reduced to that of one dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is proved in [9] that the first two conditions in Devaney’s definition implies the third one. The definitions are presented in the original form because of the dynamical meaning of sensitive dependence on initial conditions.

  2. 2.

    Dinaburg [25] gave simultaneously a Bowen like definition for continuous maps on a compact metric space.

  3. 3.

    Two continuous maps f : X → X and g : Y → Y are said to be topologically conjugate if there is an homeomorphism φ : X → Y such that g ∘ φ = φ ∘ f. In general, conjugate maps share many dynamical properties.

  4. 4.

    See also [54] which almost simultaneously states the same result for C 2 diffeomorphisms on compact manifolds of dimension greater than one.

  5. 5.

    Since Smale’s work (see [52]), horseshoes have been in the core of chaotic dynamics, describing what we could call random deterministic systems.

  6. 6.

    A periodic orbit can be an attractor when spectral radius has modulus one, but in general the converse is not true.

  7. 7.

    From now on, we denote the production with the letter “q” instead of “x” because this is the usual notation for that.

  8. 8.

    Another alternatives which do not imply a optimization process can be see e.g. [10] as for instance

    $$\displaystyle \begin{aligned} f_{i}(q_{1},\ldots,q_{n})=q_{i}+\lambda _{i}\varPi _{i}(q_{1},\ldots,q_{n}), \end{aligned}$$

    or

    $$\displaystyle \begin{aligned} f_{i}(q_{1},\ldots,q_{n})=q_{i}+\lambda _{i} \frac{\partial \varPi _{i}}{\partial q_{i}} (q_{1},\ldots,q_{n}). \end{aligned}$$

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  MathSciNet  Google Scholar 

  2. Agronsky, S., Ceder, J.: What sets can be - limit sets in En? Real Anal. Exch. 17, 97–109 (1991–1992)

    MATH  Google Scholar 

  3. Agronsky, S., Ceder, J.: Each Peano subspace of Ek is an ω–limit set. Real Anal. Exch. 17, 371–378 (1991–1992)

    MATH  Google Scholar 

  4. Alsedá, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publishing, Singapore (1993)

    Book  Google Scholar 

  5. Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems: Recent Advances. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  6. Ashwin, P., Buescu, J., Stewart, I.: From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity 9, 703–737 (1996)

    Article  MathSciNet  Google Scholar 

  7. Balibrea, F., Snoha, L.: Topological entropy of Devaney chaotic maps. Topol. Appl. 133, 225–239 (2003)

    Article  MathSciNet  Google Scholar 

  8. Balibrea, F., Cánovas, J.S., Linero, A.: On ω–limit sets of antitriangular maps. Topology Appl. 137, 13–19 (2004)

    Article  MathSciNet  Google Scholar 

  9. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99, 332–334 (1992)

    Article  MathSciNet  Google Scholar 

  10. Bischi, G.I., Cerboni Baiardi, L.: Fallacies of composition in nonlinear marketing models. Commun. Nonlinear Sci. Numer. Simul. 20, 209–228 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bischi, G.I., Chiarella, C., Kopel, M., Szidarovszky, F.: Nonlinear Oligopolies. Springer, Berlin (2010)

    Book  Google Scholar 

  12. Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Block, L.S., Coppel, W.A.: Dynamics in One Dimension. Lectures Notes in Mathematics, vol. 1513. Springer, Berlin (1992)

    Google Scholar 

  14. Block, L., Keesling, J.: Computing the topological entropy of maps of the interval with three monotone pieces. J. Stat. Phys. 66, 755–774 (1992)

    Article  MathSciNet  Google Scholar 

  15. Block, L., Keesling, J., Li, S., Peterson, K.: An improved algorithm for computing topological entropy. J. Stat. Phys. 55, 929–939 (1989)

    Article  MathSciNet  Google Scholar 

  16. Bowen, R.: Entropy for group endomorphism and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  MathSciNet  Google Scholar 

  17. Cánovas, J.S., Linero, A.: Topological dynamic classification of duopoly games. Chaos, Solitons Fractals 12, 1259–1266 (2001)

    Article  MathSciNet  Google Scholar 

  18. Cánovas, J.S., Muñoz Guilermo, M.: Computing topological entropy for periodic sequences of unimodal maps. Commun. Nonlinear Sci. Numer. Simul. 19, 3119–3127 (2014)

    Article  MathSciNet  Google Scholar 

  19. Cánovas, J.S., Muñoz Guilermo, M.: Computing the topological entropy of continuous maps with at most three different kneading sequences with applications to Parrondo’s paradox. Chaos, Solitons Fractals 83, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  20. Cánovas, J.S., Muñoz Guilermo, M.: Dynamics on large sets and its applications to oligopoly dynamics. In: Complex Networks and Dynamics. Springer, Berlin (2016)

    Google Scholar 

  21. Cánovas, J.S., Linero, A., Soler López, G.: Chaotic synchronization in a coupled lattice related with Belousov–Zhabotinsky reaction. Commun. Nonlinear Sci. Numer. Simul. 62, 418–428 (2018)

    Article  MathSciNet  Google Scholar 

  22. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  23. de Melo, W., van Strien, S.: One–Dimensional Dynamics. Springer, New York (1993)

    Book  Google Scholar 

  24. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City (1989)

    MATH  Google Scholar 

  25. Dinaburg, E.I.: The relation between topological entropy and metric entropy. Sov. Math. 11, 13–16 (1970)

    MATH  Google Scholar 

  26. Du, B.S.: A simple proof of Sharkovsky’s theorem. Am. Math. Mon. 111, 595–599 (2004)

    Article  MathSciNet  Google Scholar 

  27. Fedorenko, V.V., Sharkovsky, A.N., Smítal, J.: Characterizations of weakly chaotic maps of the interval. Proc. Am. Math. Soc., 110, 141–148 (1990)

    Article  MathSciNet  Google Scholar 

  28. García Guirao, J.L., Lampart, M.: Positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 66–71 (2010)

    Article  MathSciNet  Google Scholar 

  29. García Guirao, J.L., Lampart, M.: Chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 159–164 (2010)

    Article  MathSciNet  Google Scholar 

  30. Guckhenheimer, J.: Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70, 133–160 (1979)

    Article  MathSciNet  Google Scholar 

  31. Hastings, A.: Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74, 1362–1372 (1993)

    Article  Google Scholar 

  32. Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos. Topol. Appl. 117, 259–272 (2002)

    Article  MathSciNet  Google Scholar 

  33. Kaneko, K.: Period-doubling of kink-antikink patterns, quasiperiodicity and antiferro-like structures and spatial intermittency in coupled logistic lattice. Prog. Theor. Phys. 72, 480–486 (1984)

    Article  Google Scholar 

  34. Kaneko, K.: Globally coupled chaos violates law of large numbers, but not the Central-Limit Theorem. Phys. Rev. Lett. 65, 1391–1394 (1990). See also Errata. Phys. Rev. Lett. 66, 243 (1991)

    Google Scholar 

  35. Kloeden, P.E.: On Sharkovsky’s cycle coexistence ordering. Bull. Aust. Math. Soc. 20, 171–177 (1979)

    Article  MathSciNet  Google Scholar 

  36. Kolyada, S.F.: On dynamics of triangular maps of the square. Ergod. Theory Dyn. Syst. 12, 749–768 (1992)

    Article  MathSciNet  Google Scholar 

  37. Kolyada, S.F., Snoha, \(\check {\mathrm{L}}\)., On ω–limit sets of triangular maps. Real Anal. Exch. 18, 115–130 (1992–1993)

    Google Scholar 

  38. Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly models. Chaos, Solitons Fractals 7, 2031–2048 (1996)

    Article  MathSciNet  Google Scholar 

  39. Kwietniak, D., Misiurewicz, M.: Exact devaney chaos and entropy. Qual. Theory Dyn. Syst. 6, 169–179 (2005)

    Article  MathSciNet  Google Scholar 

  40. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  41. Li, R., Wang, J., Lu, T., Jiang, R.: Remark on topological entropy and \(\mathcal {P}\)–chaos of a coupled lattice system with non-zero coupling constant related with Belusov-Zhabotinskii reaction. J. Math. Chem. 54, 1110–1116 (2016)

    Google Scholar 

  42. Liu, J., Lu, T., Li, R.: Topological entropy and \(\mathcal {P}\)-chaos of a coupled lattice system with non-zero coupling constant related with Belousov–Zhabotinsky reaction. J. Math. Chem. 53, 1220–1226 (2015)

    Google Scholar 

  43. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  Google Scholar 

  44. Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Stud. Math. 67, 45–63 (1980)

    Article  MathSciNet  Google Scholar 

  45. Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)

    MATH  Google Scholar 

  46. Puu, T.: Chaos in duopoly pricing. Chaos, Solitons Fractals 1, 573–581 (1991)

    Article  Google Scholar 

  47. Puu, T., Norin, A.: Cournot duopoly when the competitors operate under capacity constraints. Chaos, Solitons Fractals 18, 577–592 (2003)

    Article  MathSciNet  Google Scholar 

  48. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  49. Ruíz Herrera, A.: Analysis of dispersal effects in metapopulation models. J. Math. Biol. 72, 683–698 (2016)

    Article  MathSciNet  Google Scholar 

  50. Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.: Dynamics of One–Dimensional Maps. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  51. Singer, D.: Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35, 260–267 (1978)

    Article  MathSciNet  Google Scholar 

  52. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  53. Smítal, J.: Chaotic functions with zero topological entropy. Trans. Am. Math. Soc. 297, 269–282 (1986)

    Article  MathSciNet  Google Scholar 

  54. Sumi, N.: Diffeomorphisms with positive entropy and chaos in the sense of Li–Yorke. Ergod. Theory Dyn. Syst. 23, 621–635 (2003)

    Article  MathSciNet  Google Scholar 

  55. Thunberg, H.: Periodicity versus chaos in one–dimensional dynamics. SIAM Rev. 43, 3–30 (2001)

    Article  MathSciNet  Google Scholar 

  56. van Strien, S., Vargas, E.: Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc. 17, 749–782 (2004)

    Article  MathSciNet  Google Scholar 

  57. Winfree, A.T.: The prehistory of the Belousov–Zhabotinsky oscillator. J. Chem. Educ. 61, 661–663 (1984)

    Article  Google Scholar 

  58. Wu, X., Zhu, P.: Li–Yorke chaos in a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 50, 1304–1308 (2012)

    Article  MathSciNet  Google Scholar 

  59. Wu, X., Zhu, P.: The principal measure and distributional (p, q)-chaos of a coupled lattice system related with Belousov–Zhabotinsky reaction. J. Math. Chem. 50, 2439–2445 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the grants MTM2014-52920-P and MTM 2017-84079-P from Ministerio de Economía y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose S. Cánovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cánovas, J.S. (2019). Applying Circulant Matrices Properties to Synchronization Problems. In: Sadovnichiy, V., Zgurovsky, M. (eds) Modern Mathematics and Mechanics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-96755-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96755-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96754-7

  • Online ISBN: 978-3-319-96755-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics