Skip to main content

Role of Optical Coherence Tomography in Glaucoma

  • Chapter
  • First Online:

Abstract

Retinal ganglion cells (RGCs) are the ultimate target of glaucomatous damage. Optical Coherence Tomography (OCT) revolutionized the diagnosis and monitoring of glaucoma as it can detect RGC damage objectively and quantitatively. OCT can demonstrate changes related to RGC damage in three anatomical domains. Retinal nerve fiber layer (RNFL) analysis has been a primary outcome of interest and can establish loss of RGC axons. Macular ganglion cell analysis can demonstrate thinning of the RGC axonal complex directly at the macula. Optic nerve head analysis measures changes in the RGC axons at the level of the neuroretinal rim. The use of these three approaches together increases the chances of detecting glaucomatous damage in very early stages. In an individual patient, any of these parameters might be affected earlier than the other two, and hence, measuring the RNFL, neuroretinal rim and macula simultaneously increases the odds for identifying early glaucoma. The aim of this chapter is to summarize the role of these three approaches in clinical practice for diagnosis of glaucoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dong ZM, Wollstein G, Schuman JS. Clinical utility of optical coherence tomography in Glaucoma. Invest Ophthalmol Vis Sci. 2016:57–67.

    Google Scholar 

  2. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–46.

    Article  CAS  Google Scholar 

  3. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retina Eye Res. 2007;26:688–710.

    Article  Google Scholar 

  4. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.

    Article  CAS  Google Scholar 

  5. Kamal DS, Viswanathan AC, Garway-Heath DF, Hitchings RA, Poinoosawmy D, Bunce C. Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br J Ophthalmol. 1999;83:290–4.

    Article  CAS  Google Scholar 

  6. Philippin H, Unsoeld A, Maier P, Walter S, Bach M, Funk J. Ten-year results: detection of long-term progressive optic disc changes with confocal laser tomography. Graefes Arch Clin Exp Ophthalmol. 2006;244:460–4.

    Article  Google Scholar 

  7. Sehi M, Greenfield DS. Assessment of retinal nerve fiber layer using optical coherence tomography and scanning laser polarimetry in progressive glaucomatous optic neuropathy. Am J Ophthalmol. 2006;142:1056–9.

    Article  Google Scholar 

  8. Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, Lai E, Ishikawa H, Mattox C, Fujimoto JG, Paunescu LA. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;23:464–70.

    Article  Google Scholar 

  9. Strouthidis NG, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci. 2006;47:2904–10.

    Article  Google Scholar 

  10. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.

    Article  CAS  Google Scholar 

  11. Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol. 2009;127:1250–6.

    Article  Google Scholar 

  12. Kuang TM, Zhang C, Zangwill LM, Weinreb RN, Medeiros FA. Estimating lead ime gained by optical coherence tomography in detecting Glaucoma before development of visual field defects. Ophthalmology. 2015;122:2002–9.

    Article  Google Scholar 

  13. Weinreb RN, Garway-Heath DF, Leung C, Mederios FA, Liebmann J. Diagnosis of primary open angle glaucoma, World Glaucoma association Consesus Series, vol. 10. Amsterdam, The Netherlands: Kugler Publications; 2016.

    Google Scholar 

  14. Fortune B, Burgoyne CF, Cull GA, Reynaud J, Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53:3939–50.

    Article  Google Scholar 

  15. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  Google Scholar 

  16. Leung CK. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol. 2014;25:104–11.

    Article  Google Scholar 

  17. Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology. 2012;119:1858–66.

    Article  Google Scholar 

  18. Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010;117:1684–91.

    Article  Google Scholar 

  19. Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103:1889–98.

    Article  CAS  Google Scholar 

  20. Zeiss Cirrus HD-OCT User Manual – Models 500, 5000 Instrument and Review Software 8.1, 2015, p. 179.

    Google Scholar 

  21. Wang X, Li S, Fu J, Wu G, Mu D, Li S, Wang J, Wang N. Comparative study of retinal nerve fiber layer measurement by RTVue OCT and. GDx VCC Br J Ophthalmol. 2011;95:509–5.

    Article  Google Scholar 

  22. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117:1692–9.

    Article  Google Scholar 

  23. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.

    Article  Google Scholar 

  24. Mwanza J, Chang R, Budenz D, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51:5724–30.

    Article  Google Scholar 

  25. Horne MR, Callan T, Durbin M, Abunto T. Inter-visit and Inter-instrument variability for CIRRUS HD-OCT Peripapillary retinal nerve Fiber layer thickness measurements. ARVO 2008 Abstracts, Invest Ophthalmol Vis Sci. 2008;49:4624.

    Google Scholar 

  26. Tan BB, Natividad M, Chua KC, Yip LW. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma. 2012;21:266–73.

    Article  Google Scholar 

  27. Wu H, de Boer JF, Chen TC. Reproducibility of retinal nerve Fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma. 2011;20:470–6.

    Article  Google Scholar 

  28. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.

    Article  CAS  Google Scholar 

  29. Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Ophthalmol Vis Sci. 2014;55:632–6.

    Article  Google Scholar 

  30. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.

    Article  Google Scholar 

  31. Traynis I, De Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC. Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol. 2014;132:291–29.

    Article  Google Scholar 

  32. Grillo LM, Wang DL, Ramachandran R, Ehrlich AC, De Moraes CG, Ritch R, Hood DC. The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Translational Vision Science & Technology. 2016;5:15.

    Article  Google Scholar 

  33. De Moraes CG, Hood DC, Thenappan A, Girkin CA, Medeiros FA, Weinreb RN, Zangwill LM, Liebmann JM. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124:1449–56.

    Article  Google Scholar 

  34. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.

    Article  Google Scholar 

  35. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.

    Article  Google Scholar 

  36. Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell–inner plexiform layer: automated detection and thickness reproducibility with spectral domain–optical coherence tomography in Glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.

    Article  Google Scholar 

  37. Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. Arch Ophthalmol. 2011;129:1205–11.

    Article  Google Scholar 

  38. Seo JH, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:4347–53.

    Article  Google Scholar 

  39. Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, Godfrey DG, Carter R, Crandall AS. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119:1151–8.

    Article  Google Scholar 

  40. Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–10.

    Article  Google Scholar 

  41. Sung KR, Wollstein G, Kim NR, Na JH, Nevins JE, Kim CY, Schuman JS. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2012;96:1452–5.

    Article  Google Scholar 

  42. Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fiber layer macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011;25:57–65.

    Article  CAS  Google Scholar 

  43. Yang Z, Tatham AJ, Weinreb RN, Medeiros FA, Liu T, Zangwill LM. Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015;10:e0125957.

    Article  Google Scholar 

  44. Tan O, Li G, Lu AT, Varma R, Huang D. Advanced imaging for Glaucoma study group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115:949–56.

    Article  Google Scholar 

  45. Hood DC, Raza AS, de Moraes CG, Johnson CA, Liebmann JM, Ritch R. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Translational Vision Science & Technology. 2012;1:3.

    Article  Google Scholar 

  46. Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1412–4.

    Article  Google Scholar 

  47. Wang DL, Raza AS, de Moraes CG, Chen M, Alhadeff P, Jarukatsetphorn R, Ritch R, Hood DC. Central glaucomatous damage of the macula can be overlooked by conventional OCT retinal nerve fiber layer thickness analyses. Translational Vision Science & Technology. 2015;4:4.

    Article  Google Scholar 

  48. Reis AS, Sharpe GP, Yang H, Nicolela MT, Burgoyne CF, Chauhan BC. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology. 2012;119:738–47.

    Article  Google Scholar 

  49. Almobarak FA, O'Leary N, Reis AS, Sharpe GP, Hutchison DM, Nicolela MT, Chauhan BC. Automated segmentation of optic nerve head structures with optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:1161–8.

    Article  Google Scholar 

  50. Chauhan BC, Danthurebandara VM, Sharpe GP, Demirel S, Girkin CA, Mardin CY, Scheuerle AF, Burgoyne CF. Bruch’s’s membrane opening-minimum rim width and retinal nerve fibre layer thickness in a normal white population. A multi-Centre study. Ophthalmology. 2015;122:1786–94.

    Article  Google Scholar 

  51. Chauhan BC, O'Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013;120:535–43.

    Article  Google Scholar 

  52. Pollet-Villard F, Chiquet C, Romanet JP, Noel C, Aptel F. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci. 2014;55:2953–62.

    Article  Google Scholar 

  53. Kasumovic SS, Pavljasevic S, Cabric E, Mavija M, Dacic-Lepara S, Jankov M. Correlation between retinal nerve fiber layer and disc parameters in glaucoma suspected eyes. Med Arch. 2014;68:113–1.

    Article  Google Scholar 

  54. Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma. 2012;21:498–504.

    Article  Google Scholar 

  55. Lisboa R, Paranhos A Jr, Weinreb RN, Zangwill LM, Leite MT, Medeiros FA. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54:3417–34.

    Article  Google Scholar 

  56. Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol. 2013;156:218–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akman, A. (2018). Role of Optical Coherence Tomography in Glaucoma. In: Akman, A., Bayer, A., Nouri-Mahdavi, K. (eds) Optical Coherence Tomography in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-94905-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94905-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94904-8

  • Online ISBN: 978-3-319-94905-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics