Skip to main content

Electrochromic Polymers for Solar Cells

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

Electrochromic materials have attracted a lot of research interest for their fascinating spectro-electrochemical properties and commercial applications. A large number of inorganic and organic electrochromic materials ranging from transition metal oxides, metal coordination complexes, viologen systems, and conducting polymers are available. Electrochromic conducting polymers are exciting new class of electronic materials with a huge potential in the rapidly growing area of plastic electronics due to their electronic and optical properties, ease of processing, low-power consumption, flexibility, and low processing cost. They consist of vibrant colors and can be processed under simple ambient temperature. In this chapter, the general field of electrochromism is introduced, with coverage of the classes, operating principle, the experimental methods used in their study, and applications of electrochromic materials. Some of the most important examples of the major classes of electrochromic conducting polymers are highlighted. It surveyed electrochromic conducting polymers with a focus on their chemistry, electrochemistry, stability, and ability to enhance the performance of solar cell device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DEG:

Diethylene glycol

ECD:

Electrochromic device

Eg:

Band gap

EPR:

Electron paramagnetic resonance spectroscopy

FTIR:

Fourier transform infra red spectroscopy

HOMO:

Highest occupied molecular orbital

ITO:

Indium tin oxide

LUMO:

Lowest unoccupied molecular orbital

MVRH:

Mott variable range hoping

NIR:

Near infra red spectroscopy

NMP:

N-methylpyrrolidone

PB:

Prussian blue

PDMA:

Poly (2,5-dimethoxyaniline)

PEDOT:

Poly(3,4-(ethylenedioxy)thiophene)

PET:

poly(ethylene terephthalate)

UV-Visible:

Ultra violate visible spectroscopy

WO3:

Tungsten oxide

VTECWs:

Variable transmission electrochromic windows

References

  1. P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Application (VCH, Weinheim, 1995)

    Book  Google Scholar 

  2. M.M. Verghese, M.K. Ram, H. Vardhan, B.D. Malhotra, S.M. Ashraf, Electrochromic properties of polycarbazole films. Polymer 38, 1625–1629 (1997)

    Article  CAS  Google Scholar 

  3. C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)

    Google Scholar 

  4. M. Green, The promise of electrochromic systems. Chem. Ind. (17), 641–644 (1996)

    Google Scholar 

  5. R. J. Mortimer, N. M. Rowley, J. A. McCleverty, T. J. Meyer, M. D. Ward (eds.), Metal Complexes as Dyes for Optical Data Storage and Electrochromic Materials in: Comprehensive Coordination Chemistry – II: From Biology to Nanotechnology (Elsevier, Oxford, 2004)

    Google Scholar 

  6. M.D. Ward, J.A. McCleverty, Non-innocent behaviour in mononuclear and polynuclear complexes: Consequences for redox and electronic spectroscopic properties. J. Chem. Soc. Dalton Trans., 275–288 (2002)

    Google Scholar 

  7. Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. R.D. Rauh, Electrochromic windows: an overview. Electrochim. Acta 44, 3165–3176 (1999)

    Article  CAS  Google Scholar 

  9. P.M.S. Monk, The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,40-Bipyridine (Wiley, Chichester, 1998)

    Google Scholar 

  10. T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds (eds.), Handbook of Conducting Polymers (Marcel Dekker, New York, 1998)

    Google Scholar 

  11. J. Heinze, Electronically conducting polymers. Top. Curr. Chem. 152, 1–47 (1990)

    Article  CAS  Google Scholar 

  12. S.J. Higgins, Conjugated polymers incorporating pendant functional groups – synthesis and characterisation. Chem. Soc. Rev. 26, 247–257 (1997)

    Article  CAS  Google Scholar 

  13. M. Mastragostino, B. Scrosati (eds.), Electrochromic Devices in Applications of Electroactive Polymers (Chapman and Hall, London, 1993)

