Skip to main content

Vehicle-to-Vehicle Communication

  • Chapter
  • First Online:

Part of the book series: Urban Computing ((UC))

Abstract

Intervehicle communication has spurred an increase in the application of intelligent transportation systems. The related services and applications use vehicles to sense a particular region of a city or even monitor traffic conditions in a given urban area. These applications use the communication between vehicles to disseminate information and propagate data quickly and efficiently. Thus, the dissemination of data in a vehicle network becomes an important tool because certain regional content or information may be relevant to a certain set of vehicles. However, due to variations in road density, the high mobility of vehicles, the short time of vehicle residence, and frequent changes in network topology, the development of an efficient routing or data dissemination protocol for this type of network poses a challenge. This chapter describes techniques and a protocol that can be used to perform data dissemination and transmit a data route in a vehicular network to allow that information to reach its destination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akamatsu R, Suzuki M, Okamoto T, Hara K, Shigeno H (2014) Adaptive delay-based geocast protocol for data dissemination in urban vanet. In: Proceedings of the seventh international conference on mobile computing and ubiquitous networking, pp 141–146

    Google Scholar 

  2. Aparecido L (2015) Data dissemination in vehicular networks: challenges, solutions, and future perspectives. In: Proceedings of the 7th international conference on new technologies, mobility and security, pp 1–5

    Google Scholar 

  3. Bronsted J, Kristensen LM (2006) Specification and performance evaluation of two zone dissemination protocols for vehicular ad-hoc networks. In: Proceedings of the 39th annual symposium on simulation. IEEE Computer Society, Washington, pp 68–79

    Google Scholar 

  4. Cha SH, Lee KW, Cho HS (2012) Grid-based predictive geographical routing for inter-vehicle communication in urban areas. Int J Distrib Sens Netw 8(3):819497

    Article  Google Scholar 

  5. Chaqfeh M, Lakas A, Jawhar I (2014) A survey on data dissemination in vehicular ad hoc networks. Veh Commun 1(4):214–225

    Article  Google Scholar 

  6. Chen YS, Lin YW, Lee SL (2009) A mobicast routing protocol in vehicular ad-hoc networks. In: Proceedings of the IEEE global telecommunications conference, pp 1–6

    Google Scholar 

  7. Chen YS, Lin YW, Lee SL (2010) A mobicast routing protocol with carry-and-forward in vehicular ad-hoc networks. In: Proceedings of the 5th international ICST conference on communications and networking in China, pp 1–5

    Google Scholar 

  8. Chen W, Guha RK, Kwon TJ, Lee J, Hsu YY (2011) A survey and challenges in routing and data dissemination in vehicular ad hoc networks. Wirel Commun Mob Comput 11(7):787–795

    Article  Google Scholar 

  9. Cheng PC, Weng JT, Tung LC, Lee KC, Gerla M, Haerri J (2008) Geodtn+ nav: a hybrid geographic and dtn routing with navigation assistance in urban vehicular networks. MobiQuitous/ISVCS 47

    Google Scholar 

  10. Cunha F, Villas L, Boukerche A, Maia G, Viana A, Mini RA, Loureiro AA (2016) Data communication in vanets: protocols, applications and challenges. Ad Hoc Netw 44:90–103

    Article  Google Scholar 

  11. Durresi M, Durresi A, Barolli L (2005) Emergency broadcast protocol for inter-vehicle communications. In: Proceedings of the 11th international conference on parallel and distributed systems, vol 2, pp 402–406

    Google Scholar 

  12. Füßler H, Widmer J, Käsemann M, Mauve M, Hartenstein H (2003) Contention-based forwarding for mobile ad hoc networks. Ad Hoc Netw 1(4):351–369

    Article  Google Scholar 

  13. Ghazal A, Wang CX, Ai B, Yuan D, Haas H (2015) A nonstationary wideband mimo channel model for high-mobility intelligent transportation systems. IEEE Trans Intell Transp Syst 16(2):885–897

    Google Scholar 

  14. Jacquet P, Muhlethaler P, Clausen T, Laouiti A, Qayyum A, Viennot L (2001) Optimized link state routing protocol for ad hoc networks. In: Proceedings of the IEEE international multi topic conference, pp 62–68

    Google Scholar 

  15. Johnson DB, Maltz DA, Broch J et al (2001) DSR: the dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Netw (5):139–172

    Google Scholar 

  16. Karp B, Kung HT (2000) GPSR: greedy perimeter stateless routing for wireless networks. In: Proceedings of the 6th annual international conference on mobile computing and networking. ACM, New York, pp 243–254

    Google Scholar 

  17. Kaur N, Singh A (2015) Article: a survey on data dissemination protocols used in vanets. Int J Comput Appl 120(23):43–50

    Google Scholar 

  18. Kihl M, Sichitiu M, Ekeroth T, Rozenberg M (2007) Reliable geographical multicast routing in vehicular ad-hoc networks. Springer, Berlin, pp 315–325

    Google Scholar 

  19. Korkmaz G, Ekici E, Özgüner F, Özgüner U (2004) Urban multi-hop broadcast protocol for inter-vehicle communication systems. In: Proceedings of the 1st ACM international workshop on vehicular ad hoc networks. ACM, New York, pp 76–85

    Google Scholar 

  20. LeBrun J, Chuah CN, Ghosal D, Zhang M (2005) Knowledge-based opportunistic forwarding in vehicular wireless ad hoc networks. In: Proceedings of the 61st vehicular technology conference, vol 4, pp 2289–2293

    Google Scholar 

  21. Li F, Wang Y (2007) Routing in vehicular ad hoc networks: a survey. IEEE Veh Technol Mag 2(2):12–22

    Article  Google Scholar 

  22. Lin D, Kang J, Squicciarini A, Wu Y, Gurung S, Tonguz O (2017) Mozo: a moving zone based routing protocol using pure v2v communication in vanets. IEEE Trans Mobile Comput 16(5):1357–1370

    Article  Google Scholar 

  23. Liu G, Lee BS, Seet BC, Foh CH, Wong KJ, Lee KK (2004) A routing strategy for metropolis vehicular communications. In: Information networking. Networking technologies for broadband and mobile networks, pp 134–143

    Google Scholar 

  24. Lochert C, Hartenstein H, Tian J, Fussler H, Hermann D, Mauve M (2003) A routing strategy for vehicular ad hoc networks in city environments. In: Proceedings of the intelligent vehicles symposium, pp 156–161

    Google Scholar 

  25. Lochert C, Mauve M, Fussler H, Hartenstein H (2005) Geographic routing in city scenarios. SIGMOBILE Mob Comput Commun Rev 9(1):69–72

    Article  Google Scholar 

  26. Maia G, Aquino AL, Viana A, Boukerche A, Loureiro AA (2012) HyDi: a hybrid data dissemination protocol for highway scenarios in vehicular ad hoc networks. In: Proceedings of the second ACM international symposium on design and analysis of intelligent vehicular networks and applications. ACM, New York, pp 115–122

    Google Scholar 

  27. Maihofer C, Eberhardt R (2004) Geocast in vehicular environments: caching and transmission range control for improved efficiency. In: Proceedings of the IEEE intelligent vehicles symposium, pp 951–956

    Google Scholar 

  28. Meneguette RI (2016) A vehicular cloud-based framework for the intelligent transport management of big cities. Int J Distrib Sens Netw 12(5):8198597

    Article  Google Scholar 

  29. Meneguette RI, Boukerche A, Maia G, Loureiro AA, Villas LA (2014) A self-adaptive data dissemination solution for intelligent transportation systems. In: Proceedings of the 11th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. ACM, New York, pp 69–76

    Google Scholar 

  30. Moy J (1997) OSPF version 2. Internet Request for Comments: 2328, pp 1–244

    Google Scholar 

  31. Murthy S, Garcia-Luna-Aceves JJ (1996) An efficient routing protocol for wireless networks. Mob Netw Appl 1(2):183–197

    Article  Google Scholar 

  32. Namboodiri V, Gao L (2007) Prediction-based routing for vehicular ad hoc networks. IEEE Trans Veh Technol 56(4):2332–2345

    Article  Google Scholar 

  33. Namboodiri V, Agarwal M, Gao L (2004) A study on the feasibility of mobile gateways for vehicular ad-hoc networks. In: Proceedings of the 1st ACM international workshop on vehicular ad hoc networks. ACM, New York, pp 66–75

    Google Scholar 

  34. Naumov V, Baumann R, Gross T (2006) An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces. In: Proceedings of the 7th ACM international symposium on mobile ad hoc networking and computing. ACM, New York, pp 108–119

    Google Scholar 

  35. Nikaein N, Labiod H, Bonnet C (2000) DDR-distributed dynamic routing algorithm for mobile ad hoc networks. In: Proceedings of the first annual workshop on mobile and ad hoc networking and computing, pp 19–27

    Google Scholar 

  36. Ogier R, Templin F, Lewis M (2004) Topology dissemination based on reverse-path forwarding (TBRPF). Internet Request for Comments: 3684, pp 1–46

    Google Scholar 

  37. Perkins C, Belding-Royer E, Das S (2003) Ad hoc on-demand distance vector (AODV) routing. Tech. Rep

    Book  Google Scholar 

  38. Royer EM, Perkins CE (1999) Multicast operation of the ad-hoc on-demand distance vector routing protocol. In: Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking. ACM, New York, pp 207–218

    Google Scholar 

  39. Santos RA, Edwards A, Edwards RM, Seed NL (2005) Performance evaluation of routing protocols in vehicular ad-hoc networks. Int J Ad Hoc Ubiquitous Comput 1(1/2):80–91

    Article  Google Scholar 

  40. Schwartz RS, Barbosa RRR, Meratnia N, Heijenk G, Scholten H (2011) A directional data dissemination protocol for vehicular environments. Comput Commun 34(17):2057–2071

    Article  Google Scholar 

  41. Sharef BT, Alsaqour RA, Ismail M (2014) Vehicular communication ad hoc routing protocols: a survey. J Netw Comput Appl 40:363–396

    Article  Google Scholar 

  42. Sichitiu ML, Kihl M (2008) Inter-vehicle communication systems: a survey. IEEE Commun Surv Tutorials 10(2):88–105

    Article  Google Scholar 

  43. Sivaswamy S, Wang G, Ababei C, Bazargan K, Kastner R, Bozorgzadeh E (2005) Harp: hard-wired routing pattern FPGAs. In: Proceedings of the ACM/SIGDA 13th international symposium on Field-programmable gate arrays. ACM, New York, pp 21–29

    Google Scholar 

  44. Sladkowski A, Pamula W (2015) Intelligent transportation systems - problems and perspectives. Springer, Berlin

    Google Scholar 

  45. Souza AB, Celestino J, Xavier FA, Oliveira FD, Patel A, Latifi M (2013) Stable multicast trees based on ant colony optimization for vehicular ad hoc networks. In: Proceedings of the international conference on information networking, pp 101–106

    Google Scholar 

  46. Toh CK (1996) A novel distributed routing protocol to support ad-hoc mobile computing. In: Proceedings of the IEEE fifteenth annual international phoenix conference on computers and communications, pp 480–486

    Google Scholar 

  47. Tonguz OK, Wisitpongphan N, Bai F (2010) DV-cast: a distributed vehicular broadcast protocol for vehicular ad hoc networks. IEEE Wirel Commun 17(2):47–57

    Article  Google Scholar 

  48. Vahdat A, Becker D et al (2000) Epidemic routing for partially connected ad hoc networks. Technical Report CS-200006, Duke University, pp 1–14

    Google Scholar 

  49. Villas LA, Boukerche A, Maia G, Pazzi RW, Loureiro AA (2014) Drive: an efficient and robust data dissemination protocol for highway and urban vehicular ad hoc networks. Comput Netw 75:381–394

    Article  Google Scholar 

  50. Vodopivec S, Bešter J, Kos A (2014) A multihoming clustering algorithm for vehicular ad hoc networks. Int J Distrib Sens Netw 10(3):107085

    Article  Google Scholar 

  51. Zeadally S, Hunt R, Chen YS, Irwin A, Hassan A (2012) Vehicular ad hoc networks (vanets): status, results, and challenges. Telecommun Syst 50(4):217–241

    Article  Google Scholar 

  52. Zhao J, Cao G (2008) VADD: vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Trans Veh Technol 57(3):1910–1922

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

I. Meneguette, R., E. De Grande, R., A. F. Loureiro, A. (2018). Vehicle-to-Vehicle Communication. In: Intelligent Transport System in Smart Cities. Urban Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-93332-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93332-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93331-3

  • Online ISBN: 978-3-319-93332-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics