Skip to main content

Risk Assessment of Heavy Metal Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.)

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

Heavy metals are accumulated in plants and they affect human health. This study is made to assess the effect of agrochemicals used in paddy fields on human health. The heavy metals used in agrochemicals get accumulated in different parts of paddy plant (Oryza sativa L.). The toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) are estimated in the paddy field soil and plants. Mn and Cd are accumulated more in shoot than in root. The metal transfer factors from soil to rice plant are significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb which indicates that the accumulation of micronutrients was more than that of toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils. Organic agriculture with little use of agrochemicals could be the alternative solution for reducing the contamination of toxic heavy metals particularly the toxic Cd, Cr, and Pb in the paddy fields producing rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M, Feldmann J, Meharg A (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128(3):1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Singh M (2008) Remediation of cadmium pollution in soils by different amendments: a column study. Commun Soil Sci Plant Anal 39(3–4):386–396

    Article  CAS  Google Scholar 

  • Alloway BJ (2004) Contamination of soils in domestic gardens and allotments: a brief overview. Land Contam Reclam 12(3):179–187

    Article  Google Scholar 

  • Anirban B, Jayjit M, Chandra SS (2011) Potential arsenic enrichment problems of rice and vegetables crops. Int J Res Chem Environ 1:29–34

    Google Scholar 

  • Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8(3):247–257

    Article  Google Scholar 

  • Bhagure G, Mirgane S (2010) Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173(1–4):643–652

    Google Scholar 

  • Bhattacharya P, Samal A, Majumdar J, Santra S (2009) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8(1):63–70

    Article  Google Scholar 

  • Cao X, Ma L, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126(2):157–167

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, MS MI et al (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60(3–4):190–198

    CAS  Google Scholar 

  • Chatterjee D, Halder D, Majumder S, Biswas A, Nath B, Bhattacharya P et al (2010) Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Res 44(19):5803–5812

    Article  CAS  Google Scholar 

  • Cheng W, Zhang G, Yao H, Wu W, Xu M (2006) Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. J Zhejiang Univ Sci B 7(7):565–571

    Article  CAS  PubMed  Google Scholar 

  • Christie P, Beattie J (1989) Grassland soil microbial biomass and accumulation of potentially toxic metals from long-term slurry application. J Appl Ecol 26(2):597

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Fytianos K, Katsianis G, Triantafyllou P, Zachariadis G (2001) Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bull Environ Contam Toxicol 67(3):423–430

    Article  CAS  Google Scholar 

  • Gopal R, Rizvi A (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544

    Article  CAS  Google Scholar 

  • Govil P, Reddy G, Krishna A (2001) Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environ Geol 41(3–4):461–469

    CAS  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai I (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64(1):33–39

    Article  CAS  Google Scholar 

  • Islam F, Gault A, Boothman C, Polya D, Charnock J, Chatterjee D, Lloyd J (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68–71

    Article  CAS  Google Scholar 

  • Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Memon AR (2007) Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. J Agron Crop Sci 193:218–228

    Article  CAS  Google Scholar 

  • Jung M, Yun S, Lee J, Lee J (2005) Baseline study on essential and trace elements in polished rice from South Korea. Environ Geochem Health 27(5–6):455–464

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Karatas M, Dursun S, Guler E, Ozdemir C, Emin Argun M (2007) Heavy metal accumulation in wheat plants irrigated by waste water. Cell Chem Technol 40(7):575–579

    Google Scholar 

  • Khan MS, Zaidi AA, Wani APA, Mohammad A (2009) OvesRole of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Krishnamurti GSR (2000) Speciation of heavy metals: an approach for remediation of contaminated soils. In: Wise DL et al (eds) Remediation engineering of contaminated soils. Marcel Dekker, New York, pp 693–714

    Google Scholar 

  • Kurz H, Schulz R, Römheld V (1999) Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. J Plant Nutr Soil Sci 162(3):323–328

    Article  CAS  Google Scholar 

  • Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Appl Geochem 16(11–12):1377–1386

    Article  CAS  Google Scholar 

  • Lu RK, Shi ZY, Xiong LM (1992) Cadmium contents of rock phosphates and phosphate fertilizers of China and their effects on ecological environment. Acta Pedol Sin 29:150–157

    Google Scholar 

  • Luo L, Ma Y, Zhang S, Wei D, Zhu YG (2009) An inventory of trace element inputs to agricultural soils in China. J Environ Manag 90(8):2524–2530

    Article  CAS  Google Scholar 

  • Masironi R, Koirtyohann SR, Pierce JO (1977) Zinc, copper, cadmium and chromium in polished and unpolished rice. Sci Total Environ 7(1):27–43

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43(5):1612–1617

    Article  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1998) Biol Plant 41(3):469–473

    Article  CAS  Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Monographs on theoretical and applied genetics. Springer, Berlin, pp 175–200

    Google Scholar 

  • Odanaka Y, Tsuchiya N, Matano O, Goto S (1987) Absorption, translocation and metabolism of the arsenical fungicides, iron methanearsonate and ammonium iron methanearsonate, in rice plants. J Pestic Sci 12(2):199–208

    Article  CAS  Google Scholar 

  • Pal A, Paul AK (2004) Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol Res 159(4):347–354

    Article  CAS  Google Scholar 

  • Pandey AK, Pandey SD, Misra V (2000) Stability constants of metal–humic acid complexes and its role in environmental detoxification. Ecotoxicol Environ Saf 47(2):195–200

    Article  CAS  Google Scholar 

  • Patel KS, Shrivas K, Brandt R, Jakubowski N, Corns W, Hoffmann P (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27(2):131–145

    Article  CAS  Google Scholar 

  • Ramachandran V, D’Souza TJ (1999) Water Air Soil Pollut 111(1/4):225–234

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere 40(8):855–859

    Article  CAS  Google Scholar 

  • Roychowdhury T (2008) Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice. Food Chem Toxicol 46(8):2856–2864

    Article  CAS  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H, Ando M (2002) Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chem Toxicol 40(11):1611–1621

    Article  CAS  Google Scholar 

  • Roychowdhury T, Tokunaga H, Ando M (2003) Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci Total Environ 308(1–3):15–35

    Article  CAS  Google Scholar 

  • Shimbo S, Zhang ZW, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci Total Environ 281(1–3):165–175

    Article  CAS  Google Scholar 

  • Shraim AM (2017) Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arab J Chem 10:S3434–S3443

    Article  CAS  Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava NK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31(4):421–430

    CAS  Google Scholar 

  • Streets D, Hao J, WU Y, Jiang J, Chan M, Tian H, Feng X (2005) Anthropogenic mercury emissions in China. Atmos Environ 39(40):7789–7806

    Article  CAS  Google Scholar 

  • Suzuki S, Iwao S (1982) Cadmium, copper, and zinc levels in the rice and rice field soil of Houston, Texas. Biol Trace Elem Res 4(1):21–28

    Article  CAS  Google Scholar 

  • Suzuki S, Djuangshi N, Hyodo K, Soemarwoto O (1980) Cadmium, copper, and zinc in rice produced in Java. Arch Environ Contam Toxicol 9(4):437–449

    Article  CAS  Google Scholar 

  • Takamatsu T, Aoki H, Yoshida T (1982) Determination of arsenate, arsenite, mono-methylarsonate, and dimethylarsinate in soil polluted with arsenic. Soil Sci 133:239–246

    Article  CAS  Google Scholar 

  • Tripathi AK, Tripathi S (1998) Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. J Environ Biol 20(2):93–98

    Google Scholar 

  • Witek T, Piotrowska M, Motowicka-Terelak T (1992) Scope and methods of changing the structure of the agriculture in the most contaminated areas of Katowice district I. Tarnowskie Gory region. Technical report

    Google Scholar 

  • Wong S, Li X, Zhang G, Qi S, Min Y (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119(1):33–44

    Article  CAS  Google Scholar 

  • Wu ZX (2005) The amounts of pesticide required will increase in 2005. China Chemical Industry News

    Google Scholar 

  • Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in south-east Asia. 1. Peninsular Malaysia. Environ Geochem Health 26:343–357

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY, Ma RX, Rackwitz R, Winter K, Beese F (1994) Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biol Biochem 26(4):439–446

    Article  CAS  Google Scholar 

  • Zeng LS, Liao M, Chen CL, Huang CY (2006) Effects of lead contamination on soil microbial activity and rice physiological indices in soil–Pb–rice (Oryza sativa L.) system. Chemosphere 65(4):567–574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P., Mishra, M. (2018). Risk Assessment of Heavy Metal Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.). In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_11

Download citation

Publish with us

Policies and ethics