Skip to main content

CO2 Diffusion Inside Photosynthetic Organs

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Summary

In the present chapter, we review the current state-of-the-art of knowledge on mesophyll (internal) CO2 diffusion conductance of photosynthetic tissues (for simplification, g m). We show that, despite concerns regarding the methodological approaches currently used for its estimation, a large and consistent body of evidence has accumulated showing that g m is finite and significantly limiting for photosynthesis, as well as being highly variable among photosynthetic organisms and in response to environmental changes. Part of this variation results from different anatomies of the photosynthetic tissues, with a particularly strong influence of chloroplast distribution and cell wall thickness. Besides these, it appears that a biochemical modulation of g m also occurs, likely involving aquaporins and, possibly, carbonic anhydrases and other metabolic components.

Further efforts are needed in the near future to improve CO2 diffusion models, both for the estimation of g m and for the precise physiological understanding of the CO2 assimilation process in different plants, as well as to increase our knowledge of the mechanistic base for g m and its regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

fractionation factor due to diffusion through the air in the stomatal pore and between photosynthetic tissues

ā :

fractionation factor due to diffusion through stomata, between photosynthetic tissues and boundary layers

a b :

fractionation factor associated with diffusion through the air in the boundary layers

a i :

combined fractionation factor for dissolution of CO2 and diffusion through the liquid phase

ā t :

fractionation factor for the diffusion pathway through stomata and boundary layers corrected for ternary effects

a t i :

combined fractionation factor for dissolution of CO2 and diffusion through the liquid phase corrected for ternary effects

A n :

net rate of photosynthesis

AtPIP :

plasma membrane aquaporins of Arabidopsis thaliana

ABA:

abscisic acid

AQP:

aquaporin

ATP:

Adenosine triphosphate

α :

leaf absorptance

b :

net fractionation factor associated with Rubisco and PEPC

b 3 :

fractionation factor associated with Rubisco

b 4 :

fractionation factor associated with PEPC

b t :

net fractionation factor associated with Rubisco and PEPC corrected for ternary effects

β :

fraction of photons absorbed by photosystem II

C a :

ambient CO2 concentration

C b :

CO2 concentration just outside the stomatal pore

C 0 :

CO2 concentration after fixation by Rubisco, i.e. 0

C3 :

three-carbon organic acids

C4 :

four-carbon organic acids

C c :

chloroplast stroma CO2 concentration

C i :

sub-stomatal CO2 concentration

C i * :

intercellular CO2 concentration when the carboxylation rate equals the photorespiration rate

C mc :

cytosolic CO2 concentration of a mesophyll cell

C s :

surface CO2 concentration

CA:

carbonic anhydrase

CAM:

Crassulacean acid metabolism

CCMs:

CO2 concentrating mechanisms

CRDS:

cavity ringdown spectroscopy

D a :

diffusion coefficient for CO2 in the gas phase

D w :

diffusion coefficient for CO2 in the aqueous phase

Δ:

discrimination against 13CO2

Δi :

expected amount of discrimination against 13CO2 by the tissue enclosed in a gas-exchange cuvette if mesophyll conductance is assumed infinite and in the absence of any (photo)respiratory fractionation

Δo :

observed amount of discrimination against 13CO2 by the tissue enclosed in a gas-exchange cuvette

δ13C-CO2 :

carbon isotopic composition of CO2

e :

fractionation factor due to mitochondrial respiration in the light

e t :

fractionation factor due to mitochondrial respiration in the light corrected for ternary effects

E :

transpiration rate

f :

fractionation factor for photorespiration

f ias :

fraction of mesophyll volume occupied by intercellular air space

f t :

fractionation factor for photorespiration corrected for ternary effects

F :

photorespiration rate

F s’:

steady state fluorescence in the light

F m’:

maximal fluorescence in the light during a short saturating pulse of light

ΦCO2 :

quantum yield derived from CO2 exchange in the light-limited region

ΦPS II :

photochemical yield of photosystem II

g ac :

total conductance to CO2 through stomata and boundary layers

g b :

boundary layer conductance to CO2

g i :

conductance of a given component of the diffusion pathway

g ias :

gas-phase conductance between the sub-stomatal cavities and the outer surface of cell walls

g liq :

liquid-phase conductance between the outer surface of the cell walls and the site of carboxylation in the chloroplast stroma

g m :

mesophyll conductance to CO2

g mA :

mesophyll conductance to CO2 estimate based on physical models and the anatomical properties of the leaves

g s :

stomatal conductance to CO2

g t :

total conductance to CO2

ias:

intercellular air space

γ:

molar proportion of carbon fixed by PEPC

γi :

dimensionless factor accounting for decrease of diffusion conductance in the cytosol and in the stroma compared with free diffusion in water

Г*:

chloroplastic CO2 concentration when the carboxylation rate equals the photorespiration rate

H :

Henry’s law constant for dissolution of CO2 in water

J :

electron transport rate

J F :

whole chain electron transport rate derived from fluorescence measurements

J C :

electron transport rate related to gas-exchange measurements

J max :

maximum rate of electron transport

K leaf :

leaf hydraulic conductance

λ :

cyclic-pseudocyclic electron flow coefficient

L i :

diffusion path length

L ias :

diffusion path length in the gas phase

NAD:

nicotinamide adenine dinucleotide

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

OA-ICOS:

Off-Axis Integrated Cavity Output Spectroscopy

p i :

coefficient related with the electron transport stoichiometry associated with the regeneration of RuBP

PAM:

pulse amplitude modulation

PEPC:

phosphoenolpyruvate carboxylase

PIP:

plasma membrane intrinsic protein

PNUE:

photosynthetic nitrogen use efficiency

PPFD:

photosynthetically active photon flux density incident on the leaf

PS:

photosystem

Q10 :

scaling factor representing the relative increase in reaction rate over a 10°C temperature range at a particular temperature

R :

gas constant

r :

CO2 diffusion resistance (or sum of serial diffusion resistance)

r b :

diffusion resistance of the boundary to CO2

r ch :

diffusion resistance of the double membranes of the chloroplasts and the stroma

r i :

diffusion resistance of a given component of the diffusion pathway

r s :

diffusion resistance of the stomata to CO2

r wp :

diffusion resistance of cell wall and plasma membrane

R d :

rate of non-photorespiratory CO2 release in the light

R n :

rate of CO2 emission in the dark

RuBP:

ribulose-1,5-bisphosphate

Rubisco:

ribulose-1,5-bisphosphate carboxylase-oxygenase

S c :

chloroplast surface exposed to the intercellular airspace

ς :

diffusion path tortuosity

t :

correction factor to account for ternary effects

T cw :

cell wall thickness

T k :

absolute temperature

TCAP:

tricarboxylic acid pathway

T-DNA:

transfer DNA

TDLAS:

tunable-diode laser absorption spectroscopy

V c :

carboxylation rate

V c,max :

maximum rate of carboxylation

VPD:

vapor pressure deficit

WUE:

water use efficiency

References

  • Aalto T, Juurola E (2002) A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant Cell Environ 25:1399–1409

    Google Scholar 

  • Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840:1468–1481

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Cerovic ZG, Moya I (2000) The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: the role of the photosystem I contribution to the 735 nm fluorescence band. J Photoch Photob 72: 75--84

    Article  CAS  PubMed  Google Scholar 

  • Aranda I, Rodriguez-Calcerrada J, Robson TM, Cano FJ, Alté L, Sanchez-Gomez D (2012) Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions. Forest Systems 21:405–417

    Article  Google Scholar 

  • Aranjuelo I, Tcherkez G, Jauregui I, Gilard F, Ancin M, AF-S M et al (2015) Alteration by thioredoxin f over-expression of primary carbon metabolism and its response to elevated CO2 in tobacco (Nicotiana tabacum L.). Environ Exp Bot 118:40–48

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic-anhydrase in photosynthesis. Annu Rev Plant Physiol 45:369–392

    Article  CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Battie-laclau P, Laclau J-P, Beri C, Mietton L, Muniz MRA, Arenque BC, de Cassia Piccolo M, Jordan-Meille L, Bouillet J-P, Nouvellon Y (2014) Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ 37:70–81

    Article  CAS  Google Scholar 

  • Bazihizina N, Colzi I, Giorni E, Mancuso S, Gonnelli C (2015) Photosynthesizing on metal excess: Copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations. Plant Sci 232:67–76

    Article  CAS  PubMed  Google Scholar 

  • Berghuijs HN, Yin X, Ho QT, van der Putten PE, Verboven P, Retta MA et al (2015) Modelling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves. Plant Sci 238:297–311

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacchi C, Morgan P, Ort D, Long S (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220:434–446

    Article  CAS  PubMed  Google Scholar 

  • Bi Z, Merl-Pham J, Uehlein N, Zimmer I, Muehlhans S, Aichler M et al (2015) RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology. J Proteomics 128:321–332

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013) Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation. J Exp Bot 64:2129–2138

    Article  CAS  PubMed  Google Scholar 

  • Boegelein R, Hassdenteufel M, Thomas FM, Werner W (2012) Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas fir and European beech. Plant Cell Environ 35:1245–1257

    Article  CAS  Google Scholar 

  • Boudichevskaia A, Heckwolf M, Kaldenhoff R (2015) T-DNA insertion in aquaporin gene AtPIP1;2 generates transcription profiles reminiscent of a low CO2 response. Plant Cell Environ 38:2286–2298

    Article  CAS  PubMed  Google Scholar 

  • Boursiac Y, Chen S, Luu D-T, Sorieul M, Van Den Dries N, Maurel C et al (2005) Early effects of salinity on water transport in Arabidopsis roots . Molecular and Cellular Features of Aquaporin Expression 1. Plant Physiol 139:790–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (2015) Impact of cuticle on calculations of the CO2 concentration inside leaves. Planta 242:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS, Kawamitsu Y (2011) Photosynthesis gas exchange system with internal CO2 directly measured. Environ Control Biol 49:193–207

    Article  CAS  Google Scholar 

  • Boyer JS, Wong SC, Farquhar GD (1997) CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol 114:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brilli F, Tsonev T, Mahmood T, Velikova V, Loreto F, Centritto M (2013) Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance, and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings. J Exp Bot 64:519–528

    Article  CAS  PubMed  Google Scholar 

  • Brodersen CR, Vogelmann TC, Williams WE, Gorton HL (2008) A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Plant Cell Environ 31:159–164

    CAS  PubMed  Google Scholar 

  • Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331:582–585

    Article  CAS  PubMed  Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light : Estimates from gas-exchange measurements on spinach. Planta 165:397–406

    Article  CAS  PubMed  Google Scholar 

  • Brown HT, Escombe F (1900) Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philos T R Soc Lond B Biol Sci 193:223–291

    Article  CAS  Google Scholar 

  • Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism, Advances in photosynthesis and respiration, vol 9. Springer, Dordrecht, pp 399–434

    Chapter  Google Scholar 

  • Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD (1988) Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiol 88:1418–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley TN (2015) The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ 38:7–22

    Article  PubMed  Google Scholar 

  • Buckley TN, Warren CR (2014) The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis. Photosynth Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN, Grace PJ, Scoffoni C, Sack L (2017) The sites of evaporation within leaves. Plant Physiol. https://doi.org/10.1104/pp.16.01605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunce JA (2009) Use of the response of photosynthesis to oxygen to estimate mesophyll conductance to carbon dioxide in water-stressed soybean leaves. Plant Cell Environ 32:875–881

    Article  CAS  PubMed  Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  CAS  PubMed  Google Scholar 

  • Cano FJ, Sánchez-Gómez D, Gascó A, Rodríguez-Calcerrada J, Gil L, Warren C, Aranda I (2011) Light acclimation at the end of the growing season in two broadleaved oak species. Photosynthetica 49:581–592

    Article  Google Scholar 

  • Cano FJ, Sanchez-Gomez D, Rodriguez-Calcerrada J, Warren C, Gil L, Aranda I (2013) Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Plant Cell Environ 36:1961–1980

    PubMed  Google Scholar 

  • Cano FJ, López R, Warren CR (2014) Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ 37:2470–2490

    Article  CAS  PubMed  Google Scholar 

  • Carriquí M, Cabrera HM, Conesa MA, Coopman RE, Douthe C, Gago J et al (2015) Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ 38:448–460

    Article  PubMed  CAS  Google Scholar 

  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low CO2 to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594

    Article  Google Scholar 

  • Chen CP, Sakai H, Tokida T, Usui Y, Nakamura H, Hasegawa T (2014) Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment. Plant Cell Physiol 55:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenol pyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Biol 47:273–298

    Article  CAS  Google Scholar 

  • Cowan I (1986) Economics of carbon fixation in higher plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 133–170

    Google Scholar 

  • Crous K, Quentin A, Lin Y, Medlyn B, Williams D, Barton C, Ellsworth D (2013) Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob Change Biol 19:3790–3807

    Article  Google Scholar 

  • DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SCV, Sanglard LMVP, Morais LE et al (2016) Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J Exp Bot 67:341–352

    Article  CAS  PubMed  Google Scholar 

  • Devi MT, Rajagopalan AV, Raghavendra AS (1995) Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle-sheath cells of Alternanthera tenella, a C3-C4 intermediate species. Plant Cell Environ 18:589–594

    Article  CAS  Google Scholar 

  • Di Marco G, Manes F, Tricoli D, Vitale E (1990) Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO2 concentration in leaves of Quercus ilex L. J Plant Physiol 136:538–543

    Article  Google Scholar 

  • Díaz-Espejo A, Nicolas E, Fernandez JE (2007) Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30:922–933

    Article  PubMed  CAS  Google Scholar 

  • DiMario RJ, Quebedeaux JC, Longstreth D, Dassanayake M, Hartman MM, Moroney JV (2016) The cytoplasmic carbonic anhydrases βCA2 and βCA4 are required for optimal plant growth at low CO2. Plant Physiol 171:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Gao L, Liu W, Wang M, Gu M, Ren B et al (2016) Aquaporin plays an important role in mediating chloroplastic CO2 concentration under high-N supply in rice (Oryza sativa) plants. Physiol Plant 156:215–226

    Article  CAS  PubMed  Google Scholar 

  • Douthe C, Dreyer E, Epron D, Warren CR (2011) Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. J Exp Bot 62:5335–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 39:435–448

    Article  CAS  PubMed  Google Scholar 

  • Duan B, Li Y, Zhang X, Korpelainen H, Li C (2009) Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations. Tree Physiol 29:1551–1561

    Article  CAS  PubMed  Google Scholar 

  • Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD (2008) Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytol 177:1034–1034

    Article  Google Scholar 

  • Eichelmann H, Laisk A (2000) Cooperation of photosystems II and I in leaves as analyzed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800 nm. Plant Cell Physiol 41:138–147

    Article  CAS  PubMed  Google Scholar 

  • Endeward V, Samer AS, Itel F, Gros G (2014) How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods. Frontiers in Physiol 4:1–21

    Article  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  PubMed  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Evans JR (2009) Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. Plant Cell Physiol 50:698–706

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Vogelmann TC (2003) Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ 26:547–560

    Article  CAS  Google Scholar 

  • Evans JR, Von Caemmerer S (2013) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ 36:745–756

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Sharkey TD, Berry J, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Funct Plant Biol 13:281–292

    CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Funct Plant Biol 21:475–495

    CAS  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Fabre N, Reiter IM, Becuwe-Linka N, Genty B, Rumeau D (2007) Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ 30:617–629

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc B Biol Sci 323:357–367

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552

    CAS  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9:121–137

    CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrio JP, Pou A, Florez-Sarasa I, Gessler A, Kodama N, Flexas J, Ribas-Carbó M (2012) The Peclet effect on leaf water enrichment correlates with leaf hydraulic conductance and mesophyll conductance for CO2. Plant Cell Environ 35:611–625

    Article  CAS  PubMed  Google Scholar 

  • Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Centritto M (2016) Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol Plant 157:54–68

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein A (1976) Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues. J General Physiol 68:137–143

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martinez-Canellas S, Medrano H (2006a) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J et al (2006b) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Berry J, Cifre J, Galmés J, Kaldenhoff R et al (2007a) Analysis of leakage in IRGA’s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J Exp Bot 58:1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbó M (2007b) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Baron M, Bota J, Ducruet JM, Galle A, Galmés J et al (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). J Exp Bot 60:2361–2377

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A et al (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Scoffoni C, Gago J, Sack L (2013a) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965–3981

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Niinemets Ü, Galle A, Barbour MM, Centritto M, Díaz-Espejo A et al (2013b) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Conesa MÀ, Coopman RE, Douthe C, Gago J et al (2015) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39:965–982

    Article  PubMed  CAS  Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 1556:239–246

    Article  CAS  PubMed  Google Scholar 

  • Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Mededelingen van de Landbouwhogeschool te Wageningen 59:1–69

    Google Scholar 

  • Galle A, Florez-Sarasa I, Tomas M, Pou A, Medrano H, Ribas-Carbó M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390

    Article  CAS  PubMed  Google Scholar 

  • Galle A, Florez-Sarasa I, Thameur A, de Paepe R, Flexas J, Ribas-Carbó M (2010) Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant. J Exp Bot 61:765–775

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2006) Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. J Exp Bot 57:3659–3667

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Àngel Conesa M, Manuel Ochogavía J, Alejandro Perdomo J, Francis DM, Ribas-Carbó M et al (2011) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ 34:245–260

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Ochogavía JM, Gago J, Roldán EJ, Cifre J, Conesa MÀ (2013) Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ 36:920–935

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Molins A, Flexas J, coneas MA (2017) Coordination between leaf CO2 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species. Plant Cell Environ 40(10):2081–2094

    Article  CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Genty B, Wonders J, Baker NR (1990) Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth Res 26:133–139

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaie J, Badeck F-W, Lanigan G, Nogues S, Tcherkez G, Deleens E et al (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem Rev 2:145–161

    Article  CAS  Google Scholar 

  • Gilbert M, Holbrook N, Zwieniecki M, Sadok W, Sinclair TR (2011) Field confirmation of genetic variation in soybean transpiration response to vapor pressure deficit and photosynthetic compensation. Field Crops Res 124:85–92

    Article  Google Scholar 

  • Gillon JS, Griffiths H (1997) The influence of (photo)respiration on carbon isotope discrimination in plants. Plant Cell Environ 20:1217–1230

    Article  Google Scholar 

  • Gillon JS, Yakir D (2000) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol 123:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza). Plant Physiol 162:1632–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong HY, Li Y, Fang G, Hu DH, Jin WB, Wang ZH, Li YS (2015) Transgenic rice expressing Ictb and FBP/Sbpase derived from cyanobacteria exhibits enhanced photosynthesis and mesophyll conductance to CO2. PLoS One 10:e0140928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocasia macrorrhiza. Physiol Plant 106:421–428

    Article  CAS  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Griffis TJ (2013) Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. Agr Forest Meteor 174–175:85–109

    Article  Google Scholar 

  • Griffiths H, Helliker BR (2013) Mesophyll conductance: internal insights of leaf carbon exchange. Plant Cell Environ 36:733–735

    Article  CAS  PubMed  Google Scholar 

  • Groszmann M, Osborn HL, Evans JR (2017) Carbon dioxide and water transport through plant aquaporins. Plant Cell Environ 40:938–961

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Sun Y (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ 37:1231–1249

    Article  CAS  PubMed  Google Scholar 

  • Hanba Y, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030

    Article  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimillation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  CAS  PubMed  Google Scholar 

  • Hanson DT, Renzaglia K, Villarreal JC (2014) Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants, Advances in photosynthesis and respiration, vol 37, pp 95-111. Springer, Dordrecht

    Google Scholar 

  • Harley PC, Loreto F, Marco GD, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60:2303–2314

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama Y, Ueno O (2017) Intracellular position of mitochondria in mesophyll cells differs between C3 and C4 grasses. J Plant Res. https://doi.org/10.1007/s10265-017-0947-z

    Article  CAS  PubMed  Google Scholar 

  • Haupt-Herting S, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot 89:851–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804

    Article  CAS  PubMed  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454

    Article  CAS  PubMed  Google Scholar 

  • Ho QT, Berghuijs HN, Watte R, Verboven P, Herremans E, Yin X et al (2016) Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell Environ 39:50–61

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Hu H, Zhang S-B (2015) Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Front Plant Sci 6:621

    Google Scholar 

  • Igamberdiev AU, Mikkelsen TN, Ambus P, Bauwe H, Lea PJ, Gardestrom P (2004) Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81:139–152

    Article  CAS  Google Scholar 

  • Itel F, Al-Samir S, Öberg F, Chami M, Kumar M, Supuran CT, Deen PMT, Meier W, Hedfalk K, Gros G, Endeward V (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J 26:5182–5191

    Article  CAS  PubMed  Google Scholar 

  • Jarman P (1974) The diffusion of carbon dioxide and water vapour through stomata. J Exp Bot 25:927–936

    Article  Google Scholar 

  • Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbó M, Rychter AM (2007) Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Physiol Plant 131:527–541

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15:276–281

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Imaichi R (1992) Leaf anatomy of tropical fern reophytes, with its evolutionary and ecological implications. Can J Bot 70:165–174

    Article  Google Scholar 

  • Kawase M, Hanba YT, Katsuhara M (2013) The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J Plant Res 126:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitao M, Yazaki K, Kitaoka S, Fukatsu E, Tobita H, Komatsu M et al (2015) Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Physiol Plant 155:435–445

    Article  CAS  PubMed  Google Scholar 

  • Kodama N, Cousins A, Tu KP, Barbour MM (2011) Spatial variation in photosynthetic CO2 carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum x Secale) relates to mesophyll conductance and the Peclet effect. Plant Cell Environ 34:1548–1562

    Article  CAS  PubMed  Google Scholar 

  • Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24:529–538

    Article  CAS  Google Scholar 

  • Kok B (1948) A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia:1–56

    Google Scholar 

  • Laisk A (1977) Kinetics of photosynthesis and photorespiration of C3 plants. Nauka, Moscow (in Russian)

    Google Scholar 

  • Laisk A, Oja V (1998) Dynamics of leaf photosynthesis: rapid-response measurements and their interpretations. CSIRO Publishing, Collingwood

    Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Kull O (2005) Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters. Plant Cell Environ 28:375–388

    Article  CAS  Google Scholar 

  • Lake JV (1967) Respiration of leaves during photosynthesis. I. Estimates from an electrical analogue. Appl Plant Sci 20:487–493

    CAS  Google Scholar 

  • Lanigan GJ, Betson N, Griffiths H, Seibt U (2008) Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiol 148:2013–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latzko E, Kelly GJ (1983) The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol Veg 21:805–815

    CAS  Google Scholar 

  • Lawson T, Morison J (2006) Visualising patterns of CO2 diffusion in leaves. New Phytol 169:641–643

    Article  PubMed  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Levy PE, Meir P, Allen SJ, Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol 19:53–58

    Article  PubMed  Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang H, Gago J, Cui H, Qian Z, Kodama N et al (2015) Harpin Hpa1 interacts with aquaporin PIP1;4 to promote the substrate transport and photosynthesis in Arabidopsis. Sci Rep 5:17207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd J, Syvertsen J, Kriedemann P, Farquhar G (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant Cell Environ 15:873–899

    Article  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Long BM, Bahar NHA, Atkin OK (2015) Contributions of photosynthetic and non-photosynthetic cell types to leaf respiration in Vicia faba L. and their responses to growth temperature. Plant Cell Environ 38:2263–2276

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Tsonev T, Centritto M (2009) The impact of blue light on leaf mesophyll conductance. J Exp Bot 60:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Loriaux SD, Avenson TJ, Welles JM, McDermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1755–1770

    Article  CAS  PubMed  Google Scholar 

  • Markgraf T, Berry J (1990) Measurement of photochemical and non-photochemical quenching: correction for turnover of PS2 during steady-state photosynthesis. In: Baltscheffsky M (ed) Current research in photosynthesis. Springer, Dordrecht, pp 3073–3076

    Chapter  Google Scholar 

  • Martins SC, Galmés J, Molins A, DaMatta FM (2013) Improving the estimation of mesophyll conductance to CO2: on the role of electron transport rate correction and respiration. J Exp Bot 64:3285–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Lüscher J, Morales F, Sánchez-Díaz M, Delrot S, Aguirreolea J, Gomès E, Pascual I (2015) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176

    Article  PubMed  CAS  Google Scholar 

  • Masumoto C, Miyazawa S-I, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S et al (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA 107:5226–5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698

    Article  CAS  PubMed  Google Scholar 

  • McGuire MA, Marshall JD, Teskey RO (2009) Assimilation of xylem-transported 13C labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.). J Exp Bot 60:3809–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros DB, Daloso DM, Fernie AR, Nikoloski Z, Araujo WL (2015) Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. Plant Cell Environ 38:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Melzer E, O’Leary MH (1987) Anapleurotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 Plants. Plant Physiol 84:58–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer H (1899) Zur Theorie der Alkoholnarkose. Naunyn-Schmiedeberg’s Archives of Pharmacology 42:109–118

    Article  Google Scholar 

  • Meyer S, Genty B (1998) Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimated from leaf gas exchange. Plant Physiol 116:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer M, Seibt U, Griffiths H (2008) To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life. Philos T Roy Soc B 363:2767–2778

    Article  CAS  Google Scholar 

  • Miyazawa S-i, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:553–564

    Article  CAS  PubMed  Google Scholar 

  • Mizokami Y, Noguchi K, Kojima M, Sakakibara H, Terashima I (2015) Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant Cell Environ 38:388–398

    Article  CAS  PubMed  Google Scholar 

  • Montpied P, Granier A, Dreyer E (2009) Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy. J Exp Bot 60:2407–2418

    Article  CAS  PubMed  Google Scholar 

  • Mori CM, Rhee J, Shibasaka M, Sasano S, Kaneko T, Horie T, Katsuhara M (2014) CO2 transport by PIP2 aquaporins of barley. Plant Cell Physiol 55:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morison JIL, Gallouët E, Lawson T, Cornic G, Herbin R, Baker NR (2005) Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol 139:254–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow PA, Slatyer RO (1971) Leaf temperature effects on measurements of diffusive resistance to water vapor transfer. Plant Physiol 47:559–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss DN (1966) Respiration of leaves in light and darkness. Crop Sci 6:351–354

    Article  Google Scholar 

  • Moss DN, Rawlins SL (1963) Concentration of carbon dioxide inside leaves. Nature 197:1320–1321

    Article  CAS  Google Scholar 

  • Mott KA, Peak D (2011) Alternative perspective on the control of transpiration by radiation. Proc Natl Acad Sci USA 108:19820–19823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir CD, Hangarter RP, Moyle LC, Davis PA (2014) Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell Environ 37:1415–1426

    Article  CAS  PubMed  Google Scholar 

  • Murakami N (1995) Systematics and evolutionary biology of the fern genus Hymenasplenium (Aspleniaceae). J Plant Res 108:257–268

    Article  Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 29:1159–1178

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  CAS  PubMed  Google Scholar 

  • O’Leary MH (1982) Phosphoenolpyruvate carboxylase: an enzymologist’s view. Annu Rev Plant Physiol 33:297–315

    Article  Google Scholar 

  • Ogren WL (1984) Photorespiration-pathways, regulation, and modification. Annu Rev Plant Physiol 35:415–442

    Article  CAS  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F et al (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X et al (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285:31253–31260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overton CE (1901) Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie. Fischer, Jena

    Google Scholar 

  • Pallozzi E, Tsonev T, Marino G, Copolovici L, Niinemets Ü, Loreto F, Centritto M (2013) Isoprenoid emissions, photosynthesis and mesophyll diffusion conductance in response to blue light. Environ Exp Bot 95:50–58

    Article  CAS  Google Scholar 

  • Parkhurst DF (1994) Diffusion of CO2 and other gases inside leaves. New Phytol 126:449–479

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst DF, Givnish T (1986) Internal leaf structure: a three-dimensional perspective. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 215–249

    Google Scholar 

  • Parkhurst DF, Mott KA (1990) Intercellular diffusion limits to CO2 uptake in leaves studies in air and helox. Plant Physiol 94:1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peguero-Pina JJ, Siso S, Fernandez-Marin B, Flexas J, Galmés J, García-Plazaola JI et al (2015) Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in Quercus coccifera L. under Mediterranean conditions. Tree Physiol 36:356–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peguero-Pina JJ, Siso S, Flexas J, Galmés J, Garcia-Nogales A, Niinemets Ü, Sancho-Knapik D, Saz MA, Gil-Pelegrin E (2017) Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytol 214:585–596

    Article  CAS  PubMed  Google Scholar 

  • Perdomo JA, Carmo-Silva E, Hermida-Carrera C, Flexas J, Galmes J (2016) Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: implications for modeling photosynthesis. Front Plant Sci 7:1719

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernandez JE, Sebastiani L, Díaz-Espejo A (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot 65:3143–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perisanu ST (2001) Estimation of solubility of carbon dioxide in polar solvents. J Sol Chem 30:183–192

    Article  CAS  Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162

    Article  CAS  PubMed  Google Scholar 

  • Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53:2423–2430

    Article  CAS  PubMed  Google Scholar 

  • Pieruschka R, Schurr U, Jensen M, Wolff WF, Jahnke S (2006) Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. New Phytol 169:779–788

    Article  PubMed  Google Scholar 

  • Pinelli P, Loreto F (2003) 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration. J Exp Bot 54:1761–1769

    Article  CAS  PubMed  Google Scholar 

  • Poincelot R (1979) Carbonic anhydrase. In: Gibbs M, Latzko E (eds) Photosynthesis II. Springer, Dordrecht, pp 230–238

    Chapter  Google Scholar 

  • Pons TL, Welschen RAM (2003) Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiol 23:937–947

    Article  CAS  PubMed  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60:2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Priault P, Fresneau C, Noctor G, De Paepe R, Cornic G, Streb P (2006) The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. J Exp Bot 57:2075–2085

    Article  CAS  PubMed  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V et al (1994) Specific reduction of chloroplast carbonic-anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta 193:331–340

    Article  CAS  Google Scholar 

  • Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    Article  CAS  PubMed  Google Scholar 

  • Proctor MCF (2010) Trait correlations in bryophytes: exploring and alternative world. New Phyt 185:1–3

    Article  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101:11506–11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand RH, Cooke JR (1980) A comprehensive model for CO2 assimilation in leaves. Trans ASAE 23:601–607

    Article  Google Scholar 

  • Raven JA, Beardall J (2016) The ins and outs of CO2. J Exp Bot 67:1–13

    Article  CAS  PubMed  Google Scholar 

  • Rho H, Yu DJ, Kim SJ, Lee HJ (2012) Limitation factors for photosynthesis in ‘Bluecrop’ highbush blueberry (Vaccinium corymbosum) leaves in response to moderate water Stress. J Plant Biol 55:450–457

    Article  CAS  Google Scholar 

  • Rockwell FE, Holbrook NM, Stroock AD (2014) The competition between liquid and vapor transport in transpiring leaves. Plant Physiol 164:1741–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodeghiero M, Niinemets Ü, Cescatti A (2007) Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Plant Cell Environ 30:1006–1022

    Article  CAS  PubMed  Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275–6284

    Article  CAS  Google Scholar 

  • Rosell JA, Castorena M, Laws CA, Westoby M (2015) Bark ecology of twigs vs. main stems: functional traits across eighty-five species of angiosperms. Oecologia 178:1033–1043

    Article  PubMed  Google Scholar 

  • Rumeau D, Cuiné S, Fina L, Gault N, Nicole M, Peltier G (1996) Subcellular distribution of carbonic anhydrase in Solanum tuberosum L. leaves. Planta 199:79–88

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Streeter CM, Holbrook NM (2004) Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol 134:1824–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sade N, Shatil-Cohen A, Attia Z, Maurel C, Boursiac Y, Kelly G et al (2014) The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiol 166:1609–1620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–772

    Article  CAS  PubMed  Google Scholar 

  • Scafaro AP, Von Caemmerer S, Evans JR, Atwell BJ (2011) Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ 34:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Sestak Z, Catsky J, Jarvis PG (1971) Plant photosynthetic production. Manual of methods. Q Rev Biol 47:235

    Google Scholar 

  • Sharkey TD, Loreto F, Delwiche C (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14:333–338

    Article  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Silveira JAG, Ribeiro RV, Vieira SA (2015) Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery. Environ Exp Bot 110:36–45

    Article  Google Scholar 

  • Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA (2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J Plant Physiol 170:801–813

    Article  CAS  PubMed  Google Scholar 

  • Singsaas E, Ort D, DeLucia E (2004) Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ 27:41–50

    Article  CAS  Google Scholar 

  • Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009) Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). Plant Cell Environ 32:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino G, Haworth M, Wahbi S, Mahmood T, Zuomin S, Centritto M (2016) Abscisic acid induces rapid reductions in mesophyll conductance to carbon dioxide. PLoS ONE 11(2):e0148554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun Y, Gu LH, Dickinson RE, Pallardy SG, Baker J, Cao YH et al (2014) Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ 37:978–994

    Article  PubMed  CAS  Google Scholar 

  • Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157

    Article  Google Scholar 

  • Tazoe Y, von Caemmerer S, Badger MR, Evans JR (2009) Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J Exp Bot 60:2291–2301

    Article  CAS  PubMed  Google Scholar 

  • Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34:580–591

    Article  PubMed  Google Scholar 

  • Tcherkez G (2006) How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct Plant Biol 33:911–920

    Article  CAS  PubMed  Google Scholar 

  • Tcherkez G (2013) Is the recovery of (photo)respiratory CO2 and intermediates minimal? New Phytol 198:334–338

    Article  CAS  PubMed  Google Scholar 

  • Tcherkez G (2015) The mechanism of Rubisco-catalysed oxygenation. Plant Cell Environ 39:983–997

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez G, Ribas-Carbó M (2012) Interactions between photosynthesis and day respiration. In: Flexas J (ed) Terrestrial photosynthesis in a changing environment – a molecular, physiological and ecological approach. Cambridge University Press, Cambridge

    Google Scholar 

  • Tcherkez G, Nogues S, Bleton J, Cornic G, Badeck F, Ghashghaie J (2003) Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol 131:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Farquhar G, Badeck F, Ghashghaie J (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct Plant Biol 31(8):57–877

    Google Scholar 

  • Tcherkez G, Boex-Fontvieille E, Mahe A, Hodges M (2012) Respiratory carbon fluxes in leaves. Curr Opin Plant Biol 15:308–314

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Ono K (2002) Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol 43:70–78

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Saeki T (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Ann Bot 56:489–499

    Article  CAS  Google Scholar 

  • Terashima I, Wong S, Osmond CB (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29:385–394

    CAS  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Ooeda H, Fujita T, Oguchi R (2016) Light environment within a leaf. II. Progress in the past one-third century. J Plant Res 129:353–363

    Article  Google Scholar 

  • Théroux-Rancourt G, Gilbert ME (2017) The light response of mesophyll conductance is controlled by structure across leaf profiles. Plant Cell Environ 40:726–740

    Article  PubMed  CAS  Google Scholar 

  • Théroux-Rancourt G, Ethier G, Pepin S (2014) Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying. J Exp Bot 65:741–753

    Article  PubMed  CAS  Google Scholar 

  • Théroux-Rancourt G, Éthier G, Pepin S (2015) Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiol 35:172–184

    Article  PubMed  CAS  Google Scholar 

  • Tholen D (2005) Growth and Photosynthesis in Ethylene-Insensitive Plants. Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Tholen D, Zhu X-G (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156:90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu X-G (2012a) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Boom C, Zhu X-G (2012b) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101

    Article  CAS  PubMed  Google Scholar 

  • Tomas M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H et al (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64:2269–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomas M, Medrano H, Brugnoli E, Escalona JM, Martorell S, Pou A, Ribas-Carbó M, Flexas J (2014) Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Aust J Grape Wine Res 20:272–280

    Article  CAS  Google Scholar 

  • Tominaga J, Kawamitsu Y (2015) Cuticle affects calculations of internal CO2 in leaves closing their stomata. Plant Cell Physiol 56:1900–1908

    Article  CAS  PubMed  Google Scholar 

  • Tosens T, Niinemets Ü, Vislap V, Eichelmann H, Castro Diez P (2012a) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35:839–856

    Article  CAS  PubMed  Google Scholar 

  • Tosens T, Niinemets Ü, Westoby M, Wright IJ (2012b) Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot 63:5105–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M et al (2015) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590

    Article  PubMed  CAS  Google Scholar 

  • Tremmel I, Kirchhoff H, Weis E, Farquhar GD (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Biophys Acta 1607:97–109

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Valentini R, Epron D, Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Van Gestel K, Kohler RH, Verbelen JP (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    Article  PubMed  Google Scholar 

  • Verdoucq L, Rodrigues O, Martinière A, Luu DT, Maurel C (2014) Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. Curr Opin Plant Biol 22:101–107

    Article  CAS  PubMed  Google Scholar 

  • Veromann-Jürgenson LL, Tosens T, Laanisto L, Niinemets Ü (2017) Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living. J Exp Bot 68:1639–1653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vesala T, Ahonen T, Hari P, Krissinel E, Shokhirev N (1996) Analysis of stomatal CO2 uptake by a three-dimensional cylindrically symmetric model. New Phytol 132:235–245

    Article  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Article  Google Scholar 

  • Volkova L, Bennett LT, Tausz M (2009) Effects of sudden exposure to high light levels on two tree fern species Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) acclimated to different light intensities. Aust J Bot 57:562–571

    Article  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO, Collingwood

    Google Scholar 

  • von Caemmerer S (2013) Steady-state models of photosynthesis. Plant Cell Environ 36:1617–1630

    Article  CAS  Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1, 5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  Google Scholar 

  • Vrabl D, Vaskova M, Hronkova M, Flexas J, Santrucek J (2009) Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid. J Exp Bot 60:2315–2323

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Suetsugu N (2004) Plant organelle positioning. Curr Opin Plant Biol 7:626–631

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Walker BJ, Ort DR (2015) Improved method for measuring the apparent CO2 photocompensation point resolves the impact of multiple internal conductances to CO2 to net gas exchange. Plant Cell Environ 38:2462–2474

    Article  CAS  PubMed  Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    Article  CAS  PubMed  Google Scholar 

  • Warren C (2006) Estimating the internal conductance to CO2 movement. Funct Plant Biol 33:431–442

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067

    Article  CAS  PubMed  Google Scholar 

  • Warren C, Löw M, Matyssek R, Tausz M (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ Exp Bot 59:130–138

    Article  CAS  Google Scholar 

  • Warren CR, Aranda I, Cano FJ (2011) Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant Cell Environ 34:1609–1629

    Article  CAS  PubMed  Google Scholar 

  • Weissbach A, Horecker BL, Hurwitz J (1956) Enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem 218:795–810

    CAS  PubMed  Google Scholar 

  • Williams TG, Flanagan LB (1998) Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium. Plant Cell Environ 21:555–564

    Article  CAS  Google Scholar 

  • Williams LE, Kennedy RA (1978) Photosynthetic carbon metabolism during leaf ontogeny in Zea mays L.: enzyme Studies. Planta 142:269–274

    Article  CAS  PubMed  Google Scholar 

  • Williams TG, Flanagan LB, Coleman JR (1996) Photosynthetic gas exchange and discrimination against 13CO2 and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase. Plant Physiol 112:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J (2007) Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ 30:600–616

    Article  CAS  PubMed  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B, Johnson DM (2009) Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol 29:261–272

    Article  CAS  PubMed  Google Scholar 

  • Wuyts N, Massonnet C, Dauzat M, Granier C (2012) Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach. Plant Cell Environ 35:1631–1646

    Article  PubMed  Google Scholar 

  • Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J (2015a) Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J Exp Bot 66:741–748

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Liu X, Liu L, Douthe C, Li Y, Peng S, Huang J (2015b) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ 38:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Chen J, Yu T, Gao W, Ling X, Li Y et al (2015c) SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci Rep 5:13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong D, Wang D, Liu X, Peng S, Huang J, Li Y (2016) Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Ann Bot 117:963–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Noguchi K, Hanba YT, Terashima I (2006) Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Physiol 47:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Yaneff A, Sigaut L, Marquez M, Alleva K, Isabel Pietrasanta L, Amodeo G (2014) Heteromerization of PIP aquaporins affects their intrinsic permeability. Proc Natl Acad Sci USA 111:231–236

    Article  CAS  PubMed  Google Scholar 

  • Yaneff A, Vitali V, Amodeo G (2015) PIP1 aquaporins: intrinsic water channels or PIP2 aquaporin modulators? FEBS Lett 589:3508–3515

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Fukuda N, van Hoek A, Matthay MA, Ma T, Verkman A (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 275:2686–2692

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC (2017) Simple generalisation of a mesophyll resistance model for various intracellular arrangements of chloroplasts and mitochondria in C3 leaves. Photosynth Res 132:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Puten PEL, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-B, Sun M, Cao K-F, Hu H, Zhang J-L (2014) Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLoS One 9:e84682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu X-G, Wang Y, Ort DR, Long SP (2013) e-photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. Plant Cell Environ 36:1711–1727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the Plan Nacional, Spain (contract CTM2014-53902-C2-1-P from the Spanish Ministry of Economy and Competitiveness – MINECO – and the ERDF – FEDER) awarded to Jaume Flexas and by the Conselleria d’Educació, Cultura i Universitats (Govern de les Illes Balears) and European Social Fund, predoctoral fellowship FPI/1700/2014, awarded to Marc Carriquí. Dongliang Xiong thanks the China Scholarship Council (CSC) for the funding of joint PhD training. Francisco Javier Cano thanks funding by the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE1401000015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Flexas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flexas, J. et al. (2018). CO2 Diffusion Inside Photosynthetic Organs. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_7

Download citation

Publish with us

Policies and ethics