Skip to main content

Plastic Deformation in Disordered Solids: The State of the Art and Unresolved Problems

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

Crystalline materials are deformed plastically through crystallographic mechanisms based on the lattice’s periodicity. However, plasticity of disordered solids can’t be described in these terms due to an absence of regular lattices. To find the best way of the description of plastic response for disordered solids (DSs) became a serious challenge for material science and solid-state physics. This paper discusses current views on mechanism of plastic deformation in DSs and touches some problems in the field. It is broadly accepted now that one, common mechanism of plasticity operates in all DSs, independent on their chemical nature and interaction potentials. Such mechanism is dictated by the structural disorder of glasses. Many details of the mechanism are not well understood yet. Important features of the mechanism are discussed in this paper, and several problems, which do not permit the field to develop further successfully are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Argon, A.S.: The Physics of Deformation and Fracture of Polymers. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  2. Falk, M.L.: The flow of glass. Science 318, 1880–1881 (2007)

    Article  Google Scholar 

  3. Argon, A.S., Demkowicz, M.J.: What can plasticity of amorphous silicon tell us about plasticity of metallic glasses? Metall. Mater. Trans. A 39, 1762–1778 (2008)

    Article  Google Scholar 

  4. Oleinik, E.F., Mazo, M.A., Strelnikov, M.I., Rudnev, S.N., Salamatina, O.B.: Plasticity mechanism for glassy polymers: computer simulation picture. Polymer Sci. Ser. A+ 60, 1–49 (2018)

    Google Scholar 

  5. Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998)

    Article  Google Scholar 

  6. Falk, M.L., Maloney, C.E.: Simulating the mechanical response of amorphous solids using atomistic methods. Eur. Phys. J. B 75, 405–413 (2010)

    Article  Google Scholar 

  7. Falk, M.L., Langer, J.S.: Deformation and failure of amorphous, solid like materials. Annu. Rev. Condens. Matter. Phys. 2, 353–373 (2011)

    Google Scholar 

  8. Rodney, D., Tanguy, A., Vandembroucq, D.: Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mater. Sci. 19, 083001 (2011)

    Article  Google Scholar 

  9. Gendelman, O.V., Manevitch, L.I.: A model of plastic deformation and localized vibration modes in 3D glass. J. Phys.-Condens. Matter 7, 6993–7004 (1995)

    Article  Google Scholar 

  10. Gendelman, O., Jaiswal, P.K., Procaccia, I., Gupta, B.S., Zylberg, J.: Shear transformation zones: state determined or protocol dependent? EPL-Europhys. Lett. 109, 16002 (2015)

    Article  Google Scholar 

  11. Bulatov, V.V., Argon, A.S.A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization. Model. Simul. Mater. Sci. 2, 167–184 (1994)

    Google Scholar 

  12. Bulatov, V.V., Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. II. A study of the glass transition and structural relaxation. Model. Simul. Mater. Sci. 2, 185–202 (1994)

    Google Scholar 

  13. Bulatov, V.V., Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. III. Plasticity in ordered versus disordered solids. Model. Simul. Mater. Sci. 2, 203–222 (1994)

    Google Scholar 

  14. Schuh, C.A., Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449–452 (2003)

    Article  Google Scholar 

  15. Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. Mater. 27, 47–58 (1979)

    Article  Google Scholar 

  16. Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. Mater. 25, 407–415 (1977)

    Article  Google Scholar 

  17. Boiko, V.S., Garber, R.I., Kosevich, A.M.: Reversible Plasticity of Crystals. Nauka, Moscow (1991) (in Russian)

    Google Scholar 

  18. Likhachev, V.A., Kuz’min, S.L., Kamentceva, Z.P.: Shape Memory Effect. LGU Publication, Leningrad (1987) (in Russian)

    Google Scholar 

  19. Oleinik, E.F.: Distortional plasticity in organic glassy polymers. In: Baer, E., Moet, S. (eds.) High Performance Polymers, pp. 79–102. Hanser Verlag, Munchen (1990)

    Google Scholar 

  20. Mott, P.H., Argon, A.S., Suter, U.W.: Atomistic modeling of plastic deformation of glassy polymers. Philos. Mag. A 67, 931–978 (1993)

    Article  Google Scholar 

  21. Oleinik, E.F., Salamatina, O.B., Rudnev, S.N., Shenogin, S.V.: A new approach to treating plastic strain in glassy polymers. Vysokomol. Soedin. A 35, 1819–1849 (1993). (in Russian)

    Google Scholar 

  22. Hasan, O.A., Boyce, M.C.: Energy storage during inelastic deformation of glassy polymers. Polymer 34, 5085–5092 (1993)

    Article  Google Scholar 

  23. Bol’shanina, M.A., Panin, V.E.: Latent energy of deformation. Book of Paper of Tomsk State University, pp. 193–225 (1957) (in Russian)

    Google Scholar 

  24. Bever, M.B., Holt, D.L., Titchener, A.L.: The stored energy of cold work. Prog. Mater Sci. 17, 5–177 (1972)

    Article  Google Scholar 

  25. Strelnikov, I.A., Mazo, M.A., Balabaev, N.K., Oleinik, E.F.: Computer simulation of rearrangements in chains of glassy polymethylene subjected at low temperature inelastic deformation. Polymer Sci. Ser. A+ 56, 511–521 (2014)

    Google Scholar 

  26. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A Math. Phys. 241, 376–396 (1957)

    Google Scholar 

  27. Oleinik, E.F., Shenogin, S.V., Paramzina, T.V., Rudnev, S.N., Shantarovich, V.P., Azamatova, Z.K., Pakula, T., Fisher, E.W.: Molecular mobility in plastically deformed glassy polymers. Polymer Sci. Ser. A+ 40, 1187–1202 (1998)

    Google Scholar 

  28. Consolati, G., Quasso, F.: Morphology of free-volume holes in amorphous polymers by means of positron annihilation lifetime spectroscopy. In: Utracki, L.A., Jameson, A.M. (eds.) Polymer Physics. From Suspensions to Nanocomposites and Beyond, pp. 391–419. Wiley, Hoboken (2010)

    Google Scholar 

  29. Pacheco, A.A., Batra, R.C.: Analysis of structural changes during plastic deformations of amorphous polyethylene. Polymer 54, 819–840 (2013)

    Article  Google Scholar 

  30. Schall, P., Weitz, D.A., Spaepen, F.: Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895–1899 (2007)

    Article  Google Scholar 

  31. Schoenholz, S.S., Cubuk, E.D., Sussman, D.M., Kaxiras, E., Liu, A.J.: A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016)

    Article  Google Scholar 

  32. Cohen, M.H., Grest, G.S.: Liquid–glass transition, a free volume approach. Phys. Rev. B 20, 1077–1098 (1979)

    Article  Google Scholar 

  33. Kotelyanskii, M.J., Mazo, M.A., Oleynik, E.F., Grivtsov, A.G.: Molecular dynamics of vitrification and plastic deformation of a two-dimensional Lennard-Jones mixture. Phys. Status Solidi B 166, 25–42 (1991)

    Article  Google Scholar 

  34. Oleinik, E.F., Rudnev, S.N., Salamatina, O.B.: Evolution in concepts concerning the mechanism of plasticity in solid polymers after the 1950s. Polymer Sci. Ser. A+ 49, 1302–1327 (2007)

    Google Scholar 

  35. Cubuk, E.D., et al.: Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017)

    Article  Google Scholar 

  36. Demkowicz, M.J., Argon, A.S.: Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B. 72, 245205 (2005)

    Article  Google Scholar 

  37. Malekmotiei, L., Samadi-Dooki, A., Voyiadjis, G.Z.: Nanoindentation study of yielding and plasticity of poly(methyl methacrylate). Macromolecules 48, 5348–5357 (2015)

    Article  Google Scholar 

  38. Malekmotiei, L., Voyiadjis, G.Z., Samadi-Dooki, A., Lu, F., Zhou, J.: Effect of annealing temperature on interrelation between the microstructural evolution and plastic deformation in polymers. J. Polymer Sci. Polymer Phys. 55, 1286–1297 (2017)

    Article  Google Scholar 

  39. Balabaev, N.K., Mazo, M.A., Lyulin, A.V., Oleinik, E.F.: Plastic deformation of glassy polymethylene: computer aided molecular dynamic simulation. Polymer Sci. Ser. A+ 52, 633–644 (2010)

    Google Scholar 

  40. Strelnikov, I.A., Mazo, M.A., Balabaev, N.K., Oleinik, E.F., Berlin, A.A.: Energy storage in plastic deformation of glassy polymethylene. Dokl. Phys. Chem. 457, 108–111 (2014)

    Article  Google Scholar 

  41. Srolovitz, D., Egami, T., Vitek, V.: Radial distribution function and structural relaxation in amorphous solids. Phys. Rev. B 24, 6936–6944 (1981)

    Article  Google Scholar 

  42. Srolovitz, D., Maeda, K., Vitek, V., Egami, T.: Structural defects in amorphous solids statistical of a computer model. Philos. Mag. A 44, 847–866 (1981)

    Article  Google Scholar 

  43. Maeda, K., Takeuchi, S.: Computer simulation of deformation in two-dimensional amorphous structures. Phys. Status Solidi A 49, 685–696 (1978)

    Article  Google Scholar 

  44. Samadi-Dooki, A., Malekmotiei, L., Voyiadjis, G.Z.: Characterizing shear transformation zones in polycarbonate using nanoindentation. Polymer 82, 238–245 (2016)

    Article  Google Scholar 

  45. Voyiadjis, G.Z., Samadi-Dooki, A.: Constitutive modeling of large inelastic deformation of amorphous polymers: free volume and shear transformation zone dynamics. J. Appl. Phys. 119, 225104 (2016)

    Article  Google Scholar 

  46. Zimmerman, J.A., Kelchner, C.L., Klein, P.A., Hamilton, J.C., Foiles, S.M.: Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001)

    Article  Google Scholar 

  47. Chung, Y.G., Lacks, D.J.: Atomic mobility in strained glassy polymers: the role of fold catastrophes on the potential energy surface. J. Polymer Sci. Polymer Phys. 50, 1733–1739 (2012)

    Article  Google Scholar 

  48. Loo, L.S., Cohen, R.E., Gleason, K.K.: Deuterium nuclear magnetic resonance of deuterium oxide in nylon 6 under active uniaxial deformation. Polymer 41, 7699–7704 (2000)

    Article  Google Scholar 

  49. Loo, L.S., Cohen, R.E., Gleason, K.K.: Chain mobility in the amorphous region of nylon 6 observed under active uniaxial deformation. Science 288, 116–119 (2000)

    Article  Google Scholar 

  50. Brown, D., Clarke, J.H.R.: Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology. Macromolecules 24, 2075–2082 (1991)

    Article  Google Scholar 

  51. Capaldi, F.M., Boyce, M.C., Rutledge, G.C.: Molecular response of a glassy polymer to active deformation. Polymer 45, 1391–1399 (2004)

    Article  Google Scholar 

  52. Smessaert, A., Rottler, J.: Recovery of polymer glasses from mechanical perturbation. Macromolecules 45, 2928–2935 (2012)

    Article  Google Scholar 

  53. Riggleman, R.A., Lee, H.-N., de Ediger, M.D., Pablo, J.J.: Heterogeneous dynamics during deformation of a polymer glass. Soft Matter 6, 287–291 (2010)

    Article  Google Scholar 

  54. Riggleman, R.A., Lee, H.-N., Ediger, M.D., de Pablo, J.J.: Free volume and finite-size effects in a polymer glass under stress. Phys. Rev. Lett. 99, 215501 (2007)

    Article  Google Scholar 

  55. Hebert, K., Ediger, M.D.: Reversing strain deformation probes mechanisms for enhanced segmental mobility of polymer glasses. Macromolecules 50, 1016–1026 (2017)

    Article  Google Scholar 

  56. Riggleman, R.A., Schweizer, K.S., de Pablo, J.J.: Nonlinear creep in a polymer glass. Macromolecules 41, 4969–4977 (2008)

    Article  Google Scholar 

  57. Riggleman, R.A., Toepperwein, G.N., Papakonstantopoulos, G.J., de Pablo, J.J.: Dynamics of a glassy polymer nanocomposite during active deformation. Macromolecules 42, 3632–3640 (2009)

    Article  Google Scholar 

  58. Chen, K., Schweizer, K.S.: Theory of yielding, strain softening and plastic flow in polymer glasses under constant strain deformation. Macromolecules 44, 3988–4000 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of Fundamental Research of the Russian Academy of Sciences 2013-2020 (project No 0082-2014-0013, AAAA-A17-117042510268-5). The research was carried out using supercomputers at Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard F. Oleinik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oleinik, E.F., Mazo, M.A., Kotelyanskii, M.I., Rudnev, S.N., Salamatina, O.B. (2019). Plastic Deformation in Disordered Solids: The State of the Art and Unresolved Problems. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics