Skip to main content

The Anatomy and Histology of the Liver and Biliary Tract

  • Chapter
  • First Online:
Pediatric Hepatology and Liver Transplantation

Abstract

Liver is the largest organ in the human body, which has several specific functions: metabolic, synthetic, storage, catabolic, and excretory. It is composed of three major compartments, blended together harmoniously: the hepatocytes, the biliary system, and the vascular system. Embryology, gross anatomy, and normal histology of the liver are described in this chapter, highlighting the peculiar aspects of the pediatric age. Detailed knowledge of the normal hepatic anatomy is essential and prerequisite to understand the diseased liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015;142:2094–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Rahilly R, Muller F, editors. Human embryology & teratology. 3rd ed. New York: Wiley-Liss; 2001.

    Google Scholar 

  3. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99.

    Article  CAS  PubMed  Google Scholar 

  4. Deutsch G, Jung J, Zheng M, et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development. 2001;128:871–81.

    CAS  PubMed  Google Scholar 

  5. Schoenwolf G, Bleyl S, Brauer P, Francis-West P, editors. Larsen’s human embryology. 5th ed. Philadelphia: Churchill Livingstone; 2014.

    Google Scholar 

  6. Ober EA, Lemaigre FP. Development of the liver: insights into organ and tissue morphogenesis. J Hepatol. 2018;68:1049–62.

    Article  CAS  PubMed  Google Scholar 

  7. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175–89.

    Article  CAS  PubMed  Google Scholar 

  8. Jung J, Zheng M, Goldfarb M, et al. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003.

    Article  CAS  PubMed  Google Scholar 

  9. Germain L, Blouin MJ, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 1988;48:4909–18.

    Google Scholar 

  10. Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137:62–79.

    Article  CAS  PubMed  Google Scholar 

  11. McLin VA, Zorn AM. Molecular control of liver development. Clin Liver Dis. 2006;10:1–25.

    Article  PubMed  Google Scholar 

  12. Kelley-Loughnane N, Sabla GE, Ley-Ebert C, et al. Independent and overlapping transcriptional activation during liver development and regeneration in mice. Hepatology. 2002;35:525–34.

    Article  CAS  PubMed  Google Scholar 

  13. Petkov PM, Zavadil J, Goetz D, et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology. 2004;39:617–27.

    Article  CAS  PubMed  Google Scholar 

  14. Spear BT, Jin L, Ramasamy S, et al. Transcriptional control in the mammalian liver: liver development, perinatal repression, and zonal gene regulation. Cell Mol Life Sci. 2006;63:2922–38.

    Article  CAS  PubMed  Google Scholar 

  15. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken). 2008;291:628–35.

    Article  CAS  Google Scholar 

  16. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977;72:441–55.

    Article  CAS  PubMed  Google Scholar 

  17. Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989;69:708–64.

    Article  CAS  PubMed  Google Scholar 

  18. Antoniou A, Raynaud P, Cordi S, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology. 2009;136:2325–33.

    Article  PubMed  CAS  Google Scholar 

  19. Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol. 2012;56:1159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raynaud P, Carpentier R, Antoniou A, et al. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol. 2011;43:245–56.

    Article  CAS  PubMed  Google Scholar 

  21. Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16:1069–83.

    Article  CAS  PubMed  Google Scholar 

  22. Vuković J, Grizelj R, Sprung J, et al. Ductal plate malformation in patients with biliary atresia. Eur J Pediatr. 2012;171:1799–804.

    Article  PubMed  Google Scholar 

  23. Gruppuso PA, Sanders JA. Regulation of liver development: implications for liver biology across the lifespan. J Mol Endocrinol. 2016;56:R115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dancygier H, editor. Clinical hepatology. Principles and practice of hepatobiliary diseases, vol. 1. 1st ed. Heidelberg: Springer; 2010.

    Google Scholar 

  25. Parviz F, Matullo C, Duncan SA. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 2003;34:292–6.

    Article  CAS  PubMed  Google Scholar 

  26. Zong Y, Panikkar A, Xu J, et al. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009;136:1727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lemaigre FP. Notch signaling in bile duct development: new insights raise new questions. Hepatology. 2008;48:358–60.

    Article  CAS  PubMed  Google Scholar 

  28. McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79:169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geisler F, Nagl F, Siveke JT, et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008;48:607–16.

    Article  CAS  PubMed  Google Scholar 

  30. Roskams TA, Theise ND, West AB, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739–45.

    Article  PubMed  Google Scholar 

  31. Saxena R, Theise ND, Crawford JM. Microanatomy of the human liver-exploring the hidden interfaces. Hepatology. 1999;30:1339–46.

    Article  CAS  PubMed  Google Scholar 

  32. Russo P, Ruchelli ED, Piccoli DA, editors. Pathology of pediatric gastrointestinal and liver disease. 2nd ed. Heidelberg: Springer; 2014.

    Google Scholar 

  33. Tan CE, Vijayan V. New clues for the developing human biliary system at the porta hepatis. J Hepatobiliary Pancreat Surg. 2001;8:295–302.

    Article  CAS  PubMed  Google Scholar 

  34. Nakanuma Y, Hoso M, Sasaki M, et al. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc Res Tech. 1997;38:552–70.

    Article  CAS  PubMed  Google Scholar 

  35. Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291:614–27.

    Article  Google Scholar 

  36. Gouysse G, Couvelard A, Frachon S, et al. Relationship between vascular development and vascular differentiation during liver organogenesis in humans. J Hepatol. 2002;37:730–40.

    Article  CAS  PubMed  Google Scholar 

  37. Carlson BM, editor. Human embryology and developmental biology. 5th ed. Amsterdam: Elsevier; 2014.

    Google Scholar 

  38. Lassau JP, Bastian D. Organogenesis of the venous structures of the human liver: a hemodynamic theory. Anat Clin. 1983;5:97–102.

    Article  Google Scholar 

  39. Dickson AD. The development of the ductus venosus in man and the goat. J Anat. 1957;91:358–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Couvelard A, Scoazec JY, Dauge MC, et al. Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood. 1996;87:4568–80.

    CAS  PubMed  Google Scholar 

  41. Enzan H, Himeno H, Hiroi M, et al. Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc Res Tech. 1997;39:336–49.

    Article  CAS  PubMed  Google Scholar 

  42. Barbera-Guillem E, Arrue JM, Vidal-Vanaclocha F, et al. Structural changes in endothelial cells of developing rat liver in the transition from fetal to postnatal life. J Ultrastruct Mol Struct Res. 1986;97:197–206.

    Article  CAS  PubMed  Google Scholar 

  43. Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005;49:243–50.

    Article  CAS  PubMed  Google Scholar 

  44. Khurana S, Jaiswal AK, Mukhopadhyay A. Hepatocyte nuclear factor-4alpha induces transdifferentiation of hematopoietic cells into hepatocytes. J Biol Chem. 2010;285:4725–31.

    Article  CAS  PubMed  Google Scholar 

  45. Timens W, Kamps WA. Hemopoiesis in human fetal and embryonic liver. Microsc Res Tech. 1997;39:387–97.

    Article  CAS  PubMed  Google Scholar 

  46. Watson EH, Lowrey GH. Growth and development of children. 5th ed. Chicago: Year Book Publishers; 1967.

    Google Scholar 

  47. Konus OL, Ozdemir A, Isik S, et al. Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR Am J Roentgenol. 1998;171:1693–8.

    Article  CAS  PubMed  Google Scholar 

  48. Huelke DF. An overview of anatomical considerations of infants and children in the adult world of automobile safety design. Annu Proc Assoc Adv Automot Med. 1998;42:93–113.

    PubMed Central  Google Scholar 

  49. Reynolds JC, editor. The Netter collection of medical illustrations. Digestive system. Part III-liver, biliary tract, and pancreas. 2nd ed. Amsterdam: Elsevier; 2017.

    Google Scholar 

  50. Wanless IR. Physioanatomic considerations. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Schiff’s diseases of the liver. Philadelphia: Lippincott; 1999.

    Google Scholar 

  51. Hall JE, editor. Guyton and hall textbook of medical physiology. 13th ed. Amsterdam: Elsevier; 2015.

    Google Scholar 

  52. Rush N, Sun H, Saxena R, et al. Hepatic arterial buffer response: pathologic evidence in non-cirrhotic human liver with extrahepatic portal vein thrombosis. Mod Pathol. 2016;29:489–99.

    Article  CAS  PubMed  Google Scholar 

  53. Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec (Hoboken). 2008;29:643–52.

    Article  Google Scholar 

  54. Kiernan F. The anatomy and physiology of the liver. Philos Trans R Soc Lond B Biol Sci Biol. 1833;123:711–70.

    Google Scholar 

  55. Rappaport AM, Borowy ZJ, Lotto WN, et al. Subdivision of hexagonal liver lobules into a structural and functional unit. Anat Rec. 1954;119:11–33.

    Article  CAS  PubMed  Google Scholar 

  56. Rappaport AM. The structural and functional unit in the human liver (liver acinus). Anat Rec. 1958;130:673–89.

    Article  CAS  PubMed  Google Scholar 

  57. Malarkey DE, Johnson K, Maronpot RR, et al. New insights into functional aspects of liver morphology. Toxicol Pathol. 2005;33:27–34.

    Article  CAS  PubMed  Google Scholar 

  58. Soto-Gutierrez A, Gough A, Monga SP, et al. Pre-clinical and clinical investigations of metabolic zonation in liver diseases: the potential of microphysiology systems. Exp Biol Med (Maywood). 2017;242:1605–16.

    Article  CAS  Google Scholar 

  59. Matsumoto T, Komori R, Takasaki S, et al. A study on the normal structure of the human liver, with special reference to its angioarchitecture. Jikeikai Med J. 1979;26:1–40.

    CAS  Google Scholar 

  60. Matsumoto T, Kawakami M. The unit-concept of hepatic parenchyma–a re-examination based on angioarchitectural studies. Acta Pathol Jpn. 1982;32(Suppl 2):285–314.

    PubMed  Google Scholar 

  61. Burt AD, Ferrell LD, Hubscher SG. MacSween’s pathology of the liver. 7th ed. Philadelphia: Churchill Livingstone; 2018.

    Google Scholar 

  62. Levene AP, Goldin RD. Physiological hepatic nuclear vacuolation-how long does it persist? Histopathology. 2010;56:426–9.

    Article  PubMed  Google Scholar 

  63. Haubrich WS. Disse of the space of Disse. Gastroenterology. 2004;127:1684.

    Article  PubMed  Google Scholar 

  64. Bahar Halpern K, Shenhav R, Itzkovitz S, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017;542:352–6.

    Article  CAS  Google Scholar 

  65. Benhamouche S, Decaens T, Colnot S, et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell. 2006;10:759–70.

    Article  CAS  PubMed  Google Scholar 

  66. Kaestner KH. In the zone: how a hepatocyte knows where it is. Gastroenterology. 2009;137:425–7.

    Article  PubMed  Google Scholar 

  67. Piccolo P, Annunziata P, Brunetti-Pierri N, et al. Down-regulation of hepatocyte nuclear factor-4α and defective zonation in livers expressing mutant Z α1-antitrypsin. Hepatology. 2017;66:124–35.

    Article  CAS  PubMed  Google Scholar 

  68. Minot CS. On a hitherto unrecognized form of blood circulation without capillaries in the organs of vertebrates. J Boston Soc Med Sci. 1900;4:133–4.

    PubMed  PubMed Central  Google Scholar 

  69. Wake K, Sato T. “The sinusoid” in the liver: lessons learned from the original definition by Charles Sedgwick Minot (1900). Anat Rec (Hoboken). 2015;298:2071–80.

    Article  Google Scholar 

  70. Brunt EM, Gouw ASH, Wanless IR, et al. Pathology of the liver sinusoids. Histopathology. 2014;64:907–20.

    Article  PubMed  Google Scholar 

  71. McCuskey RS. The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken). 2008;291:661–71.

    Article  Google Scholar 

  72. Lalor PF, Lai WK, Adams DH, et al. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World J Gastroenterol. 2006;12:5429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Poisson J, Lemoinne S, Rautou PE, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol. 2017;66:212–27.

    Article  CAS  PubMed  Google Scholar 

  74. Elvevold K, Smedsrod B, Martinez I. The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol. 2008;294:G391–400.

    Article  CAS  PubMed  Google Scholar 

  75. Abdullah Z, Knolle PA. Liver macrophages in healthy and diseased liver. Pflugers Arch. 2017;469:553–60.

    Article  CAS  PubMed  Google Scholar 

  76. Li P, He K, Gong J, et al. The role of Kupffer cells in hepatic diseases. Mol Immunol. 2017;85:222–9.

    Article  CAS  PubMed  Google Scholar 

  77. Senoo H, Mezaki Y, Fujiwara M. The stellate cell system (vitamin A-storing cell system). Anat Sci Int. 2017;92:387–455.

    Article  CAS  PubMed  Google Scholar 

  78. Yin C, Evason KJ, Stainier DYR, et al. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 2013;123:1902–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  Google Scholar 

  80. Loo CK, Wu XJ. Origin of stellate cells from submesothelial cells in a developing human liver. Liver Int. 2008;28:1437–45.

    Article  PubMed  Google Scholar 

  81. Lotowska JM, Elzbieta Sobaniec-Lotowska M, Marek Lebensztejn D. Ultrastructural characteristics of the respective forms of hepatic stellate cells in chronic hepatitis B as an example of high fibroblastic cell plasticity. The first assessment in children. Adv Med Sci. 2018;63:127–33.

    Article  PubMed  Google Scholar 

  82. Freitas-Lopes MA, Mafra K, Menezes GB, et al. Differential location and distribution of hepatic immune cells. Cell. 2017;6:48–69.

    Article  CAS  Google Scholar 

  83. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev. 2000;174:5–20.

    Article  CAS  PubMed  Google Scholar 

  84. Wisse E, Van’t Noordende JM, Van der Meulen J, et al. The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res. 1976;173:423–35.

    Article  CAS  PubMed  Google Scholar 

  85. Crawford AR, Lin XZ, Crawford JM. The normal adult human liver biopsy: a quantitative reference standard. Hepatology. 1998;28:323–31.

    Article  CAS  PubMed  Google Scholar 

  86. Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the interface. Hepatology. 2011;54:1853–63.

    Article  PubMed  Google Scholar 

  87. Theise ND, Saxena R, Crawford JM, et al. The Canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    Article  CAS  PubMed  Google Scholar 

  88. Masyuk AI, Masyuk TV, LaRusso NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn. 2008;237:2007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Masyuk T, Masyuk A, LaRusso N. Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr Opin Gastroenterol. 2009;25:265–71.

    Article  CAS  PubMed  Google Scholar 

  91. Dezsofi A, Baumann U, Knisely AS, et al. Liver biopsy in children: position paper of the ESPGHAN Hepatology Committee. J Pediatr Gastroenterol Nutr. 2015;60:408–20.

    Article  PubMed  Google Scholar 

  92. Lefkowitch J, editor. Scheuer’s liver biopsy interpretation. 9th ed. Amsterdam: Elsevier; 2015.

    Google Scholar 

  93. Colloredo G, Guido M, Leandro G, et al. Impact of liver biopsy size on histological evaluation of chronic viral hepatitis: the smaller the sample, the milder the disease. J Hepatol. 2003;39:239–44.

    Article  PubMed  Google Scholar 

  94. Amaral JG, Schwartz J, Connolly B, et al. Sonographically guided percutaneous liver biopsy in infants: a retrospective review. AJR Am J Roentgenol. 2006;187:W644–9.

    Article  PubMed  Google Scholar 

  95. Menghini G. One-second biopsy of the liver–problems of its clinical application. N Engl J Med. 1970;283:582–5.

    Article  CAS  PubMed  Google Scholar 

  96. Cohen MB, A-Kader AK, Lambers D, et al. Complications of percutaneous liver biopsy in children. Gastroenterology. 1992;102:629–32.

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez-Vallina R, Alonso EM, Rand E, et al. Outpatient percutaneous liver biopsy in children. J Pediatr Gastroenterol Nutr. 1993;17:370–5.

    Article  CAS  PubMed  Google Scholar 

  98. Hoffer FA. Liver biopsy methods for pediatric oncology patients. Pediatr Radiol. 2000;30:481–8.

    Article  CAS  PubMed  Google Scholar 

  99. Tulin-Silver S, Obi C, Lungren M, et al. Comparison of transjugular liver biopsy and percutaneous liver biopsy with tract embolization in pediatric patients. J Pediatr Gastroenterol Nutr. 2018;67:180–4.

    Google Scholar 

  100. Smith TP, Presson TL, Heneghan MA, et al. Transjugular biopsy of the liver in pediatric and adult patients using an 18-gauge automated core biopsy needle: a retrospective review of 410 consecutive procedures. AJR Am J Roentgenol. 2003;180:167–72.

    Article  PubMed  Google Scholar 

  101. Dohan A, Guerrache Y, Soyer P, et al. Transjugular liver biopsy: indications, technique and results. Diagn Interv Imaging. 2014;95:11–5.

    Article  CAS  PubMed  Google Scholar 

  102. Behrens G, Ferral H. Transjugular liver biopsy. Semin Intervent Radiol. 2012;29:111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Suriawinata AA, Thung SN. editors. Liver pathology. An atlas and concise guide. New York: Demos Medical Publishing; 2011.

    Google Scholar 

  104. Geller SA. Liver: tissue handling and evaluation. Methods Mol Biol. 2014;1180:303–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Cristiano Frassetto for all the artworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Guido .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to a dear friend and colleague, Flavia Bortolotti, who has broadened our horizons on the fascinating world of pediatric liver.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guido, M., Sarcognato, S., Sacchi, D., Ludwig, K. (2019). The Anatomy and Histology of the Liver and Biliary Tract. In: D'Antiga, L. (eds) Pediatric Hepatology and Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-96400-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96400-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96399-0

  • Online ISBN: 978-3-319-96400-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics