Skip to main content

Biomaterials and Biological Materials

  • Chapter
  • First Online:
Marine Biological Materials of Invertebrate Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 13))

Abstract

Broad diversity of biological systems including cells, tissues and organisms are able to produce individual organic, inorganic as well as composite-based materials known as biomaterials. Structure and chemistry of corresponding phases within biocomposites have been recognized on a microscopic or macroscopic size scale using modern analytical instruments. Nowadays, not only bio-inert materials, but mostly biocompatible and biodegradable materials attract attention of experts in regenerative medicine, wound healing, surface coatings and tissue engineering. This short chapter deals with classification and history of biomaterials.

The union of biology with materials science and engineering represents one of the most exciting scientific prospects of our time. As currently few biologists know much about engineering and even fewer engineers know much about biology, the expectations of future advances seem unbounded.

Robert O. Ritchie, 2008

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen AA, Saha K (2017) Manufacturing cell therapies using engineered biomaterials. Trends Biotechnol 35(10):971–982

    Article  CAS  Google Scholar 

  • Abou Neel EA, Pickup DM, Valappil SP et al (2009) Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem 19:690–701

    Article  CAS  Google Scholar 

  • Aguilar A, Twardowski T, Wohlgemuth R (2019) Bioeconomy for sustainable development. Biotechnol J 20:e1800638

    Article  CAS  Google Scholar 

  • Albee F, Morrison H (1920) Studies in bone growth. Ann Surg 71:32–38

    Article  CAS  Google Scholar 

  • Alhalawani AM, Towler MR (2017) A novel tantalum-containing bioglass. Part I. structure and solubility. Mater Sci Eng C Mater Biol Appl 72:202–211

    Article  CAS  Google Scholar 

  • Ashby MF, Greer AL (2006) Metallic glasses as structural materials. Scr Mater 54(3):321–326

    Article  CAS  Google Scholar 

  • Baden E (1955) Prosthetic Therapie of congenital and aquired clefts on the palate: an historical essay. J Hist Med Alld Sci X(3):290–301

    Article  Google Scholar 

  • Beldjilali-Labro M, Garcia Garcia A, Farhat F, Bedoui F et al (2018) Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials (Basel) 11(7):pii:E1116

    Google Scholar 

  • Brovold M, Almeida JI, Pla-Palacín I, Sainz-Arnal P et al (2018) Naturally-derived biomaterials for tissue engineering applications. Adv Exp Med Biol 1077:421–449

    Article  CAS  Google Scholar 

  • De Meurechy N, Braem A, Mommaerts MY (2018) Biomaterials in temporomandibular joint replacement: current status and future perspectives-a narrative review. Int J Oral Maxillofac Surg 47(4):518–533

    Article  Google Scholar 

  • Degli Esposti L, Carella F, Adamiano A, Tampieri A, Iafisco M (2018) Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev Ind Pharm 44(8):1223–1238

    Article  CAS  Google Scholar 

  • Doherty PJ, Williams RL, Williams DF, Lee JC (eds) (1992) Biomaterial-tissue interfaces, advances in biomaterials, vol 10. Elsevier, Amsterdam

    Google Scholar 

  • Dorozhkin S (2009) Nanodimensional and Nanocrystalline Apatites and other calcium Ortho-phosphates in biomedical engineering, biology and medicine. Materials 2:1975–2045

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31(7):1465–1485

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2011) Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1(2):121–164

    Article  Google Scholar 

  • Dorozhkin SV (2012) Calcium orthophosphates and human beings: a historical perspective from the 1770s until 1940. Biomatter 2(2):53–70

    Article  Google Scholar 

  • Dorozhkin SV (2013a) Calcium orthophosphate-based bioceramics. Materials (Basel) 6(9):3840–3942

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2013b) A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng C Mater Biol Appl 33(6):3085–3110

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2015a) Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl 55:272–326

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2015b) Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J Funct Biomater 6(3):708–832.4

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2017) A history of calcium orthophosphates (CaPO4) and their biomedical applications. Morphologie 101(334):143–153

    Article  CAS  Google Scholar 

  • Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 10(4):pii:E334

    Google Scholar 

  • Elisseeff J (2019) Biomaterials science emerging investigators 2019. Biomater Sci 7(2):454–460

    Article  CAS  Google Scholar 

  • Farano V, Maurin JC, Attik N, Jackson P, Grosgogeat B, Gritsch K (2019) Sol-gel bioglasses in dental and periodontal regeneration: a systematic review. J Biomed Mater Res B Appl Biomater 107(4):1210–1227

    Article  CAS  Google Scholar 

  • Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R (2018) Advances in biomaterials for drug delivery. Adv Mater:e1705328

    Google Scholar 

  • Green DW, Watson GS, Watson JA, Lee DJ, Lee JM, Jung HS (2016) Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution. Acta Biomater 42:33–45

    Article  CAS  Google Scholar 

  • Green DW, Watson JA, Jung HS, Watson GS (2019) Natural history collections as inspiration for technology. BioEssays 41(2):e1700238

    Article  Google Scholar 

  • Harkins CS, Koepp Baker H (1948) Twenty years of cleft palate prosthesis. J Speech Hear Dis 13:23–30

    Article  CAS  Google Scholar 

  • Heinrich MA, Liu W, Jimenez A, Yang J et al (2019) 3D bioprinting: from benches to translational applications. Small 29:e1805510

    Article  CAS  Google Scholar 

  • Hench LL, Andersson OH (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Republic of Singapore

    Chapter  Google Scholar 

  • Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res Symp 4:25–42

    Article  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  CAS  Google Scholar 

  • Hench LL, West JK (1996) Biological applications of bioactive glasses. Life Chem Rep 13:187–241

    CAS  Google Scholar 

  • Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141. https://doi.org/10.1002/jbm.820050611

  • Hou D, Bi X, Mao Z, Fan Y, Hu X, Li X (2019) Biomaterials research of China from 2013 to 2017 based on bibliometrics and visualization analysis. Peer J. 2019 7:e6859

    Article  Google Scholar 

  • Jones JA, Harris TI, Bell BE, Oliveira PF (2019) Material formation of recombinant spider silks through aqueous solvation using heat and pressure. J Vis Exp 147:e59318

    Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater 104(6):1248–1275

    Article  CAS  Google Scholar 

  • Khan AS, Syed MR (2019) A review of bioceramics-based dental restorative materials. Dent Mater J 38(2):163–176

    Article  Google Scholar 

  • Kühn K-D (2000) Bone cements. Springer, Berlin

    Book  Google Scholar 

  • Lambotte A (1932) L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse. Bull Mém Soc Nat Chir 28:1325–1334

    Google Scholar 

  • Lindsay CD, Roth JG, LeSavage BL, Heilshorn SC (2019) Bioprinting of stem cell expansion lattices. Acta Biomater pii: S1742-7061(19)30329-0

    Google Scholar 

  • Ma J, Lin H, Li X, Bian C, Xiang D, Qu F (2014) Synthesis of hierarchical porous bioactive glasses for bone tissue regeneration. IET Nanobiotechnol 8(4):216–221

    Article  Google Scholar 

  • Mancuso E, Bretcanu OA, Marshall M, Birch MA et al (2017) Novel bioglasses for bone tissue repair and regeneration: effect of glass design on sintering ability, ion release and biocompatibility. Mater Des 129:239–248

    Article  CAS  Google Scholar 

  • Meyers MA, Chen PY, Lin AYM et al (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    Article  CAS  Google Scholar 

  • Montazerian M, Zanotto G (2017) Bioactive and inert dental glass-ceramics. J Biomed Mater Res A 105(2):619–639

    Article  CAS  Google Scholar 

  • Niinomi M (2008) Metallic biomaterials. J Artif Organs 11:105–110

    Article  CAS  Google Scholar 

  • Orive G, Anitua E, Pedraz JL et al (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692

    Article  CAS  Google Scholar 

  • Park JB, Lakes RS (2007) Biomaterials – an introduction, 3rd edn. Springer, New York/Berlin

    Google Scholar 

  • Pastino A, Steele J, Kohn J (2018) Advancing biomaterials towards biological complexity. Biochem (Lond) 40(1):16–19

    CAS  Google Scholar 

  • Peeters M, Linton P, Hidalgo-Bastida A (2018) Bioinspired materials 2018: conference report. Biomimetics (Basel). 4(1):pii: E4

    Google Scholar 

  • Perale G, Hilborn J (2016) Bioresorbable polymers for biomedical applications – from fundamentals to translational medicine, Series in biomaterials, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  • Popp H (1939) Zur Geschichte der Prosthesen. Med Welt 13:961–964

    Google Scholar 

  • Prakasam M, Locs J, Salma-Ancane K, Loca D et al (2017) Biodegradable materials and metallic implants—a review. J Funct Biomater 8:44

    Article  CAS  Google Scholar 

  • Pujari-Palmer M, Guo H, Wenner D, Autefage H et al. (2018) A novel class of injectable bioceramics that glue tissues and biomaterials. Materials (Basel) 11(12)

    Google Scholar 

  • Qin H, Zhang T, Li N, Cong HP, Yu SH (2019a) Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat Commun 10(1):2202

    Article  CAS  Google Scholar 

  • Qin Y, Wen P, Guo H, Xia D et al (2019b) Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta Biomater:pii:S1742-7061(19)30289-2

    Google Scholar 

  • Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  CAS  Google Scholar 

  • Ray R, Degge J, Gloyd P et al (1952) Bone regeneration. J Bone Joint Surg Am 34A(3):638–647

    Article  Google Scholar 

  • Ritchie RO (2008) Editorial. J Mech Behav Biomed Mater 1(3):207

    Google Scholar 

  • Schroers J, Kumar G, Hodges TM et al (2009) Bulk metallic glasses for biomedical applications. JOM 61:21–29

    Article  CAS  Google Scholar 

  • Sevy A, Arriaga M (2018) The stapes prosthesis: past, present, and future. Otolaryngol Clin N Am 51(2):393–404

    Article  Google Scholar 

  • Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8:5744–5794

    Article  CAS  Google Scholar 

  • Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E (2017) Nanobiomaterials’ applications in neurodegenerative diseases. J Biomater Appl 31(7):953–984

    Article  CAS  Google Scholar 

  • Sivakumar R (1999) On the relevance and requirements of biomaterials. Bull Mater Sci 22:647–655

    Article  CAS  Google Scholar 

  • Speck O, Speck T (2019) An overview of bioinspired and biomimetic self-repairing materials. Biomimetics (Basel) 4(1):pii:E26

    Google Scholar 

  • Staiger MP, Pietak AM, Huadmai J et al (2006) Magnesium and its alloys as orthopedic bio-materials: a review. Biomaterials 27:1728–1734

    Article  CAS  Google Scholar 

  • Suzuki O (2019) How the Japanese Society for Biomaterials established interdisciplinary studies in biomaterials science. J Biomed Mater Res A 107(5):917–929

    Article  CAS  Google Scholar 

  • Teoh SH (2004) Engineering materials for biomedical applications. World Scientific Publishing Co. Pte. Ltd, Singapore

    Book  Google Scholar 

  • Thomas MV, Puleo DA, Al-Sabbagh M (2005) Bioactive glass three decades on. J Long-Term Eff Med Implants 15(6):585–597

    Article  CAS  Google Scholar 

  • Tran SH, Wilson CG, Seib FP (2018) A review of the emerging role of silk for the treatment of the eye. Pharm Res 35(12):248

    Article  CAS  Google Scholar 

  • Tranquilli Leali P, Merolli A (2009) Fundamentals of biomaterials. In: Biomaterials in hand surgery, Springer, pp 1–11

    Google Scholar 

  • Tripathi H, Rath C, Kumar AS, Manna PP, Singh SP (2019) Structural, physico-mechanical and in-vitro bioactivity studies on SiO2-CaO-P2O5-SrO-Al2O3 bioactive glasses. Mater Sci Eng C Mater Biol Appl 94:279–290

    Article  CAS  Google Scholar 

  • Weinberger BW (1948) An introduction to the history of dentistry with medical and dental chronology and bibliographic data. The C.V. Mosby Company, St. Louis. D.D.S., New York

    Google Scholar 

  • Weiss DD (2003) Calcium phosphate bone cements: a comprehensive review. J Long-Term Eff Med Implants 13(1):41–47

    Article  CAS  Google Scholar 

  • Williams D (1995) Biomimetic surfaces: how man-made becomes man-like. Med Device Technol 6:6–8

    Google Scholar 

  • Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool

    Google Scholar 

  • Williams DF (2008) The relationship between biomaterials and nanotechnology. Biomaterials 29:1737–1738

    Article  CAS  Google Scholar 

  • Wnek GE, Bowlin GL (2008) Encyclopedia of biomaterials and biomedical engineering, 2nd edn (four-volume set). Informa Healthcare, New York

    Google Scholar 

  • Zechel S, Hager MD, Priemel T, Harrington MJ (2019) Healing through histidine: bioinspired pathways to self-healing polymers via imidazole-metal coordination. Biomimetics (Basel) 4(1):pii:E20

    Google Scholar 

  • Zhang H (2019) Molecularly imprinted nanoparticles for biomedical applications. Adv Mater 15:e1806328

    Article  CAS  Google Scholar 

  • Zhang N, Zhang N, Xu Y, Li Z et al (2019) Molecularly imprinted materials for selective biological recognition. Macromol Rapid Commun 21:e1900096

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrlich, H. (2019). Biomaterials and Biological Materials. In: Marine Biological Materials of Invertebrate Origin. Biologically-Inspired Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-92483-0_1

Download citation

Publish with us

Policies and ethics