Skip to main content

Water Stress and Redox Regulation with Emphasis on Future Biotechnological Prospects

  • Chapter
  • First Online:
Redox Homeostasis in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Water deficit conditions can disturb the redox homeostasis in plants and result in increased production of reactive oxygen species (ROS), which could ultimately lead to plant death. Many regulatory mechanisms exist in plants to overcome the damaging effects of free radical accumulation. These include morphological changes and the production of enzymatic and non-enzymatic anti-oxidants. Anti-oxidants accumulate in an organized manner in different cellular compartments of which the chloroplast especially is vital in maintaining redox homeostasis during water deficit conditions. The signaling mechanisms in plants during water deficit are complex. This ranges from hormonal signaling to where sugars, such as sucrose, RFOs, trehalose and fructans, are suggested to contribute significantly to the redox homeostasis mechanisms through ROS scavenging. These sugars display characteristics of osmoprotectants and anti-oxidants. Worth investigating is the modulation of sugars and key metabolic enzymes during the development of drought-tolerant crops. The use of direct genome-editing techniques such as CRISPR/Cas9 could be very useful in developing new tolerant crop varieties. Also, a multitude of health beneficial phenolic and sugar compounds accumulate in plant vacuolar compartments as a part of the redox homeostasis mechanism. Future studies could seek to implement environmental stresses in a positive light to enhance food quality and establish the concept of producing functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Melmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics 10:191–205

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bachmann M, Keller F (1995) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L (inter- and intracellular compartmentation). Plant Physiol 109:991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F, Corbineau F, Côme D (2001) Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot 52:701–708

    Article  CAS  PubMed  Google Scholar 

  • Barillari J, Cervellati R, Costa S, Guerra MC, Speroni E, Utan A, Iori R (2006) Antioxidant and choleretic properties of Raphanus sativus L sprout (Kaiware Daikon) extract. J Agric Food Chem 54:9773–9778

    Google Scholar 

  • Barnes J, Zheng Y, Lyons T (2002) Plant resistance to ozone: the role of ascorbate. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air Pollution and plant biotechnology: prospects for phytomonitoring and phytoremediation. Springer, Japan, Tokyo, pp 235–252

    Chapter  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160

    Article  CAS  Google Scholar 

  • Blackman SA, Obendorf RL, Leopold AC (1995) Desiccation tolerance in developing soybean seeds: the role of stress proteins. Physiol Plant 93:630–638

    Article  CAS  Google Scholar 

  • Bryant JP (1992) Woody plant-mammal interactions. In: Herbivores: their interactions with secondary plant metabolites, vol II, Ecological and Evolutionary Processes. pp 344–371

    Google Scholar 

  • Caffrey M, Fonseca V, Leopold AC (1988) Lipid-Sugar interactions. Plant Physiol 86:754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, OsÓRio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke PJ, Davison EA (2004) Emergence and survival of herbaceous seedlings in temperate grassy woodlands: recruitment limitations and regeneration niche. Austral Ecol 29:320–331

    Article  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Plant Signaling Behav 3:156–165

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2(53):1–10

    CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • De Tullio MC, Arrigoni O (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13:249–260

    Article  CAS  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes production, scavenging, and role in cell signaling. Plant Physiol 141:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delorge I, Janiak M, Carpentier S, Van Dijck P (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci 5:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diallinas G, Kanellis AK (1994) A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Mol Biol 26:473–479

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius welw. J Plant Physiol 142:493–496

    Article  CAS  Google Scholar 

  • Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom 12:514

    Article  CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Cooper TA (1992) On the role of orientation in reducing photoinhibitory damage in photosynthetic-twig desert shrubs. Plant, Cell Environ 15:301–306

    Article  Google Scholar 

  • Elbein AD (2010) Chapter 11—Cytoplasmic carbohydrate molecules: trehalose and glycogen A2—Holst, Otto In: Brennan PJ, Itzstein Mv, Moran AP (eds) Microbial glycobiology. Academic Press, San Diego, pp 185–201

    Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H-F, Ding L, Du C-X, Wu X (2014) Effect of short-term water deficit stress on antioxidative systems in cucumber seedling roots. Bot Stud 55:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1989) Germination-associated events and the desiccation sensitivity of recalcitrant seeds—a study on three unrelated species. Planta 178:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55

    Google Scholar 

  • Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Finch-Savage WE (1992) Embryo water status and survival in the recalcitrant species Quercus robur L: evidence for a critical moisture content. J Exp Bot 43:663–669

    Article  Google Scholar 

  • Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling Behav 6:709–711

    Article  CAS  Google Scholar 

  • Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez- Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, DescourviÈRes P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant, Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Gapińska M, Skłodowska M, Gabara B (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11

    Article  CAS  Google Scholar 

  • Garnczarska M, Wojtyla Ł (2008) Differential response of antioxidative enzymes in embryonic axes and cotyledons of germinating lupine seeds. Acta Physiol Plant 30:427–432

    Article  CAS  Google Scholar 

  • Garrido I, Uriarte D, Hernández M, Llerena J, Valdés M, Espinosa F (2016) The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L, cv Tempranillo) grown in semiarid region: effects of cluster thinning and water deficit. Int J Mol Sci 17:1923

    Article  CAS  PubMed Central  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gill CIR, Haldar S, Porter S, Matthews S, Sullivan S, Coulter J, McGlynn H, Rowland I (2004) The effect of cruciferous and leguminous sprouts on genotoxicity, in vitro and in vivo. Cancer Epidemiol Biomark Prev 13:1199

    Google Scholar 

  • Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B Biol Sci 355:1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Sustainable development goals for people and planet. Nature 495:305

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Smeekens S (2009) Sugar perception and signaling—an update. Curr Opin Plant Biol 12:562–567

    Article  CAS  PubMed  Google Scholar 

  • Hincha DK, Zuther E, Heyer AG (2003) The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochimica et Biophysica Acta (BBA)—Biomembranes 1612:172–177

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770

    Article  CAS  PubMed  Google Scholar 

  • Horbowicz M, Obendorf RL (1994) Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols—review and survey. Seed Sci Res 4:385–405

    Article  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M, Lin H-X (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac′h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  CAS  PubMed  Google Scholar 

  • Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameli A, Losel DM (1996) Growth and sugar accumulation in Durum wheat plants under water stress. New Phytol 132:57–62

    Article  CAS  PubMed  Google Scholar 

  • Ke D, Sun G (2004) The effect of reactive oxygen species on ethylene production induced by osmotic stress in etiolated mungbean seedling. Plant Growth Regul 44:199–206

    Article  CAS  Google Scholar 

  • Keleş Y, Öncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    Article  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Klapheck S (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plant 74:727–732

    Article  CAS  Google Scholar 

  • Koch KE, Wu Y, Xu J (1996) Sugar and metabolic regulation of genes for sucrose metabolism: potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. J Exp Bot 47:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88:829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner I, Roach T, Beckett R, Whitaker C, Minibayeva F (2010) Early production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167:805–811

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmanan P, Robinson N (2014) Stress physiology: Abiotic stresses, in sugarcane: physiology, biochemistry, and functional biology. In: Botha FC (ed) Moore PH. Wiley, Chichester, pp 411–434

    Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Li W-X, Oono Y, Zhu J, He X-J, Wu J-M, Iida K, Lu X-Y, Cui X, Jin H, Zhu J-K (2008) The NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Sun Y, Du J, Zhao Y, Xia L (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10:526–529

    Article  CAS  PubMed  Google Scholar 

  • Lin T-P, Huang N-H (1994) The relationship between carbohydrate composition of some tree seeds and their longevity. J Exp Bot 45:1289–1294

    Article  CAS  Google Scholar 

  • Liu R, Xu S, Li J, Hu Y, Lin Z (2006) Expression profile of a PAL gene from Astragalus membranaceus var Mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant Cell Rep 25:705–710

    Article  CAS  PubMed  Google Scholar 

  • Ludlow MM, Ng TT (1974) Water stress suspends leaf ageing. Plant Sci Lett 3:235–240

    Article  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mohan C (2016) Genome editing in sugarcane: challenges ahead. Front Plant Sci 7:1542

    Article  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Schwarz K, Alegre L (2001) Water deficit in combination with high solar radiation leads to midday depression of a-tocopherol in field-grown lavender (Lavandula stoechas) plants. Funct Plant Biol 28:315–321

    Article  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi B, Roy S, Bhattacharya S, Sinha Babu SP (2004) Free radicals mediated membrane damage by the saponins acaciaside A and acaciaside B. Phytotherapy Res 18:191–194

    Article  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh M-M, Rajashekar CB (2009) Antioxidant content of edible sprouts: effects of environmental shocks. J Sci Food Agric 89:2221–2227

    Article  CAS  Google Scholar 

  • Oh M-M, Carey EE, Rajashekar CB (2010) Regulated water deficits improve phytochemical concentration in lettuce. J Am Soc Hortic Sci 135:223–229

    Article  Google Scholar 

  • Oh JE, Kwon Y, Kim JH, Noh H, Hong S-W, Lee H (2011) A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol 77:91–103

    Article  CAS  PubMed  Google Scholar 

  • Pallanca JE, Smirnoff N (1999) Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors. Plant Physiol 120:453

    Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg É, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock H-P, Matros A (2014) Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 26:3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37:313–317

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM, Ricardo CP (2001) Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. J Exp Bot 52:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:1191

    Article  Google Scholar 

  • Quan L-J, Zhang B, Shi W-W, Li H-Y (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, Zhou H (2017) A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci 60:516–519

    Article  PubMed  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) CombiningqQuantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol (1):499–514

    Google Scholar 

  • Rodrigues FA, Da Graça JP, De Laia ML, Nhani-Jr A, Galbiati JA, Ferro MIT, Ferro JA, Zingaretti SM (2011) Sugarcane genes differentially expressed during water deficit. Biol Plant 55:43–53

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Kaur G, Wani SH (2016) Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer India, New Delhi, pp 83–96

    Chapter  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  • Schubert S, Serraj R, Plies-Balzer E, Mengel K (1995) Effect of drought stress on growth, sugar concentrations and amino acid acumulation in N2-fixing Alfalfa (Medicago sativa). J Plant Physiol 146:541–546

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 75–120

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA, Sun Q (2005) Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids Surf, B 42:187–195

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Sinhababu A, Kar RK (2003) Comparative responses of three fuel wood yielding plants to PEG-induced water stress at seedling stage. Acta Physiol Plant 25:403–409

    Article  Google Scholar 

  • Smeekens S (1998) Sugar regulation of gene expression in plants. Curr Opin Plant Biol 1:230–234

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169:403–412

    Article  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommasi F, Paciolla C, Arrigoni O (1999) The ascorbate system in recalcitrant and orthodox seeds. Physiol Plant 105:193–198

    Article  CAS  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. In: Advances in agronomy. Academic Press, pp 193–231

    Google Scholar 

  • Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, Stitt M (2008) Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. Plant Physiol 146:1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  CAS  PubMed  Google Scholar 

  • Valluru R, Van den Ende W (2011) Myo-inositol and beyond—emerging networks under stress. Plant Sci 181:387–400

    Article  CAS  PubMed  Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13:409–414

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  CAS  PubMed  Google Scholar 

  • Vereyken IJ, Chupin V, Demel RA, Smeekens SCM, De Kruijff B (2001) Fructans insert between the headgroups of phospholipids. Biochimica et Biophysica Acta (BBA)—Biomembranes 1510:307–320

    Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582

    Article  CAS  PubMed  Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J-L, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. van der Vyver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loedolff, B., van der Vyver, C. (2019). Water Stress and Redox Regulation with Emphasis on Future Biotechnological Prospects. In: Panda, S., Yamamoto, Y. (eds) Redox Homeostasis in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-95315-1_8

Download citation

Publish with us

Policies and ethics