    Google Scholar 

  14. B. Scrosati, B. Scrosati (eds.), Laminated Electrochromic Displays and Windows in Applications of Electroactive Polymers (Chapman and Hall, London, 1993)

    Google Scholar 

  15. N. Miyata, S. Akiyoshi, Preparation and electrochromic properties of rf-sputtered molybdenum oxide films. J. Appl. Phys. 58, 1651–1655 (1985)

    Article  CAS  Google Scholar 

  16. L. Guerfi, H. Dao, Electrochromic molybdenum oxide thin films prepared by electrodeposition. J. Electrochem. Soc. 136, 2435–2436 (1989)

    Article  CAS  Google Scholar 

  17. K. Itaya, K. Shibayama, H. Akahoshi, S. Toshima, Prussian-blue-modified electrodes: an application for a stable electrochromic display device. J. Appl. Phys. 53, 804–805 (1982)

    Article  CAS  Google Scholar 

  18. D.M. DeLongchamp, P.T. Hammond, High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv. Funct. Mater. 14, 224–232 (2004)

    Article  CAS  Google Scholar 

  19. D.C. Bookbinder, M.S. Wrighton, Electrochromic polymers covalently anchored to electrode surfaces. Optical and electrochemical properties of a viologen-based polymer. J. Electrochem. Soc. 130, 1080–1087 (1983)

    Article  CAS  Google Scholar 

  20. R.J. Mortimer, Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999)

    Article  CAS  Google Scholar 

  21. J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  22. R.J. Mortimer, J.C. Lindon, G.E. Tranter, J.L. Holmes (eds.), Electronic spectroscopy: spectroelectrochemistry applications, in Encyclopedia of Spectroscopy and Spectrometry, vol. 3 (Academic Press, London 1999)

    Google Scholar 

  23. R.J. Mortimer, J.C. Lindon, G.E. Tranter, J.L. Holmes (eds.), Electronic spectroscopy: spectroelectrochemistry methods and instrumentation, in Encyclopedia of Spectroscopy and Spectrometry (Academic Press, London 1999)

    Google Scholar 

  24. M. Jerry, Advanced Organic Chemistry Reactions, Mechanisms and Structure, 3rd edn. (Wiley, New York, 1985)

    Google Scholar 

  25. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of poly(acetylene), (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–579 (1977)

    Article  Google Scholar 

  26. S. Lefrant, L.S. Lichtman, M. Temkin, D.C. Fitchten, D.C. Miller, G.E. Whitwell, J.M. Burlich, Raman scattering in (CH)x and (CH)x treated with bromine and iodine. Solid State Commun. 29, 191–196 (1979)

    Article  CAS  Google Scholar 

  27. C.K. Chiang, C.B. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977)

    Article  CAS  Google Scholar 

  28. H.A.M. van Mullekom, J.A.J.M. Vekemans, E.E. Havinga, E.W. Meijer, Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. 32, 1–40 (1991)

    Article  Google Scholar 

  29. A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27, 135–190 (2002)

    Article  CAS  Google Scholar 

  30. C. Lungenschmied, G. Dennler, G. Czeremuzskin, M. Latrèche, H. Neugebauer, N.S. Sariciftci, Flexible encapsulation for organic solar cells, Proc. SPIE 6197, Photonics for Solar Energy Systems 619712 (2006). https://doi.org/10.1117/1112.662829

  31. J. Heeger, T. A. Skotheim (eds.), Handbook of Conducting Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  32. P. Kar, Doping in Conjugated Polymers (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  33. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992)

    Article  PubMed  CAS  Google Scholar 

  34. G. MacDiarmid, “Synthetic metals,”: a novel role for organic polymers (Nobel prize 2000 lecture). Curr. Appl. Phys. 1, 269–279 (2001)

    Article  Google Scholar 

  35. P. Rannou, A. Gawlicka, D. Berner, A. Pron, M. Nechtschein, D. Djurado, Spectroscopic, structural and transport properties of conducting polyaniline processed from fluorinated alcohols. Macromolecules 31, 3007–3015 (1998)

    Article  CAS  Google Scholar 

  36. M. Reghu, Y. Cao, D. Moses, A.J. Heeger, Counterion-induced processibility of polyaniline: transport at the metal-insulator boundary. Phys. Rev. B 47, 1758–1764 (1993)

    Article  CAS  Google Scholar 

  37. H. Naarmann, N. Theophilou, New process for the production of metal-like, stable polyacetylene. Synth. Met. 22, 1–8 (1987)

    Article  CAS  Google Scholar 

  38. T. Hagiwara, M. Hirasaka, K. Sato, M. Yamamura, Enhancement of the electrical conductivity of polypyrrole film by stretching: influence of the polymerization conditions. Synth. Met. 36, 241–252 (1990)

    Article  CAS  Google Scholar 

  39. O. Yoon, M. Reghu, D. Moses, A.J. Heeger, Transport near the metal-insulator transition: polypyrrole doped with PF6. Phys. Rev. B 49, 10851–10863 (1994)

    Article  CAS  Google Scholar 

  40. K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater. Chem. Phys. 61, 173–191 (1999)

    Article  CAS  Google Scholar 

  41. G. Zotti, H.S. Nalwa (eds.), Electrochemical synthesis of polyheterocycles and their applications. in Handbook of Organic Conductive Molecules and Polymers (Wiley, Chichester, 1997)

    Google Scholar 

  42. E.M. Genies, M. Lapkowski, Spectroelectrochemical study of polyaniline versus potential in the equilibrium state. J. Electroanal. Chem. 220, 67–82 (1987)

    Article  CAS  Google Scholar 

  43. E. Stilwell, S.-M. Park, Electrochemistry of conducting polymers. V. In situ spectroelectrochemical studies of polyaniline films. J. Electrochem. Soc. 136, 427–433 (1989)

    Article  CAS  Google Scholar 

  44. G. Tourillon, D. Gourier, F. Garnier, D. Vivien, Electron spin resonance study of electrochemically generated polythiophene and derivatives. J. Phys. Chem. 88, 1049–1051 (1984)

    Article  CAS  Google Scholar 

  45. S.H. Glarum, J.H. Marshall, Electron delocalization in poly(aniline). J. Phys. Chem. 92, 4210–4217 (1988)

    Article  CAS  Google Scholar 

  46. M. Genies, M. Lapkowski, Electrochemical in situ EPR evidence of two polaron-dipolaron states in polyaniline. J. Electroanal. Chem. 236, 199–208 (1987)

    Article  CAS  Google Scholar 

  47. J.F. Oudard, R.D. Allendoerfer, R.A. Osteryoung, EPR simultaneous electrochemical measurements on polypyrrole in ambient temperature ionic liquids. J. Electroanal. Chem. 241, 231–240 (1988)

    Article  CAS  Google Scholar 

  48. F. Genoud, J. Kruszka, M. Nechtschein, M. Zagorska, I. Kulszewicz-Bajer, A. Pron, Electrochemical doping of poly(butylthiophene) and poly(dibutylbithiophene)-in situ EPR and conductivity studies. J. Chim. Phys. 87, 57–66 (1990)

    Article  CAS  Google Scholar 

  49. N.S. Sariciftci, H. Kuzmany, H. Neugebauer, A. Neckel, Structural and electronic transitions in polyaniline: a Fourier transform infrared spectroscopic study. J. Chem. Phys. 92, 4530–4539 (1990)

    Article  CAS  Google Scholar 

  50. H. Neugebauer, C. Kvanrnsrtom, C. Brabec, N.S. Sariciftci, R. Kiebooms, F. Wudl, S. Luzzati, Infrared spectroelectrochemical investigations on the doping of soluble poly(isothianaphthene methine) (pim). J. Chem. Phys. 110, 12108–12115 (1999)

    Article  CAS  Google Scholar 

  51. S. Srinivasan, H. Neugebauer, N.S. Sariciftci, Electrochemically induced IRAV modes of BeCHA-PPV studied with in situ FTIR-ATR spectroscopy. Synth. Met. 84, 635–636 (1997)

    Article  CAS  Google Scholar 

  52. T. Yohannes, H. Neugebauer, S. Luzzati, M. Catellani, S.A. Jenekhe, N.S. Sariciftci, Multiple electrochemical doping induced insulator to conductor transitions observed in the conjugated ladder polymer polybenzimidazobemzophenanthroline. J. Phys. Chem. 104, 9430–9437 (2000)

    Article  CAS  Google Scholar 

  53. M. Lapkowski, K. Berrada, S. Quillard, G. Louarn, S. Lefrant, A. Pron, Electrochemical oxidation of polyaniline in nonaqueous electrolytes: in situ Raman spectroscopic studies. Macromolecules 28, 1233–1238 (1995)

    Article  CAS  Google Scholar 

  54. M. Zagorska, I. Kulszewicz-Bajer, A. Pron, J. Sukiennik, P. Raimond, F. Kajzar, A.-J. Attias, M. Lapkowski, Preparation and spectroelectrochemical characterization of copolymers of 3-alkylthiophenes and thiophenes functionalized with an azo chromophore. Macromolecules 31, 9146–9153 (1998)

    Article  CAS  Google Scholar 

  55. A. Pron, I. Kulszewicz, D. Bilaud, J. Przyluski, Reaction of FeCl3 with polyacetylene, (CH)x, and poly(p-phenylene), (p-C6H4)x. J. Chem. Soc. Chem. Commun. 15, 783–784 (1981)

    Article  Google Scholar 

  56. A. Pron, M. Zagorska, Z. Kucharski, M. Lukasiak, J. Suwalski, Mossbauer spectroscopy studies of polyacetylene doped with iron chloride complexes. Mater. Res. Bull. 17, 1505–1510 (1982)

    Article  CAS  Google Scholar 

  57. S.C. Gau, J. Milliken, A. Pron, A.G. MacDiarmid, A.J. Heeger, Organic metals. New class of p-type dopants converting polyacetylene, (CH)x into the metallic state. J. Chem. Soc. Chem. Commun. 15, 662–663 (1979)

    Article  Google Scholar 

  58. N.F. Mot, Conduction in non-crystalline materials. Philos. Mag. 19, 835–852 (1969)

    Article  Google Scholar 

  59. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)

    Article  CAS  Google Scholar 

  60. M. Nechtschein, F. Devreux, F. Genoud, E. Vieil, J.M. Pernaut, E, Genies: Polarons, bipolarons and charge interactions in polypyrrole: physical and electrochemical approaches. Synth. Met. 15, 59–78 (1986)

    Google Scholar 

  61. P. Mungkalodom, N. Paradee, A. Sirivat, P. Hormnirun, Synthesis of poly (2,5-dimethoxyaniline) and electrochromic properties. Mater. Res. 18, 669–676 (2015)

    Article  CAS  Google Scholar 

  62. J.L. Bredas, R. Silbey, D.S. Boudreaux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555–6559 (1983)

    Article  CAS  Google Scholar 

  63. R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27, 2–18 (2006)

    Article  CAS  Google Scholar 

  64. A. Argun, P.-H. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, J.R. Reynolds, Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401–4412 (2004)

    Article  CAS  Google Scholar 

  65. J.C. Lacroix, K.K. Kanazawa, A. Diaz, Polyaniline: a very fast electrochromic material. J. Electrochem. Soc. 136, 1308–1313 (1989)

    Article  CAS  Google Scholar 

  66. J.C. Gustafsson, B. Liedberg, O. Inganäs, In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell author links open the overlay panel. Solid State Ionics 69, 145–152 (1994)

    Article  CAS  Google Scholar 

  67. D. Kumar, M. Welsh, M.C. Morvant, F. Piroux, K.A. Abboud, J.R. Reynolds, Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios. Chem. Mater. 10, 896–902 (1998)

    Article  CAS  Google Scholar 

  68. M.-A. De Paoli, G. Casalbore-Miceli, E.M. Girotto, W.A. Gazotti, All polymeric solid state electrochromic devices. Electrochim. Acta 44, 2983–2991 (1999)

    Article  Google Scholar 

  69. C. Thompson, P. Schottland, K. Zong, J.R. Reynolds, In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater. 12, 1563–1571 (2000)

    Article  CAS  Google Scholar 

  70. I. Schwendeman, R. Hickman, G. Sönmez, P. Schottland, K. Zong, D.M. Welsh, J.R. Reynolds, Enhanced contrast dual polymer electrochromic devices. Chem. Mater. 14, 3118–3122 (2002)

    Article  CAS  Google Scholar 

  71. W. Lu, A.G. Fadeev, B.H. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D.Z. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)

    Article  PubMed  CAS  Google Scholar 

  72. R.J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 26, 147–156 (1997)

    Article  CAS  Google Scholar 

  73. A. Nekrasov, V.F. Ivanov, A.V. Vannikov, Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. J. Electroanal. Chem. 482, 1711–1727 (2000)

    Article  Google Scholar 

  74. T.-H. Lin, K.-C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells 90, 506–520 (2006)

    Article  CAS  Google Scholar 

  75. S.J. Yoo, J. Cho, J.W. Lim, S.H. Park, J. Jang, Y.-E. Sung, High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochem. Commun. 12, 164–167 (2010)

    Article  CAS  Google Scholar 

  76. J. Jang, J. Ha, J. Cho, Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 19, 1772–1775 (2007)

    Article  CAS  Google Scholar 

  77. M. Gazard, J.C. Dubois, M. Champagne, F. Garnier, G. Tourillon, Electrooptical properties of thin films of polyheterocycles. J. Phys. Colloq. 44, C3-537-C533-542 (1983)

    Article  Google Scholar 

  78. M.A. Druy, R.J. Seymour, Poly (2,2′ – Bithiophene): An electrochromic conducting polymer. J. Phys. Colloq. 44, C3-595-C593-598 (1983)

    Article  Google Scholar 

  79. M. Aizawa, S. Watanable, H. Shinohara, H. Shirakawa, Electrochemical cation doping of a polythienylene film. J. Chem. Soc. Chem. Commun. (5), 264–265 (1985)

    Google Scholar 

  80. J. Zmija, M.J. Malachowski, New organic electrochromic materials and theirs applications. J. Achiev. Mater. Manuf. Eng. 48, 14–23 (2011)

    Google Scholar 

  81. M. Dietrich, J. Heinze, G. Heywang, F. Jonas, Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem. 369, 87–92 (1994)

    Article  CAS  Google Scholar 

  82. P.M. Beaujuge, S.V. Vasilyeva, S. Ellinger, T.D. McCarley, J.R. Reynolds, Unsaturated linkages in dioxythiophene-benzothiadiazole donor-acceptor electrochromic polymers: the key role of conformational freedom. Macromolecules 42, 3694–3706 (2009)

    Article  CAS  Google Scholar 

  83. G. Heywang, F. Jonas, Poly(alkylenedioxythiophene)s – new, very stable conducting polymers. Adv. Mater. 4, 116–118 (1992)

    Article  CAS  Google Scholar 

  84. H. Sonmez, B. Sonmez, C.K.F. Shen, F. Wudl, Red, green, and blue colors in polymeric electrochromics. Adv. Mater. 16, 1905–1908 (2004)

    Article  CAS  Google Scholar 

  85. J. Sankaran, R. Reynolds, High-contrast electrochromic polymers from alkyl-derivatized poly(3,4-ethylenedioxythiophenes). Macromolecules 30, 2582–2588 (1997)

    Article  CAS  Google Scholar 

  86. C. Schwendeman, L. Gaupp, J.M. Hancock, L.B. Groenendaal, J.R. Reynolds, Perfluoralkanoate-substituted PEDOT for electrochromic device applications. Adv. Funct. Mater. 13, 541–547 (2003)

    Article  CAS  Google Scholar 

  87. P. Lock, S.G. Im, K.K. Gleason, Oxidative chemical vapor deposition of electrically conducting poly 3,4 ethylenedioxythiophene (PEDOT) films. Macromolecules 39, 5326–5329 (2006)

    Article  CAS  Google Scholar 

  88. S.I. Cho, R. Xiao, S.B. Lee, Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotubes towards fast window-type electrochromic devices. Nanotechnology 18, 405705 (2007)

    Article  CAS  Google Scholar 

  89. P. Manisankar, C. Vedhi, G. Selvanathan, H. Gurumallesh Prabu, Influence of surfactants on the electrochromic behavior of poly (3,4-ethylenedioxythiophene). J. Appl. Polym. Sci. 104, 3285–3291 (2007)

    Article  CAS  Google Scholar 

  90. M. Deepa, S. Bhandari, M. Arora, R. Kant, Electrochromic response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in an aqueous micellar solution. Macromol. Chem. Phys. 209, 137–149 (2008)

    Article  CAS  Google Scholar 

  91. S.I. Cho, S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 41, 699–707 (2008)

    Article  PubMed  CAS  Google Scholar 

  92. T.-H. Su, S.-H. Hsiao, G.-S. Liou, Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties. J. Polym. Sci. Part A Polym. Chem. 43, 2085–2098 (2005)

    Article  CAS  Google Scholar 

  93. G.-S. Liou, S.-H. Hsiao, T.-H. Su, Synthesis, luminescence and electrochromism of aromatic poly(amine–amide)s with pendent triphenylamine moieties. J. Mater. Chem. 15, 1812–1820 (2005)

    Article  CAS  Google Scholar 

  94. G.-S. Liou, Y.-L. Yang, Y.O. Su, Synthesis and evaluation of photoluminescent and electrochemical properties of new aromatic polyamides and polyimides with a kink 1,2-phenylenediamine moiety. J. Polym. Sci. Part A Polym. Chem. 44, 2587–2603 (2006)

    Article  CAS  Google Scholar 

  95. G.-S. Liou, H.-W. Chen, H.-J. Yen, Poly(amine-amide-imide)s bearing pendent N-carbazolylphenyl moieties: synthesis and electrochromic properties. Macromol. Chem. Phys. 207, 1589–1598 (2006)

    Article  CAS  Google Scholar 

  96. G.-S. Liou, S.-H. Hsiao, W.-C. Chen, H.-J. Yen, A new class of high Tg and organosoluble aromatic poly(amine-1,3,4-oxadiazole)s containing donor and acceptor moieties for blue-light-emitting materials. Macromolecules 39, 6036–6045 (2006)

    Article  CAS  Google Scholar 

  97. H.-J. Yen, H.-Y. Lin, G.-S. Liou, Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions. Chem. Mater. 23, 1874–1882 (2011)

    Article  CAS  Google Scholar 

  98. C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 17, 1007–1015 (2007)

    Article  CAS  Google Scholar 

  99. G.-S. Liou, C.-W. Chang, Highly stable anodic electrochromic aromatic polyamides containing N,N,N′,N′-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 41, 1667–1674 (2008)

    Article  CAS  Google Scholar 

  100. S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 41, 2800–2808 (2008)

    Article  CAS  Google Scholar 

  101. C.-W. Chang, G.-S. Liou, Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N′,N′-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 18, 5638–5646 (2008)

    Article  CAS  Google Scholar 

  102. C.-W. Chang, H.-J. Yen, K.-Y. Huang, J.-M. Yeh, G.-S. Liou, Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: synthesis, electrochromic, and gas separation properties. J. Polym. Sci. Part A Polym. Chem. 46, 7937–7949 (2008)

    Article  CAS  Google Scholar 

  103. H.-J. Yen, G.-S. Liou, Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater. 21, 4062–4070 (2009)

    Article  CAS  Google Scholar 

  104. H.-J. Yen, G.-S. Liou, Novel blue and red electrochromic poly (azomethine ether)s based on electroactive triphenylamine moieties. Org. Electron. 11, 299–310 (2010)

    Article  CAS  Google Scholar 

  105. S. Beaupré, J. Dumas, M. Leclerc, Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem. Mater. 18, 4011–4018 (2006)

    Article  CAS  Google Scholar 

  106. A. Argun, A. Cirpan, J.R. Reynolds, The first truly all-polymer electrochromic devices. Adv. Mater. 15, 1338–1341 (2003)

    Article  CAS  Google Scholar 

  107. World business council for sustainable development, 2009. Energy performance in buildings: transforming the market IS 2009–65, (2009)

    Google Scholar 

  108. D. Arasteh, S. Selkowitz, J. Apte, M. LaFrance, Zero energy windows, in Proceedings of the 2006 ACEEE Summer study on energy efficiency in buildings, Pacific Grove, 2006

    Google Scholar 

  109. U.S. Department of Energy, Energy Efficiency and Renewable Energy, 2011 Buildings energy data book, prepared by D&R international, Ltd., March 2012

    Google Scholar 

  110. N.L. Sbar, L. Podbelski, H.M. Yang, B. Pease, Electrochromic dynamic windows for office buildings. Int. J. Sustain. Built Environ. 1, 125–139 (2012)

    Article  Google Scholar 

  111. C.G. Granqvist, Switchable Glazing Technology: Electrochromic Fenestration for Energy-Efficient Buildings, in Nearly Zero Energy Building Refurbishment (Springer, London, 2013)

    Google Scholar 

  112. C. M. Lampert, C. G. Granqvist (eds.), Large-Area Chromogenics: Materials and Devices for Transmittance Control (SPIE Optical Engineering Press, Belling-ham, 1990)

    Google Scholar 

  113. C.M. Lampert, Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 76, 489–499 (2003)

    Article  CAS  Google Scholar 

  114. G.P. Smestad, C.M. Lampert, Event report – solar power 2006, San José, CA. Sol. Energy Mater. Sol. Cells 91, 440–444 (2007)

    Article  CAS  Google Scholar 

  115. S. Lee, S.E. Selkowitz, R.D. Clear, D.L. DiBartolomeo, J.H. Klems, L.L. Fernandes, G.J. Ward, V. Inkarojrit, M. Yazdanian, Advancement of Electrochromic Windows, California Energy Commission. PIER, 2006 Publication number CEC-500-2006-052

    Google Scholar 

  116. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays. Nature 383, 608–610 (1996)

    Article  CAS  Google Scholar 

  117. S.K. Deb, S.-H. Lee, C.E. Tracy, J.R. Pitts, B.A. Gregg, H.M. Branz, Stand-alone photovoltaic-powered electrochromic smart window. Electrochim. Acta 46, 2125–2130 (2001)

    Article  CAS  Google Scholar 

  118. A. Hauch, A. Georg, S. Baumgärtner, U.O. Krašovec, B. Orel, New photoelectrochromic device. Electrochim. Acta 46, 2131–2136 (2001)

    Article  CAS  Google Scholar 

  119. K.-S. Ahn, S.J. Yoo, M.-S. Kang, J.-W. Lee, Y.-E. Sung, Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window. J. Power Sources 168, 533–536 (2007)

    Article  CAS  Google Scholar 

  120. H. Jensen, F. Dam, J.R. Reynolds, A.L. Dyer, F.C. Krebs, Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes. J. Polym. Sci. Part B Polym. Phys. 50, 536–545 (2012)

    Article  CAS  Google Scholar 

  121. S. Lee, E.S. Claybaugh, M. LaFrance, End user impacts of automated electrochromic windows in a pilot retrofit application. Energ. Buildings 47, 267–284 (2012)

    Article  Google Scholar 

  122. D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001)

    Article  CAS  Google Scholar 

  123. S. Kuwabata, N. Takahashi, S. Hirao, H. Yoneyama, Light image formations on deprotonated polyaniline films containing titania particles. Chem. Mater. 5, 437–441 (1993)

    Article  CAS  Google Scholar 

  124. S. Nishizawa, H. Kuwabata, Yoneyama: photoimage formation in a TiO2 particle-incorporated prussian blue film. J. Electrochem. Soc. 143, 3462–3465 (1996)

    Article  CAS  Google Scholar 

  125. A. Hauch, A. Georg, U. Opara Krašovec, B. Orel, Comparison of photoelectrochromic devices with different layer configurations. J. Electrochem. Soc. 149, H159–H163 (2002)

    Article  CAS  Google Scholar 

  126. C. Xu, M. Taya, Electrochromic organic, polymer synthesis and devices utilizing electrochromic organic polymers, US Patent 7,038,828 B2, 2006

    Google Scholar 

  127. G. Sonmez, H. Meng, Q. Zhang, F. Wudl, A highly stable, new electrochromic polymer: Poly(1,4-bis(2-(3′-4′-ethylenedioxy)thienyl)-2-methoxy-5-2″-ethylhexyloxybenzene). Adv. Funct. Mater. 13, 726–731 (2003)

    Article  CAS  Google Scholar 

  128. G. Sonmez, H. Meng, F. Wudl, Organic polymeric electrochromic devices: polychromism with very high coloration efficiency. Chem. Mater. 16, 574–580 (2004)

    Article  CAS  Google Scholar 

  129. J.-Y. Liao, K.-C. Ho, A Photoelectrochromic device using a pedot thin film. J. New Mater. Electrochem. Syst. 8, 37–47 (2005)

    CAS  Google Scholar 

  130. C.-Y. Hsu, K.-M. Lee, J.-H. Huang, K.R. Justin Thomas, J.T. Lin, K.-C. Ho, A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye. J. Power Sources 185, 1505–1508 (2008)

    Article  CAS  Google Scholar 

  131. D. Brotherson, D.S.K. Mudigonda, J.M. Osborn, J. Belk, J. Chen, D.C. Loveday, J.L. Boehme, J.P. Ferraris, D.L. Meeker, Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochim. Acta 44, 2993 (1999)

    Article  Google Scholar 

  132. S.A. Sapp, G.A. Sotzing, J.L. Reddinger, J.R. Reynolds, Rapid switching solid state electrochromic devices based on complementary conducting polymer films. Adv. Mater. 8, 808–811 (1996)

    Article  CAS  Google Scholar 

  133. J. Roncali, Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997)

    Article  PubMed  CAS  Google Scholar 

  134. S.A. Sapp, G.A. Sotzing, J.R. Reynolds, High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater. 10, 2101–2108 (1998)

    Article  CAS  Google Scholar 

  135. D.S.K. Mudigonda, D.L. Meeker, D.C. Loveday, J.M. Osborn, J.P. Ferraris, Compositional control of electrochromic properties in copolymers of N- vinylcarbazole and N-phenyl-2-(5′-vinyl-2′-thienyl)-5-(2″-thienyl)-pyrrole. Polymer 40, 3407–3412 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suru Vivian John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

John, S.V., Iwuoha, E.I. (2018). Electrochromic Polymers for Solar Cells. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics