Skip to main content

Determining Plant Water Relations

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

As for all living organisms, water is fundamental for plants, not only because water is the origin of life (Daniel et al. 2006), but because plants use water loss by transpiration as a mechanisms of heat dissipation and cooling of leaves (Curtis 1936; Pallas et al. 1967), and furthermore, water is essential to maintain plant cell turgor and favor plant growth. Thus, the percentage of water in plant tissues (the term plant in this chapter will be referred only to higher plants) may range from 30 to 50% in woody trunks (Borchert 1994) to around 90% in leaves and roots of several plant species. However, since plants are sessile organisms they have need to develop mechanisms to get water homeostasis mostly when water availability is scare. The main mechanisms that plants have to regulate their water content are the regulation of stomatal aperture and of root water uptake properties (Vaadia et al. 1961; Aroca et al. 2012). Thus, this chapter will start describing the methods for measuring root water uptake capacity, followed by methods determining xylem sap flow, tissue water status and stomatal aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ache P, Bauer H, Kollist H, Al-Rasheid KAS, Lautner S, Hartung W, Hedrich R (2010) Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J 62:1072–1082

    PubMed  CAS  Google Scholar 

  • Aldea M, Frank TD, DeLucia EH (2006) A method for quantitative analysis of spatially variable physiological processes across leaf surfaces. Photosynth Res 90(2):161–172

    Article  PubMed  CAS  Google Scholar 

  • Alder NN, Pockman WT, Sperry JS, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48:665–674

    Article  CAS  Google Scholar 

  • Aoyama Y, Suzuki K, Tabe Y, Chikahisa T (2014) Observation of water transport in the micro-porous of a PEFC with freezing method and cryo-SEM. Electrochem Commun 41:72–75

    Article  CAS  Google Scholar 

  • Araus J, Slafer G, Reynolds M, Royo C (2002) Plant breeding and drought in C-3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Tognoni F, Irigoyen JJ, Sánchez-Díaz M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 39:1067–1073

    Article  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Barón M, Flexas J, Delucia EH (2012) Photosynthetic responses to biotic stress. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological, and ecological approach, vol 1. Cambridge University Press, Cambridge, pp 331–350

    Chapter  Google Scholar 

  • Barón M, Pineda M, Pérez-Bueno ML (2016) Picturing pathogen infection in plants. Z Naturforsch C Bio Sci 71:355–368. https://doi.org/10.1515/znc-2016-0134

    Article  CAS  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martínez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bigot J, Boucaud J (2000) Effects of Ca-signalling inhibitors on short-term cold-acclimation of hydraulic conductivity in roots of Brassica rapa plants. J Plant Physiol 157:7–12

    Article  CAS  Google Scholar 

  • Borchert R (1994) Electric resistance as a measure of tree water status during seasonal drought in a tropical dry forest in Costa Rica. Tree Physiol 14:299–312

    Article  PubMed  CAS  Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Lee EF, Shackel KA, Matthews MA (2013) In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol 161:1820–1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodribb TJ, Bowman DMJS, Nichols S, Delzon S, Burlett R (2010) Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188:533–542

    Article  PubMed  Google Scholar 

  • Cai J, Tyree MT (2010) The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ 33:1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029

    Article  PubMed  CAS  Google Scholar 

  • Canny MJ (1997) Vessel contents during transpiration: embolisms and refilling. Am J Bot 84:1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Van der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519(3):153–166

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van der Straeten D (1999) Presymptomatic visualization of plant-virus interactions by thermography. Nat Biotechnol 17(8):813–816

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45(7):887–896

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Pineda M, Romero-Aranda R, Van der Straeten D, Barón M (2006) Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. Plant Cell Physiol 47(9):1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Charra-Vaskou K, Badel E, Burlett R, Cochard H, Delzon S, Mayr S (2012) Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves. Tree Physiol 32:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Charrier G, Torres-Ruiz JM, Badel E, Burlett R, Choat B, Cochard H, Delmas CE, Domec JC, Jansen S, King A, Lenoir N, Martin-StPaul N, Gambetta GA, Delzon S (2016) Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiol 172(3):1657–1668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S (2016) Non-invasive measurement of vulnerability to drought induced embolism by X-ray microtomography. Plant Physiol 170:273–282

    Article  PubMed  CAS  Google Scholar 

  • Cochard H (1992) Vulnerability of several conifers to air embolism. Tree Physiol 11:73–83

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Bodet C, Ameglio T, Cruiziat P (2000) Cryoscanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Améglio T (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418

    Article  CAS  Google Scholar 

  • Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010) Does sample length influence the shape of xylem embolism vulnerability curves? a test with the Cavitron spinning technique. Plant Cell Environ 33:1543–1552

    PubMed  Google Scholar 

  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 64:4779–4791

    Article  PubMed  CAS  Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant-environment interactions. J Exp Bot 64(13):3937–3949

    Article  PubMed  CAS  Google Scholar 

  • Curtis OF (1936) Transpiration and the cooling of leaves. Am J Bot 23:7–10

    Article  Google Scholar 

  • Dalla-Salda G, Fernández ME, Sergent AS, Rozenberg P, Badel E, Martinez-Meier A (2014) Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of the ring? J Plant Hydraul 1:e0005

    Article  Google Scholar 

  • Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875

    Article  PubMed  CAS  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138. https://doi.org/10.3389/fpls.2013.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • de Marcos A, Triviño M, Pérez-Bueno ML, Ballesteros I, Barón M, Mena M, Fenoll C (2015) Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata. Front Plant Sci 6:456. https://doi.org/10.3389/fpls.2015.00456

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon HH (1914) Transpiration and the ascent of sap in plants. MacMillan, London

    Book  Google Scholar 

  • Elsayed S, Mistele B, Schmidhalter U (2011) Can changes in leaf water potential be assessed spectrally? Funct Plant Biol 38:523–533

    Google Scholar 

  • Erice G, Irigoyen J, Perez P, Martinez-Carrasco R, Sanchez-Diaz M (2006) Effect of elevated CO2, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa. Plant Sci 170:1059–1067

    Article  CAS  Google Scholar 

  • Erice G, Sanz-Sáez A, Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M (2012) Future environmental conditions will limit yield in N2 fixing alfalfa. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin/Heidelberg, pp 363–382

    Chapter  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  PubMed  CAS  Google Scholar 

  • Fiscus EL (1977) Determination of hydraulic and osmotic properties of soybean root systems. Plant Physiol 59:1013–1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiscus EL (1986) Diurnal changes in volume and solute transport coefficients of Phaseolus roots. Plant Physiol 80:752–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs M, Tanner CB (1966) Infrared thermometry of vegetation. Agron J 58:597–601

    Article  Google Scholar 

  • Furbank R (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36:V–VI

    Article  Google Scholar 

  • Gillon D, Dauriac F, Deshayes M, Valette JC, Moro C (2004) Estimation of foliage moisture content using near infrared reflectance spectroscopy. Agric Forest Meteorol 124:51–62

    Article  Google Scholar 

  • Granum E, Pérez-Bueno ML, Calderón CE, Ramos C, de Vicente A, Cazorla FM, Barón M (2015) Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging. Eur J Plant Pathol 142(3):625–632

    Article  CAS  Google Scholar 

  • Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB (2015) The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytol 205:116–127

    Article  PubMed  Google Scholar 

  • Haus MJ, Kelsch RD, Jacobs TW (2015) Application of optical topometry to analysis of the plant epidermis. Plant Physiol 169(2):946–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirasawa T, Tsuchida M, Ishihara K (1992) Relationship between resistance to water transport and exudation rate and the effect of the resistance on the midday depression of stomatal aperture in rica plants. Jpn J Crop Sci 61:145–152

    Article  Google Scholar 

  • Holbrook NM, Zwieniecki MA (2005) Vascular transport in plants. Elsevier/Academic, Oxford

    Google Scholar 

  • Homan N, Windt CW, Vergeldt FJ, Gerkema E, Van As H (2007) 0.7 and 3 T MRI and sap flow in intact trees: xylem and phloem in action. Appl Magn Reson 32:157–170

    Article  Google Scholar 

  • Humplik JF, Lazar D, Husickova A, Spichal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11:29. https://doi.org/10.1186/s13007-015-0072-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IPCC (2013) Climate Change 2013: The physical science basis. Cambridge University Press, New York

    Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22(9):1043–1055

    Article  Google Scholar 

  • Jones HG (2004a) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–163

    Article  Google Scholar 

  • Jones HG (2004b) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55(407):2427–2436

    Article  PubMed  CAS  Google Scholar 

  • Jones H (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130

    Article  PubMed  CAS  Google Scholar 

  • Jones HG (2011) Remote detection of crop water “stress” and distinguishing it from other stresses. In: Fernandez JE, Ferreira MI (eds) Xxviii international horticultural congress on science and horticulture for people, Acta Horticulturae, vol 922. International Society for Horticultural Science, Leuven, pp 23–34

    Google Scholar 

  • Jones H, Luton M, Higgs K, Hamer P (1983) Experimental control of water status in an apple orchard. J Hortic Sci 58:301–316

    Article  Google Scholar 

  • Jones HG, Stoll M, Santos T, de Sousa C, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53(378):2249–2260

    Article  PubMed  CAS  Google Scholar 

  • Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Article  Google Scholar 

  • Kang S, Shan L, Davies B, Cai H (2003) International Conference on Water-Saving Agriculture and Sustainable Use of Water and Land Resources (ICWSAWLR) – organized by Northwest Sci-Tech University of Agriculture and Forestry (NWSUAF), China and the Lancaster Environment Centre (LEC), Lancaster University, UK – Yangling, Shaanxi, PR China – 26–29 October 2003 – Preface. J Exp Bot 54:2–2

    Article  Google Scholar 

  • Kikuta SB (2003) Ultrasound acoustic emissions from bark samples differing in anatomical characteristics. Phyton 43:161–178

    Google Scholar 

  • Knipfer T, Cuneo IF, Brodersen CR, McElrone AJ (2016) In situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: a study on excised grapevine stems. Plant Physiol 171:1024–1036

    PubMed  PubMed Central  Google Scholar 

  • Köckenberger W, Pope JM, Xia Y, Komor E, Jeffrey KR, Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201:53–63

    Article  Google Scholar 

  • Köckenberger W, De Panfilis C, Santoro D, Dahiya P, Rawsthorne S (2004) High resolution NMR microscopy of plants and fungi. J Microsc 214:182–189

    Article  PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, New York

    Google Scholar 

  • Kriston-Vizi J, Umeda M, Miyamoto K (2008) Assessment of the water status of mandarin and peach canopies using visible multispectral imagery. Biosyst Eng 100:338–345

    Article  Google Scholar 

  • Kudoyarova GR, Kholodova VP, Veselov DS (2013) Current state of the problem of water relations in plants under water deficit. Russ J Plant Physiol 60:165–175

    Article  CAS  Google Scholar 

  • Lewis M, Harnden VD, Tyree MT (1994) Collapse of water-stress emboli in the tracheids of Thuja occidentalis L. Plant Physiol 106:1639–1646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Sperry JS, Taneda H, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568

    PubMed  Google Scholar 

  • Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14(11):20078–20111. https://doi.org/10.3390/s141120078

    Article  PubMed  Google Scholar 

  • Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A (2015) Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11:9. https://doi.org/10.1186/s13007-015-0048-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Long SP, Hällgren J-E (1993) Measurement of CO2 assimilation by plants in the field and the laboratory. In: Hall DO, JMO S, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman and Hall, London, pp 129–219

    Google Scholar 

  • Lopez R, Cano FJ, Choat B, Cochard H, Gil L (2016) Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient. Front Plant Sci 7:769

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahdieh M, Mostajeran A, Katsuhara M (2016) Phosphorous deprivation effects on water relations of Nicotiana tabacum plant via reducing plasma membrane permeability. Russ J Plant Physiol 63:54–61

    Article  CAS  Google Scholar 

  • Mahlein A-K (2016) Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100(2):241–251. https://doi.org/10.1094/pdis-03-15-0340-fe

    Article  Google Scholar 

  • Markhart AH, Fiscus EL, Naylor AW, Kramer PJ (1979) Effect of abscisic acid on root hydraulic conductivity. Plant Physiol 64:611–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDermitt DK (1990) Sources of error in the estimation of stomatal conductance and transpiration from porometer data. Hortscience 25:1538–1548

    Google Scholar 

  • McLachlan DH, Kopischke M, Robatzek S (2014) Gate control: guard cell regulation by microbial stress. New Phytol 203(4):1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Melcher PJ, Holbrook NM, Burns MJ, Zwieniecki MA, Cobb AR, Brodribb TJ, Sack L (2012) Measurements of stem xylem hydraulic conductivity in the laboratory and field. Meth Ecol Evol 3:685–694

    Article  Google Scholar 

  • Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30(5):601–609

    Article  PubMed  CAS  Google Scholar 

  • Milburn JA, Johnson RPC (1966) The conduction of sap. II. Detection of vibrations produced by sap cavitation in Ricinus xylem. Planta 69:43–52

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Laffite R (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Sawai Y, Yamaguchi Y (2006) Moisture content measurement of tea leaves by electrical impedance and capacitance. Biosyst Eng 93:293–299

    Article  Google Scholar 

  • Nardini A, Tyree MT (1999) Root and shoot hydraulic conductance of seven Quercus species. Ann For Sci 56:371–377

    Article  Google Scholar 

  • Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol 125:1700–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S (2017) X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytol 213(3):1068–1075

    Article  PubMed  CAS  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Nobel PS (1991) Leaves and fluxes. In: Nobel PS (ed) Physicochemical and environmental plant physiology. Academic, San Diego, pp 393–472

    Chapter  Google Scholar 

  • Ogasa MY, Utsumi Y, Miki NH, Yazaki K, Fukuda K (2016) Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging. Plant Cell Environ 39:329–337

    Article  PubMed  CAS  Google Scholar 

  • Pallas JE, Michel BE, Harris DG (1967) Photosynthesis, transpiration, leaf temperature and stomatal activity of cotton plants under varying water potentials. Plant Physiol 42:76–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passioura J (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    Article  CAS  Google Scholar 

  • Pérez-Bueno ML, Pineda M, Díaz-Casado ME, Barón M (2015) Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol Plant 153(1):161–174

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Bueno ML, Granum E, Pineda M, Flors V, Rodríguez-Palenzuela P, López-Solanilla E, Barón M (2016) Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii. Front Plant Sci 6:1209. https://doi.org/10.3389/fpls.2015.01209

    Article  PubMed  PubMed Central  Google Scholar 

  • Pockman WT, Sperry JS, O’Leary JW (1995) Sustained significant negative water pressure in xylem. Nature 378:715–716

    Article  CAS  Google Scholar 

  • Ranathunge K, Steudle E, Latiffe R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205

    PubMed  CAS  Google Scholar 

  • Redmann RE (1985) Adaptation of grasses to water stress-leaf rolling and stomata distribution. Ann Missouri Bot Gard 72(4):833–842

    Article  Google Scholar 

  • Richard A (1838) Nouveaux Élémens de Botanique et de Physiologie Végétale, 6th edn. Béchet Jeune, Paris

    Google Scholar 

  • Sack L, Bartlett M, Creese C, Guyot G, Scoffoni C (2011) Constructing and operating a hydraulics flow meter (Prometheus Wiki, 2011). http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Constructing+and+operatinga+hydraulics+flow+meter

  • Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MC, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, Aroca R (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995–1008

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Morris H, Shimada H, Ronse De Craene LP, Jansen S (2011) Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Ann Bot 107:953–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Saranga Y, Flash I, Paterson A, Yakir D (1999) Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Sci 142:47–56

    Article  CAS  Google Scholar 

  • Sawinski K, Mersmann S, Robatzek S, Bohmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant-Microbe Interact 26(6):626–632. https://doi.org/10.1094/MPMI-12-12-0288-CR

    Article  PubMed  CAS  Google Scholar 

  • Scholander P, Hammel H, Bradstreet E, Hemmingsen E (1965) Sap pressure in vascular plants – negative hydrostatic pressure can be measured in plants. Science 148:339

    Article  PubMed  CAS  Google Scholar 

  • Slatyer RO (1967) Plant-water relationships. Academic, London

    Google Scholar 

  • Smith HB (1941) Variation and correlation of stomatal frequency and transpiration rate in Phaseolus vulgaris. Am J Bot 28:722–725

    Article  Google Scholar 

  • Sobrino JA, Jimenez-Munoz JC, Zarco-Tejada PJ, Sepulcre-Canto G, de Miguel E, Soria G, Romaguera M, Julien Y, Cuenca J, Hidalgo V, Franch B, Mattar C, Morales L, Gillespie A, Sabol D, Balick L, Su Z, Jia L, Gieske A, Timmermans W, Olioso A, Nerry F, Guanter L, Moreno J, Shen Q (2009) Thermal remote sensing from airborne hyperspectral scanner data in the framework of the SPARC and SEN2FLEX projects: an overview. Hydrol Earth Syst Sci 13(11):2031–2037

    Article  Google Scholar 

  • Sperry JS (1986) Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol 80:110–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sperry JS, Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241

    Article  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Steudle E (1997) Water transport across plant tissue: role of water channels. Biol Cell 89:259–273

    Article  CAS  Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Steudle E, Jeschke WD (1983) Water transport in barley roots. Planta 158:237–248

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Steudle E, Oren R, Schulze ED (1987) Water transport in maize roots. Measurement of hydraulic conductivity, solute permeability, and of reflection coefficients of excised roots using the root pressure probe. Plant Physiol 84:1220–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suuronen JP, Peura M, Fagerstedt K, Serimaa R (2013) Visualizing water-filled versus embolized status of xylem conduits by desktop x-ray microtomography. Plant Methods 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Annu Rev Plant Physiol Plant Mol Biol 50:447–472

    Article  PubMed  CAS  Google Scholar 

  • Torres-Ruiz JM, Cochard H, Mayr S, Beikircher B, Diaz-Espejo A, Rodriguez-Dominguez CM, Badel E, Fernandez JE (2014) Vulnerability to cavitation in Olea europaea current-year shoots: further evidence of an open-vessel artifact associated with centrifuge and air-injection techniques. Physiol Plant 153:465–474

    Article  CAS  Google Scholar 

  • Torres-Ruiz JM, Jansen S, Choat B, McElrone A, Cochard H, Brodribb TJ, Badel E, Burlett R, Bouche PS, Brodersen C, Li S, Morris H, Delzon S (2015) Direct X-ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiol 167:40–43

    Article  PubMed  CAS  Google Scholar 

  • Torres-Ruiz JM, Cochard H, Mencuccini M, Delzon S, Badel E (2016) Direct observation and modelling of embolism spread between xylem conduits: a case study in Scots pine. Plant Cell Environ 39(12):2774–2785

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Tyree MT (2000) Plant hydraulic conductance measured by high pressure flow meter in crop plants. J Exp Bot 51:823–828

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989a) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Molec Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989b) Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant Cell Environ 12:371–382

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin, 283 p

    Book  Google Scholar 

  • Tyree MT, Graham MED, Cooper KE, Bazos LJ (1983) The hydraulic architecture of Thuja occidentalis. Can J Bot 61:2105–2111

    Article  Google Scholar 

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high pressure flow meter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Utsumi Y, Sano Y, Fujjikawa S, Funada S, Ohtani J (1998) Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiol 117:1463–1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaadia Y, Raney FC, Hagan RM (1961) Plant water deficits and physiological processes. Annu Rev Plant Physiol 12:265–292

    Article  CAS  Google Scholar 

  • Van As H, Windt CW (2008) Magnetic resonance imaging of plants: water balance and water transport in relation to photosynthetic activity. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis II. Springer, Berlin, pp 55–75

    Google Scholar 

  • Van As H, Scheenen T, Vergeldt FJ (2009) MRI of intact plants. Photosynth Res 102:213–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venturas MD, Mackinnon ED, Jacobsen AL, Pratt RB (2015) Excising stem samples underwater at native tension does not induce xylem cavitation. Plant Cell Environ 38:1060–1068

    Article  PubMed  CAS  Google Scholar 

  • Vergeynst LL, Sause MGR, Steppe K (2016) Clustering reveals cavitation-related acoustic emission signals from dehydrating branches. Tree Physiol 36:786–796

    Article  PubMed  Google Scholar 

  • Wakiyama Y (2016) The relationship between SPAD values and leaf blade chlorophyll content through the rice development cycle. Jarq – Jpn Agric Res Q 50:329–334

    Article  Google Scholar 

  • Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11(1):1–11. https://doi.org/10.1186/s13007-015-0056-8

    Article  Google Scholar 

  • Wang MT, Tyree MT, Wasylishen RE (2013) Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments. Can J Plant Sci 93:879–893

    Article  Google Scholar 

  • Weatherley P (1950) A convenient volumenometer for biological work. J Exp Bot 1:244–248

    Article  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949

    PubMed  CAS  Google Scholar 

  • Windt CW, Vergeldt FJ, de Jager PA, Van As H (2006) MRI of long distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Winterhalter L, Mistele B, Jampatong S, Schmidhalter U (2011) High-throughput sensing of aerial biomass and above-ground nitrogen uptake in the vegetative stage of well-watered and drought stressed tropical maize hybrids. Crop Sci 51:479–489

    Article  Google Scholar 

  • Wolkerstorfer SV, Rosner S, Hietz P (2012) An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood. Physiol Plant 146:184–191

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21(5):599–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13:693–712

    Article  CAS  Google Scholar 

  • Zhang Q, Li Q, Zhang G (2012) Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection. Spectroscopy 27:13.7

    Google Scholar 

  • Zheng L, Wang Z, Sun H, Zhang M, Li M (2015) Real-time evaluation of corn leaf water content based on the electrical property of leaf. Comput Electron Agric 112:102–109

    Article  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effects of the exodermis. Planta 206:7–19

    Article  CAS  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Ahrens ET (2013) Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Front Plant Sci 4:265

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Aroca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erice, G., Pérez-Bueno, M.L., Pineda, M., Barón, M., Aroca, R., Calvo-Polanco, M. (2018). Determining Plant Water Relations. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_7

Download citation

Publish with us

Policies and ethics