Skip to main content

Positron-Emitting Radiopharmaceuticals

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

Provide an overview of radionuclides with relevant applications in PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Barthel H, Sabri O. Clinical use and utility of amyloid imaging. J Nucl Med. 2017;58:1711–7.

    PubMed  Google Scholar 

  • Barwick T, Bencherif B, Mountz JM, Avril N. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun. 2009;30:908–17.

    CAS  PubMed  Google Scholar 

  • Baum RP, Rösch F. Theranostics, gallium-68, and other radionuclides: a pathway to personalized diagnosis and treatment. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  • Beer AJ, Kessler H, Wester H-J, Schwaiger M. PET imaging of integrin αvβ3 expression. Theranostics. 2011;1:48–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchelouche K, Turkbey B, Choyke PL. PSMA PET in prostate cancer – a step towards personalized medicine. Curr Opin Oncol. 2016;28:216–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J. Effects of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in the rat. Metabolism. 1962;11:1098–112.

    CAS  PubMed  Google Scholar 

  • Chacko A-M, Divgi CR. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography. Med Chem. 2011;7:395–412.

    CAS  PubMed  Google Scholar 

  • Choi Y, Ha S, Lee YS, Kim YK, Lee DS, Kim DJ. Development of tau PET imaging ligands and their utility in preclinical and clinical studies. Nucl Med Mol Imaging. 2018;52:24–30.

    CAS  PubMed  Google Scholar 

  • Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocherand G, et al. Normal biodistribution pattern and physiologic variants of F-DOPA PET imaging. Nucl Med Commun. 2013;34:1141–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen NL, Jakobsen S, Schacht AC, Munk OL, Alstrup AKO, Tolbod LP, et al. Whole-body biodistribution, dosimetry, and metabolite correction of [11C]palmitate: a PET tracer for imaging of fatty acid metabolism. Mol Imaging. 2017;16:1–9.

    CAS  Google Scholar 

  • Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, et al. PET metabolic biomarkers for cancer. Biomark Cancer. 2016;8(Suppl 2):61–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med. 2002;43:92–6.

    CAS  PubMed  Google Scholar 

  • Doss M, Kolb HC, Walsh JC, Mocharla V, Fan H, Chaudhary A, et al. Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J Nucl Med. 2013;54:2087–92.

    CAS  PubMed  Google Scholar 

  • Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33:1021–31.

    PubMed  PubMed Central  Google Scholar 

  • Eckelman WC, Boyd M, Mairs RJ. Principles of molecular targeting for radionuclide therapy. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology – from pathophysiology to clinical applications. New York, NY: Springer; 2017. p. 35–66.

    Google Scholar 

  • Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. New York, NY: Churchill Livingston; 2004.

    Google Scholar 

  • Elsinga PH. Trends on the role of PET in drug development. Singapore: World Scientific; 2012.

    Google Scholar 

  • Feinendegen LE, Shreeve WW, Eckelman WC, Bahk YW, Wagner HN Jr. Molecular nuclear medicine: the challenge of genomics and proteomics to clinical practice. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  • Filss CP, Cicone F, Shah NJ, Galldiks N, Langen KJ. Amino acid PET and MR perfusion imaging in brain tumours. Clin Transl Imaging. 2017;5:209–23.

    PubMed  PubMed Central  Google Scholar 

  • Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54:1014–8.

    CAS  PubMed  Google Scholar 

  • Grassi I, Morigi JJ, Nanni C, Fanti S. FDG and other radiopharmaceuticals in the evaluation of liver lesions. Clin Transl Imaging. 2014;2:115–27.

    Google Scholar 

  • Hara T. 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med. 2001;42:1815–7.

    CAS  PubMed  Google Scholar 

  • Herbert JC, Eckelman WC, Neumann RD, editors. Nuclear medicine – diagnosis and therapy. New York, NY: Thieme Medical Publishers; 1996.

    Google Scholar 

  • Herholz K, Ebmeier K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol. 2011;10:667–70.

    CAS  PubMed  Google Scholar 

  • IAEA. Good practice for introducing radiopharmaceuticals for clinical use. Vienna: International Atomic Energy Agency (IAEA); 2015.

    Google Scholar 

  • IAEA. Operational guidance on hospital radiopharmacy. Vienna: International Atomic Energy Agency (IAEA); 2008.

    Google Scholar 

  • Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, et al. Labeled 2-deoxy-D-glucose analogs: 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labeled Compounds Radiopharm. 1978;24:174–83.

    Google Scholar 

  • Itsenko O, Goméz-Vallejo V, Llop J, Koziorowski J. On 11C chemistry reviews – surveying and filling the gaps. Curr Organ Chem. 2013;17:2067–96.

    CAS  Google Scholar 

  • Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26:1–18.

    CAS  PubMed  Google Scholar 

  • Khalil MM. Basic science of PET imaging. New York, NY: Springer; 2016.

    Google Scholar 

  • Klingensmith WC III. The mathematics and biology of the biodistribution of radiopharmaceuticals – a clinical perspective. New York, NY: Springer; 2016.

    Google Scholar 

  • Knaapen P, de Haan S, Hoekstra OS, Halbmeijer R, Appelman YE, Groothuis JG, et al. Cardiac PET-CT: advanced hybrid imaging for the detection of coronary artery disease. Neth Heart J. 2010;18:90–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalsky RJ, Falen SW, editors. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 3rd ed. Washington, DC: American Pharmacists Association; 2011.

    Google Scholar 

  • Kuik WJ, Kema IP, Brouwers AH, Zijlma R, Neumann KD, Dierckx RAJO, et al. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-henylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional electrophilic substitution. J Nucl Med. 2015;56:106–12.

    CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73.

    CAS  PubMed  Google Scholar 

  • Lappin G, Temple S. Radiotracers in drug development. Boca Raton, FL: CRC Press; 2006.

    Google Scholar 

  • Lütje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SAMW, Rosenbaum-Krumme S, et al. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics. 2015;5:1388–401.

    PubMed  PubMed Central  Google Scholar 

  • Lyoo CH, Cho H, Choi JY, Ryu YH, Lee MS. Tau positron emission tomography imaging in degenerative parkinsonisms. J Mov Disord. 2018;11:1–12.

    PubMed  PubMed Central  Google Scholar 

  • Mach RH. Small molecule receptor ligands for PET studies of the central nervous system — focus on G protein coupled receptor. Semin Nucl Med. 2017;47:524–35.

    PubMed  Google Scholar 

  • Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44:333–43.

    PubMed  PubMed Central  Google Scholar 

  • Martínez G, Vernooij RW, Fuentes Padilla P, Zamora J, Bonfill Cosp X, Flicker L. 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;(11):CD012216. https://doi.org/10.1002/14651858.CD012216.pub2.

  • Martínez G, Vernooij RW, Fuentes Padilla P, Zamora J, Flicker L, Bonfill CX. 18F PET with flutemetamol for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;(11):CD012884. https://doi.org/10.1002/14651858.CD012884.

  • Martínez G, Vernooij RW, Fuentes Padilla P, Zamora J, Flicker L, Bonfill CX. 18F PET with florbetaben for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;11:CD012883. https://doi.org/10.1002/14651858.CD012883.

    Article  PubMed  Google Scholar 

  • Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med. 2012;42:423–32.

    PubMed  PubMed Central  Google Scholar 

  • Mertens K, Slaets D, Lambert B, Acou M, De Vos F, Goethals I. PET with 18F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging. 2010;37:2188–93.

    CAS  PubMed  Google Scholar 

  • Molecular Imaging and Contrast Agent Database (MICAD) – NCBI – NIH. Accessible at https://www.ncbi.nlm.nih.gov/books/NBK5330/.

    Google Scholar 

  • Morris E, Chalkidou A, Hammers A, Peacock J, Summers J, Keevil S. Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:374–85.

    CAS  PubMed  Google Scholar 

  • Mossine AV, Brooks AF, Jackson IM, Quesada CA, Sherman P, Cole EL, et al. Synthesis of diverse 11C-labeled PET radiotracers via direct incorporation of [11C]CO2. Bioconjug Chem. 2016;27:1382–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med. 2007;48:1313–9.

    CAS  PubMed  Google Scholar 

  • Núñez Miller R, Pozo MA. Non-FDG PET in oncology. Clin Transl Oncol. 2011;13:780–6.

    PubMed  Google Scholar 

  • Orsini F, Lorenzoni A, Puta E, Mariani G. Positron-emitting radiopharmaceuticals for diagnostic applications. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology – from pathophysiology to clinical applications. New York, NY: Springer; 2017. p. 85–98.

    Google Scholar 

  • Owunwanne A, Patel M, Sadek S, editors. The handbook of radiopharmaceuticals. New York, NY: Springer; 1995.

    Google Scholar 

  • Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Mazière B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25:317–22.

    CAS  PubMed  Google Scholar 

  • Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90.

    CAS  PubMed  Google Scholar 

  • Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans. 2016;45:157092–724.

    Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-D-glucose. Acta Neurol Scand Suppl. 1977;64:190–1.

    CAS  PubMed  Google Scholar 

  • Rice SL, Roney CA, Daumar P, Lewis JS. The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med. 2011;41:265–82.

    PubMed  PubMed Central  Google Scholar 

  • Sandström M, Velikyan I, Garske-Román U, Sörensen J, Eriksson B, Granberg D, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med. 2013;54:204–10.

    Google Scholar 

  • Sarparanta M, Demoin DW, Cook BE, Lewis JS, Zeglis BM. Novel positron-emitting radiopharmaceuticals. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology – from pathophysiology to clinical applications. New York, NY: Springer; 2017. p. 129–72.

    Google Scholar 

  • Schelhaas S, Heinzmann K, Bollineni VR, Kramer GM, Liu Y, Waterton JC, et al. Preclinical applications of 3′-deoxy-3′-[18F]fluorothymidine in oncology – a systematic review. Theranostics. 2017;7:40–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster DM, Nanni C, Fanti S. PET tracers beyond FDG in prostate cancer. Semin Nucl Med. 2016;46:507–21.

    PubMed  PubMed Central  Google Scholar 

  • Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954;210:581–95.

    CAS  PubMed  Google Scholar 

  • Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21:670–5.

    CAS  PubMed  Google Scholar 

  • Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology – from pathophysiology to clinical applications. New York, NY: Springer; 2017.

    Google Scholar 

  • Subramanian G, Rhodes BA, Cooper JF, Sodd VJ. Radiopharmaceuticals. Society of Nuclear Medicine: New York, NY; 1975.

    Google Scholar 

  • Theobald T, editor. Sampson’s textbook of radiopharmacy. 4th ed. London: Pharmaceutical Press; 2010.

    Google Scholar 

  • Trembath L, Newell M, Devous MD Sr. Technical considerations in brain amyloid PET imaging with 18F-Florbetapir. J Nucl Med Technol. 2015;43:175–84.

    PubMed  Google Scholar 

  • Podoloff DA, et al. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw. 2009;7(Suppl 2):S1–S26.

    PubMed  Google Scholar 

  • Vallabhajosula S. Molecular imaging – radiopharmaceuticals for PET and SPECT. Berlin-Heidelberg: Springer; 2009.

    Google Scholar 

  • van Asselt SJ, Oosting SF, Brouwers AH, Bongaerts AH, de Jong JR, Lub-de Hooge MN, et al. Everolimus reduces 89Zr-bevacizumab tumor uptake in patients with neuroendocrine tumors. J Nucl Med. 2014;55:1087–92.

    Google Scholar 

  • Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, NÃ¥gren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.

    PubMed  Google Scholar 

  • Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14:225. https://doi.org/10.1038/nrneurol.2018.9.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Feng H, Zhao S, Xu J, Wu X, Cui J, et al. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget. 2017;8:20476–95.

    PubMed  PubMed Central  Google Scholar 

  • Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waxman AD, Herholz K, Lewis DH, Herscovitch P, Minoshima S, Ichise M, et al. Society of nuclear medicine procedure guideline for FDG PET brain imaging. Version 1.0, approved February 8, 2009. Accessed at www.snmmi.org.

  • Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. Hoboken, NJ: Wiley; 2003.

    Google Scholar 

  • Wick AN, Drury DR, Nakada HI, Wolfe JB. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem. 1957;224:963–9.

    CAS  PubMed  Google Scholar 

  • Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, Caplin ME. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54:364–72.

    CAS  PubMed  Google Scholar 

  • Xia C, Dickerson BC. Multimodal PET imaging of amyloid and tau pathology in Alzheimer disease and non-Alzheimer disease dementias. PET Clin. 2017;12:351–9.

    PubMed  PubMed Central  Google Scholar 

  • Xu Z, Li XF, Zou H, Sun X, Shen B. 18F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget. 2017;8:94969–79.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero A. Salvadori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salvadori, P.A., Filidei, E., Giorgetti, A. (2019). Positron-Emitting Radiopharmaceuticals. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics