Skip to main content

Selenium in Soils and Crops

  • Chapter
  • First Online:
Selenium

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Edible crops are the foundation of food chains for humans and livestock. However, although selenium (Se) is an essential nutrient for animals, it is not required by plants. Selenium is acquired and metabolised by plants because of its chemical similarity to sulphur. This chapter first describes how geology, climate and soil chemistry affect the concentration and forms of Se in soils and, consequently, their uptake by crops. It then describes the metabolism of Se in plants and the prevalent chemical forms of Se in edible crops, particularly those contributing substantially to human nutrition, such as cereals, potatoes, alliums and brassicaceous vegetables. Finally it describes strategies to biofortify edible crops with Se using agronomic approaches, such as the application of Se fertilisers, and how these might be complemented by selecting or breeding genotypes with a greater ability to acquire Se and distribute it to edible tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerbirk N, Olsen CE. Glucosinolate structures in evolution. Phytochemistry. 2012;77:16–45.

    Article  CAS  PubMed  Google Scholar 

  • Alfthan G, Eurola M, Ekholm P, et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol. 2015;31:142–7.

    Article  CAS  PubMed  Google Scholar 

  • Ates D, Sever T, Aldemir S, et al. Identification QTLs controlling genes for Se uptake in lentil seeds. PLoS One. 2016;11(3):e0149210. https://doi.org/10.1371/journal.pone.0149210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015;166:603–8.

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, Arroyo IS, Dangi SR, Zambrano MC. Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata. Front Plant Sci. 2016;7:1251. https://doi.org/10.3389/fpls.2016.01251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bañuelos GS, Lin Z-Q, Broadley M. Selenium biofortification. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 231–55.

    Chapter  Google Scholar 

  • Barberon M, Berthomieu P, Clairotte M, et al. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytol. 2008;180:608–19.

    Article  CAS  PubMed  Google Scholar 

  • Barickman TC, Kopsell DA, Sams CE. Selenium influences glucosinolate and isothiocyanates and increases sulphur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J Agric Food Chem. 2013;61:202–9.

    Article  CAS  PubMed  Google Scholar 

  • Bates B, Lennox A, Prentice A, et al. National diet and nutrition survey: results from years 1-4 (combined) of the rolling programme (2008/2009–2011/2012). London: Public Health England; 2014.

    Google Scholar 

  • Bermúdez MA, Páez-Ochoa MA, Gotor C, et al. Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell. 2013;22:403–16.

    Article  Google Scholar 

  • Birringer M, Pilawa S, Flohé L. Trends in selenium biochemistry. Nat Prod Rep. 2002;19:693–718.

    Article  CAS  PubMed  Google Scholar 

  • Bisbjerg B. Riso report no. 200: Studies on selenium in plants and soils. Copenhagen, Danish Atomic Energy Comission Research Establishment Riso, Denmark; 1972.

    Google Scholar 

  • Bohrer A-S, Kopriva S, Takahashi H. Plastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana. Front Plant Sci. 2015;5:751. https://doi.org/10.3389/fpls.2014.00751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boldrin PF, de Figueiredo MA, Yang Y, et al. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol Plant. 2016;158:80–91.

    Article  CAS  PubMed  Google Scholar 

  • Bowley HE, Mathers AW, Young SD, et al. Historical trends in iodine and selenium in soil and herbage at the Park Grass Experiment, Rothamsted Research, UK. Soil Use Manag. 2017;33:252–62.

    Article  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, et al. Biofortification of UK food crops with selenium. Proc Nutr Soc. 2006;65:169–81.

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, Alcock J, Alford J, et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil. 2010;332:5–18.

    Article  CAS  Google Scholar 

  • Brown TA, Shrift A. Selenium: toxicity and tolerance in higher plants. Biol Rev. 1982;57:59–84.

    Article  CAS  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, et al. A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol. 2011;157:2227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey A-M, Scheckel KG, Lombi E, et al. Grain accumulation of selenium species in rice (Oryza sativa L.). Environ Sci Technol. 2012;46:5557–64.

    Article  CAS  PubMed  Google Scholar 

  • Chao D-Y, Baraniecka P, Danku J, et al. Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis species range. Plant Physiol. 2014;166:1593–608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charter RA, Tabatabai MA, Schafer JW. Arsenic, molybdenum, selenium and tungsten contents of fertilizers and phosphate rocks. Commun Soil Sci Plant Anal. 1995;26:3051–62.

    Article  CAS  Google Scholar 

  • Chilimba ADC, Young SD, Black CR, et al. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop Res. 2012;125:118–28.

    Article  Google Scholar 

  • Combs GF. Selenium in global food systems. Br J Nutr. 2001;85:517–47.

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Kahn ML, Leustek T, et al. Nitrogen and sulfur. In: Buchanan BB, Gruissem W, Jones RL, editors. Biochemistry and molecular biology of plants. Rockville, MD: American Society of Plant Physiologists; 2000. p. 786–849.

    Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Terry N. The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals: using plants to clean-up the environment. New York: Wiley; 2000. p. 171–90.

    Google Scholar 

  • dos Reis AR, El-Ramady H, Santos EF, et al. Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: Molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 209–30.

    Chapter  Google Scholar 

  • Dhillon KS, Bañuelos GS. Overview and prospects of selenium phytoremediation approaches. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 277–321.

    Chapter  Google Scholar 

  • Dhillon KS, Dhillon SK. Distribution and management of seleniferous soils. Adv Agron. 2003;79:119–84.

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK. Development and mapping of seleniferous soils in northwestern India. Chemosphere. 2014;99:56–63.

    Article  CAS  PubMed  Google Scholar 

  • Dimkovikj A, Fisher B, Hutchison K, et al. Stuck between a ROS and a hard place: Analysis of the ubiquitin proteasome pathway in selenocysteine treated Brassica napus reveals different toxicities during selenium assimilation. J Plant Physiol. 2015;181:50–4.

    Article  CAS  PubMed  Google Scholar 

  • Drahoňovský J, Száková J, Mestek O, et al. Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ Exp Bot. 2016;125:12–9.

    Article  CAS  Google Scholar 

  • Duncan EG, Maher WA, Jagtap R, et al. Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. Environ Geochem Health. 2017;39:955–66.

    Article  CAS  PubMed  Google Scholar 

  • El Kassis E, Cathala N, Rouached H, et al. Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenite toxicity. Plant Physiol. 2007;143:1231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH. Ecological aspects of plant selenium hyperaccumulation. Plant Biol. 2012;14:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14:1337–83.

    Article  CAS  PubMed  Google Scholar 

  • Feng R, Wei C, Tud S. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot. 2013;87:58–68.

    Article  CAS  Google Scholar 

  • Fisinin VI, Papazyan TT, Surai PF. Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Crit Rev Biotechnol. 2009;29:18–28.

    Article  CAS  PubMed  Google Scholar 

  • Fordyce FM. Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA, et al., editors. Essentials of medical geology, revised edn. Dordrecht: Springer; 2013. p. 375–416.

    Chapter  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, et al. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol. 2010;153:1630–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett RG, Gawalko E, Wang N, et al. Macrorelationships between regional-scale field pea (Pisum sativum) selenium chemistry and environmental factors in western Canada. Can J Plant Sci. 2013;93:1059–71.

    Article  CAS  Google Scholar 

  • GEMAS [GEochemical Mapping of Agricultural and grazing land Soil]. The GEMAS periodic table of elements at high resolution. 2014. http://gemas.geolba.ac.at/Download/GEMAS_Periodic_Table_of_Elements_High_resolution.pdf (Accessed 26 November 2017).

  • Gigolashvili T, Kopriva S. Transporters in plant sulphur metabolism. Front Plant Sci. 2014;5:422. https://doi.org/10.3389/fpls.2014.00442.

    Article  Google Scholar 

  • Gionfriddo E, Naccarato A, Sindona G, et al. A reliable solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the assay of selenomethionine and selenomethylselenocysteine in aqueous extracts: difference between selenized and not-enriched selenium potatoes. Anal Chim Acta. 2012;747:58–66.

    Article  CAS  PubMed  Google Scholar 

  • González-Morales S, Pérez-Labrada F, García-Enciso EL, et al. Selenium and sulfur to produce Allium functional crops. Molecules. 2017;22:558. https://doi.org/10.3390/molecules22040558.

    Article  CAS  PubMed Central  Google Scholar 

  • Grant TD, Montes-Bayón M, LeDuc D, et al. Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. J Chromatogr A. 2004;1026:159–66.

    Article  CAS  PubMed  Google Scholar 

  • Guignardi Z, Schiavon M. Biochemistry of plant selenium uptake and metabolism. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 21–34.

    Chapter  Google Scholar 

  • Gupta UC, Gupta SC. Quality of animal and human life as affected by selenium management of soils and crops. Commun Soil Sci Plant Anal. 2002;33:15–8.

    Article  CAS  Google Scholar 

  • Hart DJ, Fairweather-Tait SJ, Broadley MR, et al. Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem. 2011;126:1771–8.

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H. Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol. 2005;18:309–18.

    Article  CAS  PubMed  Google Scholar 

  • Haygarth PM, Cooke AI, Jones KC, et al. Long-term change in the biogeochemical cycling of atmospheric selenium: deposition to plants and soil. J Geophys Res. 1993;98:16769–76.

    Article  CAS  Google Scholar 

  • Hesse H, Kreft O, Maimann S, et al. Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot. 2004;55:1799–808.

    Article  CAS  PubMed  Google Scholar 

  • Hsu F-C, Wirtz M, Heppel SC, et al. Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism. Plant Cell Environ. 2011;34:192–207.

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Lin JC, Wu QY, et al. Changes in sulforaphane and selenocysteine methyltransferase transcript levels in broccoli treated with sodium selenite. Plant Mol Biol Report. 2016;34:807–14.

    Article  CAS  Google Scholar 

  • Huang Y, Wang Q, Gao J, et al. Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients. 2013;5:700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst R, Siyame EWP, Young SD, et al. Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Sci Rep. 2013;3:1425. https://doi.org/10.1038/srep01425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihnat M. Plants and agricultural materials. In: Ihnat M, editor. Occurrence and distribution of selenium. Boca Raton, FL: CRC Press; 1989. p. 33–105.

    Google Scholar 

  • Jin K, White PJ, Whalley WR, et al. Shaping an optimal soil by root-soil interaction. Trends Plant Sci. 2017;22:823–9.

    Article  CAS  PubMed  Google Scholar 

  • Joy EJM, Broadley MR, Young SD, et al. Soil type influences crop mineral composition in Malawi. Sci Total Environ. 2015;505:587–95.

    Article  CAS  PubMed  Google Scholar 

  • Jones GD, Winkel LHE. Multi-scale factors and processes controlling selenium distributions in soils. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 3–20.

    Chapter  Google Scholar 

  • Jones GD, Droz B, Greve P, et al. Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A. 2017;114:2848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, et al. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol. 2004a;136:4198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, et al. Vacuolar sulphate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell. 2004b;16:2693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol. 2013;65:458–65.

    Article  CAS  PubMed  Google Scholar 

  • Kumssa DB, Joy EJM, Young SD, et al. Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf.: Role in human nutrition. PLoS One. 2017;12(4):e0175503. https://doi.org/10.1371/journal.pone.0175503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazo-Vélez MA, Chávez-Santoscoy A, Serna-Saldivar SO. Selenium-enriched breads and their benefits in human nutrition and health as affected by agronomic, milling, and baking factors. Cereal Chem J. 2015;92:134–44.

    Article  CAS  Google Scholar 

  • Lee S, Woodward HJ, Doolittle JJ. Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Sci Plant Nutr. 2011;57:823–32.

    Article  CAS  Google Scholar 

  • Li H-F, McGrath SP, Zhao F-J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008;178:92–102.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liang DL, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma. 2017;295:69–79.

    Article  CAS  Google Scholar 

  • Liu MX, Zhang ZW, Ren GX, et al. Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlations with agronomic performance. J Integr Agric. 2016;15:1449–57.

    Article  CAS  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, et al. Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol. 2005;138:409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JC, Graham RD. Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol. 2005;19:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Mahn A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem. 2017;233:492–9.

    Article  CAS  PubMed  Google Scholar 

  • Matich AJ, McKenzie MJ, Lill RE, et al. Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry. 2012;75:140–52.

    Article  CAS  PubMed  Google Scholar 

  • Matich AJ, McKenzie MJ, Lill RE, et al. Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. J Agric Food Chem. 2015;63:1896–905.

    Article  CAS  PubMed  Google Scholar 

  • Mazej D, Osvald J, Stibilj V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 2008;107:75–83.

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT. Factors affecting selenium accumulation by agricultural crops. In: Jacobs LW, Chang AC, Dowdy RH, et al., editors. Selenium in agriculture and the environment. Soil science society of america, special publication, vol. 23; 1989. p. 65–94.

    Google Scholar 

  • ODS [Office of Dietary Supplements]. Selenium: dietary supplement fact sheet. Health Information. US Department of Health and Human Services, National Institutes of Health, Office of Dietary Supplements, Washington, DC; 2016.

    Google Scholar 

  • Ogra Y, Kitaguchi T, Ishiwata K, et al. Identification of selenohomolanthionine in selenium-enriched Japanese pungent radish. J Anal At Spectrom. 2007;22:1390–6.

    Article  CAS  Google Scholar 

  • Oldfield JE. Selenium world atlas. Selenium-tellurium development association. 2002. http://www.369.com.cn/En/Se%20Atlas%202002.pdf (Accessed 26 November 2017).

  • Ouerdane L, Aureli F, Flis P, et al. Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC-electrospray linear trap/orbitrap tandem mass spectrometry. Metallomics. 2013;5:1294–304.

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam DJ, Greathead HMR, Drihem K. Selenium. In: Barker AV, Pilbeam DJ, editors. A handbook of plant nutrition. 2nd ed. Boca Raton, FL: CRC Press; 2015. p. 165–98.

    Google Scholar 

  • Pilon-Smits EAH, LeDuc DL. Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol. 2009;20:207–12.

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G, et al. Selenium volatalization and accumulation by twenty aquatic plant species. J Environ Qual. 1999a;28:1011–8.

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang SB, Lytle CM, et al. Overexpression of ATPsulphurylase in Brassica juncea leads to increased selenite uptake. Reduction and tolerance. Plant Physiol. 1999b;119:123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, et al. Physiological functions of beneficial elements. Curr Opin Plant Biol. 2009;12:267–74.

    Article  CAS  PubMed  Google Scholar 

  • Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: functional and analytical implications. Arch Biochem Biophys. 2014;560:83–99.

    Article  CAS  PubMed  Google Scholar 

  • Puccinelli M, Malorgio F, Pezzarossa B. Selenium enrichment of horticultural crops. Molecules. 2017;22:933. https://doi.org/10.3390/molecules22060933.

    Article  CAS  PubMed Central  Google Scholar 

  • Ramamurthy RK, Jedlicka J, Graef GL, et al. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Mol Breed. 2014;34:431–45.

    Article  CAS  Google Scholar 

  • Ramos SJ, Rutzke MA, Hayes RJ, et al. Selenium accumulation in lettuce germplasm. Planta. 2011a;233:649–60.

    Article  CAS  PubMed  Google Scholar 

  • Ramos SJ, Yuan Y, Faquin V, et al. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment. J Food Agric Chem. 2011b;59:3657–65.

    Article  CAS  Google Scholar 

  • Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68.

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM. Metal-accumulating plants. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals: using plants to clean up the environment. New York: Wiley; 2000. p. 193–229.

    Google Scholar 

  • Robbins RJ, Keck AS, Banuelos G, et al. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. J Med Food. 2005;8:204–14.

    Article  CAS  PubMed  Google Scholar 

  • Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6:25–54.

    Article  CAS  PubMed  Google Scholar 

  • Ros G, van Rotterdam A, Bussink D, et al. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil. 2016;1:99–112.

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA. Selenium: Geobotany, biochemistry, toxicity, and nutrition. New York: Academic Press; 1964.

    Google Scholar 

  • Rouached H, Wirtz M, Alary R, et al. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol. 2008;147:897–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruszczynska A, Konopka A, Kurek E, et al. Investigation of biotransformation of selenium in plants using spectrometric methods. Spectrochim Acta B. 2017;130:7–16.

    Article  CAS  Google Scholar 

  • Schiavon M, Pilon-Smits EAH. The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol. 2017;213:1582–96.

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon M, Malagoli M, et al. Exploring the importance of sulphate transporters and ATPsulphurylases for selenium hyperaccumulation – comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front Plant Sci. 2015;6:2. https://doi.org/10.3389/fpls.2015.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiavon M, Berto C, Malagoli M, et al. Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids. Front Plant Sci. 2016;7:1371. https://doi.org/10.3389/fpls.2016.01371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schomburg L, Arnér ESJ. Selenium metabolism in herbivores and higher trophic levels including mammals. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 123–39.

    Chapter  Google Scholar 

  • Sepúlveda I, Barrientos H, Mahn A, et al. Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. italica) fertilized with sodium selenate. Molecules. 2013;18:5221–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shao SX, Mi XB, Ouerdane L, et al. Quantification of Se-methylselenocysteine and its γ-glutamyl derivative from naturally Se-enriched green bean (Phaseolus vulgaris vulgaris) after HPLC-ESI-TOF-MS and orbitrap MSn-based identification. Food Anal Methods. 2014;7:1147–57.

    Article  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, et al. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002;29:475–86.

    Article  CAS  PubMed  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, et al. Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol. 2010;153:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smrkolj P, Osvald M, Osvald J, et al. Selenium uptake and species distribution in selenium-enriched bean (Phasolus vulgaris L.) seeds obtained by two different cultivations. Eur Food Res Technol. 2007;225:233–7.

    Article  CAS  Google Scholar 

  • Song Z, Shao H, Huang H, et al. Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum. Environ Exp Bot. 2017;137:158–65.

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res. 2005;86:373–89.

    Article  CAS  PubMed  Google Scholar 

  • Statwick J, Sher AA. Selenium in soils of western Colorado. J Arid Environ. 2017;137:1–6.

    Article  Google Scholar 

  • Sugihara S, Kondo M, Chihara Y, et al. Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Biosci Biotechnol Biochem. 2004;68:193–9.

    Article  CAS  PubMed  Google Scholar 

  • Sun G-X, Meharg AA, Li G, et al. Distribution of soil selenium in China is potentially controlled by deposition and volatilization? Sci Rep. 2016;6:20953. https://doi.org/10.1038/srep20953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunde RA, Li J-L, Taylor RM. Insights for setting of nutrient requirements, gleaned by comparison of selenium status biomarkers in turkeys and chickens versus rats, mice, and lambs. Adv Nutr. 2017;7:1129–38.

    Article  CAS  Google Scholar 

  • Supriatin S, Weng L, Comans RNJ. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils. Plant and Soil. 2016;408:73–94.

    Article  CAS  Google Scholar 

  • Tagmount A, Berken A, Terry N. An essential role of S-adenosyl-Lmethionine: L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-seleniummethionine, the precursor of volatile selenium. Plant Physiol. 2002;130:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, et al. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J. 2000;23:171–82.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol. 2011;62:157–84.

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot. 2014;65:1865–78.

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Carlson C, Raab TK, et al. Rates of selenium volatilization among crop species. J Environ Qual. 1992;21:341–4.

    Article  CAS  Google Scholar 

  • Tian M, Xu X, Liu Y, et al. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem. 2016;190:374–80.

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot. 2013;112:965–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hoewyk D. Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis. Plant Signal Behav. 2016;13:e1171451. https://doi.org/10.1080/15592324.2016.1171451.

    Article  CAS  Google Scholar 

  • Van Hoewyk D, Çakir O. Manipulating selenium metabolism in plants: a simple twist of metabolic fate can alter selenium tolerance and accumulation. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 165–76.

    Chapter  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, et al. Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol. 2005;139:1518–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A, et al. Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant. 2008;132:236–53.

    PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, et al. Overexpression of cystathionine-γ-synthase enhances selenium volatilisation in Brassica juncea. Planta. 2003;218:71–8.

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E, et al. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J Exp Bot. 2015;66:4795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ. Selenium accumulation by plants. Ann Bot. 2016a;117:217–35.

    CAS  PubMed  Google Scholar 

  • White PJ. Biofortification of edible crops. In: eLS. Chichester: Wiley; 2016b. https://doi.org/10.1002/9780470015902.a0023743.

    Chapter  Google Scholar 

  • White PJ. The genetics of selenium accumulation in plants. In: EAH P-S, LHE W, Lin Z-Q, editors. Selenium in plants: Molecular, physiological, ecological and evolutionary aspects. Cham, Switzerland: Springer; 2017. p. 143–63.

    Chapter  Google Scholar 

  • White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84.

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot. 2004;55:1927–37.

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Marshall B, et al. Extraordinarily high leaf selenium to sulphur ratios define ‘Se-accumulator’ plants. Ann Bot. 2007a;100:111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR, Bowen HC, et al. Selenium and its relationship with sufur. In: Hawkesford MJ, de Kok LJ, editors. Sulfur in plants - an ecological perspective. Dordrecht: Springer; 2007b. p. 225–52.

    Chapter  Google Scholar 

  • White PJ, George TS, Gregory PJ, et al. Matching roots to their environment. Ann Bot. 2013;112:207–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner-Reinhold M, Schreiner M, Baldermann S, et al. Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci. 2017;8:1365. https://doi.org/10.3389/fpls.2017.01365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams PN, Lombi E, Sun GX, et al. Selenium characterization in the global rice supply chain. Environ Sci Technol. 2009;43:6024–30.

    Article  CAS  PubMed  Google Scholar 

  • Winkel LH, Vriens B, Jones GD, et al. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients. 2015;7:4199–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrobel JK, Power R, Toborek M. Biological activity of selenium: revisited. IUMB Life. 2016;68:97–105.

    Article  CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Lin Z-Q, et al. Biofortification and phytoremediation of selenium in China. Front Plant Sci. 2015;6:136. https://doi.org/10.3389/fpls.2015.00136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ximénez-Embún P, Alonso I, Madrid-Albarráan Y, et al. Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem. 2004;52:832–8.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, et al. Phloem localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulphur from source to sink organs in Arabidopsis. Plant Physiol. 2003;131:1511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan LX, Zhu YY, Lin ZQ, et al. A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One. 2013;8:e65615. https://doi.org/10.1371/journal.pone.0065615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu B, Li W, et al. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014;201:1183–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhao D-Y, Sun F-L, Zhang B, et al. Systematic comparisons of orthologous selenocysteine methyltransferase and homocysteine methyltransferase genes from seven monocots species. Nat Sci Biol. 2015;7:210–6.

    CAS  Google Scholar 

  • Zhao H, Huang J, Li Y, et al. Natural variation of selenium concentration in diverse tea plant (Camellia sinensis) accessions at seedling stage. Sci Hortic. 2016;198:163–9.

    Article  CAS  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, et al. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 2010;153:1871–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

White, P.J. (2018). Selenium in Soils and Crops. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_2

Download citation

Publish with us

Policies and ethics