Skip to main content

Advanced Innovative Tools in Lemon (Citrus limon L.) Breeding

  • Chapter
  • First Online:

Abstract

Lemon ( Citrus limon L. Burm. F.; Rutaceae) is one of the most important commercial and nutritional fruits in the world. Therefore, it needs to be improved for the diverse needs of consumers and crop breeders. Breeders have attempted to eliminate undesirable characteristics in plants and develop new varieties with desired characteristics that meet the needs of farmer and consumer by using different breeding techniques. In lemon breeding, seedlessness or with fewer seeds, resistance or tolerance to biotic and abiotic stress , acidity , yield , quality and early- or late-ripening are the most desired features and topics. Lemon improvement through conventional breeding is time consuming and cumbersome. Moreover, it has obstacles such as the high degree of heterozygosis due to frequent gene mutations either in reproductive or somatic cells and long juvenility in conventional breeding . In recent years, both conventional and molecular breeding techniques have been used to obtain new lemon varieties. In particular, the use of molecular techniques is rapidly increasing in an attempt to reduce the difficulties faced in conventional breeding like specific reproductive physiology of lemon and protracted length of time. In this chapter, conventional and advanced lemon breeding techniques are evaluated and discussed. In addition, emergent methods and technologies are evaluated to advance basic and applied lemon -breeding methods and to suggest directions for future research .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aka Kacar Y, Demirel A, Tuzcu O, Yildirim B (2005) Preliminary results on fingerprinting of lemon genotypes tolerant to mal secco disease by RAPD markers. Biologia Sec Cell Mol Biol 60(3):295–300

    CAS  Google Scholar 

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants of non-apomictic citrus genotypes. Plant Cell Rep 28:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Cuenca J, Juárez J et al (2010a) ‘Garbi’ mandarin: a new late maturing triploid hybrid. Hortsci 45(1):139–141

    Google Scholar 

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2010b) Polyembryony in non-apomictic citrus genotypes. Ann Bot 106:533–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Khan AS, Raza SA, Ur Rehman RN (2013) Innovative breeding methods to develop seedless citrus cultivars. Int J Biosci 3(8):191–201

    Article  Google Scholar 

  • Altaf N (2006) Embryogenesis in undeveloped ovules of citrus cultivars in response to gamma radiation. Pak J Bot 38(3):589–595

    Google Scholar 

  • Andrade-Rodríguez M, Villegas-Monter A et al (2004) Polyembryony and identification of Volkamerian lemon zygotic and nucellar seedlings using RAPD. Pesq Agropec Bras 39(6):551–559

    Article  Google Scholar 

  • Anonymous (2013) Draft of the international Citrus genome consortium white paper. http://www.citrusgenome.ucr.edu Accessed 12 Dec 2016

  • Anonymous (2017) The National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih Accessed 5 May 2017

  • Araújo EF, Queiroz LP, Machado MA (2003) What is citrus? Taxonomic implications from a study of cpDNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae). Org Divers Evol 3:55–62

    Article  Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Bastianel M, Schwarz1 SF, Filho HDC et al (1998) Identification of zygotic and nucellar tangerine seedlings (Citrus spp.) using RAPD. Genet Mol Biol 21:1

    Google Scholar 

  • Batygina TB, Vinogradova GY (2007) Phenomenon of polyembryony. Genetic heterogenity of seeds. Russ J Dev Biol 38:126–151

    Article  Google Scholar 

  • Bermejo A, Pardo J, Cano A (2012) Murcott seedless: influence of gamma irradiation on citrus production and fruit quality. Span J Agric Res 3:768–777

    Article  Google Scholar 

  • Bernet GP, Fernandez-Ribacoba J, Carbonell EA, Asins MJ (2009) Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Mol Breed 25:659–673

    Article  Google Scholar 

  • Bespalhok Filho JC, Kobayashi AK, Pereira LFP et al (2003) Transient gene expression of -glucuronidase in citrus thin epicotyl transversal sections using particle bombardment. Braz Arch Biol Technol 46(1):1–6

    Article  CAS  Google Scholar 

  • Biswas MK, Chai L, Amar MH et al (2011) Comparative analysis of genetic diversity in citrus germplasm collection using AFLP, SSAP, SAMPL and SSR markers. Sci Hortic 129:798–803

    Article  CAS  Google Scholar 

  • Bridgen MP (1994) A review of plant embryo culture. HortScience 29(11):1243–1246

    Google Scholar 

  • Cameron JW, Frost NB (1968) Genetic, breeding and nucellar embryony. In: Reuther W, Batchelor LD (eds) The citrus industry. University California Pres, Berkeley, pp 325–379

    Google Scholar 

  • Capparelli R, Viscardi M, Amoroso MG et al (2004) Inter-simple sequence repeat markers and flow cytometry for the characterization of closely related Citrus limon germplasms. Biotechnol Lett 26:1295–1299

    Article  CAS  PubMed  Google Scholar 

  • Çevik B, Lee RF, Niblett CL (2006) Genetic transformation of Citrus paradisi with antisense and untranslatable RNA dependent RNA polymerase genes of Citrus tristeza closterovirus. Turk J Agric For 30(3):173–182

    Google Scholar 

  • Chae CW, Dutt M, Yun SH et al (2011) Development of a SCAR marker linked to male fertility traits in ‘Jinkyool’ (Citrus sunki). J Life Sci 21(12):1659–1665

    Article  Google Scholar 

  • Chapot H (1975) The Citrus plant. In: Hafliger E (ed) Citrus, CIBA-GEIGY agrochemicals, technical monograph No 4. Basle, Switzerland, pp 6–13

    Google Scholar 

  • Chavez DJ, Chaparro JX (2011) Identification of markers linked to seedlessness in Citrus kinokuni hort. ex Tanaka and its progeny using bulked segregant analysis. HortScience 46(5):693–697

    CAS  Google Scholar 

  • Chen C, Bowman KD, Choi YA et al (2007) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliate. Tree Genet Genomes. https://doi.org/10.1007/s11295-007-0083-3

    Article  Google Scholar 

  • Chin EL, Mishchuk DO, Breksa AP, Slupsky CM (2014) Metabolite signature of Candidatus Liberibacter asiaticus infection in two citrus varieties. J Agric Food Chem 62:6585–6591

    Article  CAS  PubMed  Google Scholar 

  • Çimen B, Yeşiloğlu T, İncesu M et al (2016) Bazı turunçgil genotiplerinden tetraploid bitki elde edilmesi. Derim 33(2):175–188

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc Lond B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Cristofani M, Machado MA, Grattapaglia D (1999) Genetic linkage maps of Citrus sunki Hort. ex. Tan. and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance genes. Euphytica 109:25–32

    Article  CAS  Google Scholar 

  • Cuenca J, Aleza P, Garcia-Lor A et al (2016) Fine mapping for identification of citrus alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Front Plant Sci 7:1948 https://doi.org/10.3389/fpls.2016.01948

  • Curk F, Ancillo G, Ollitrault F et al (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. Plosone 10(5):e0125628. https://doi.org/10.1371/journal

    Article  Google Scholar 

  • Curk F, Ollitrault F, Garcia-Lor A et al (2016) Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann Bot 117(4):565–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalkilic Z, Timmer LW, Gmitter F (2005) Linkage of an alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hortic Sci 130:191–195

    CAS  Google Scholar 

  • Datta D, Gupta S, Chaturvedi SK, Nadarajan N (2011) Molecular markers in crop improvement. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Del Bosco AF, Tusa N, Conicella C (1999) Microsporogenesis in a citrus interspecific tetraploid somatic hybrid and its fusion parents. Hered 83:373–377

    Article  Google Scholar 

  • Deng ZN, Gentile A, Nicolosi E et al (1995) Identification of in-vivo and in vitro lemon mutants by RAPD markers. J Hort Sci 70(1):117–125

    Article  CAS  Google Scholar 

  • Dewi PS, Wakana A, Tanimoto Y et al (2015) Genotyping for male sterility (MS) and MS gene mapping with RAPD markers in citrus, especially with precocious flowering seedlings from a cross of ‘HY16’ × grapefruit. ISHS Acta Hort 1065: XII International Citrus Congress—International Society of Citriculture. https://doi.org/10.17660/actahortic.2015.1065.58

  • Distefano G, Casas GL, Caruso M et al (2009) Physiological and molecular analysis of the maturation process in fruits of clementine mandarin and one of its late-ripening mutants. J Agr Food Chem 57(17):7974–7982

    Article  CAS  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donini B (1982) Mutagenesis applied to improve fruit trees: techniques, methods and evaluation or radiation induced mutations. Induced mutations in vegetatively propagated plants. IAEA, Vienna, pp 29–36

    Google Scholar 

  • Donmez D, Simsek O, Izgu T et al (2013) Genetic transformation in citrus. Hindawi Publishing Corporation, Scient World J 2013(491207):8

    Google Scholar 

  • Dönmez D, Şimsek O, Aka Kacar Y (2016) Genetic engineering techniques in fruit science. Int J Environ Agr Res 2(12):115–128

    Google Scholar 

  • Dutt M, Grosser J (2015) Using genetically modified biotechnology to improve citrus. Citrus Industry, September 10–13

    Google Scholar 

  • Esen A, Soost RK (1971) Unexpected triploids in citrus: their origin, identification and possible use. J Hered 62:329–333

    Article  Google Scholar 

  • Fang DQ, Federici CT, Roose ML (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150:883–890

    PubMed  PubMed Central  CAS  Google Scholar 

  • FAO (2014) Food and agriculture organisation of the United Nations. www.fao.org/faostat. Accessed 12 Dec 2016

  • Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822

    Article  CAS  Google Scholar 

  • Froelicher Y, Mouhaya W, Bassene JB et al (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genomes 7:49–61

    Article  Google Scholar 

  • Frost HB, Scoost RK (1968) Seed reproduction: development of gametes and embryos. In: Reuther W, Batchelor LD (eds) The citrus industry, vol 2. University of California Press. Berkeley, CA, USA, pp 290–324

    Google Scholar 

  • Garcia-Lor A, Curk F, Snoussi-Trifa H et al (2013) A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genet Genomes 11:123. https://doi.org/10.1007/s11295-015-0951-1

    Article  Google Scholar 

  • Gmitter FG Jr, Chen C, Machado MA et al (2012) Citrus genomics. Tree Genet Genomes 8:611–626

    Article  Google Scholar 

  • Goldenberg L, Yaniv Y, Porat R, Carmi N (2014) Effects of gamma-irradiation mutagenesis for induction of seedlessness, on the quality of mandarin fruit. Food Nutr Sci 5:943–952

    Google Scholar 

  • Golein B, Talaie A, Zamani Z, Moradi B (2006) Development and characterization of new microsatellite loci from lemon (Citrus limon). Int J Agri Biol 8(2):172–174

    CAS  Google Scholar 

  • Golein B, Fifaei R, Ghasemi M (2011) Identification of zygotic and nucellar seedlings in citrus interspecific crosses by inter simple sequence repeats (ISSR) markers. Afr J Biotechnol 10(82):18965–18970

    CAS  Google Scholar 

  • Grosser JW, Gmitter FG Jr (1990) Protoplast fusion in citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Grosser JW, Gmitter Jr FG (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tiss Organ Cult 104:343–357

    Google Scholar 

  • Gulsen O, Roose ML (2000) The origin of Interdonato lemon inferred from cpRFLP, SSR, isozyme and ISSR markers. In: Proceedings of the international society of citriculture IX congress, pp 158, 159

    Google Scholar 

  • Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected citrus genotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–317

    CAS  Google Scholar 

  • Gulsen O, Uzun A, Pala H et al (2007) Development of seedless and mal secco tolerant mutant lemons through budwood irradiation. Sci Hortic 112(2):184–190

    Article  Google Scholar 

  • Gulsen O, Uzun A, Canan I et al (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica 173:265–277

    Article  CAS  Google Scholar 

  • Gulsen O, Uzun A, Canan I (2016) Genetic analysis of QTLs controlling carpel number in citrus. Sci Bull Ser F Biotechnol 2:80–82

    Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Hensz RA (1985) “Rio Red” a new grapefruit with a deep-red color. J Rio Grande Valley Hort Soc 38:75–76

    Google Scholar 

  • Herrero R, Asins MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theor Appl Genet 92:599–609

    Article  CAS  PubMed  Google Scholar 

  • Hossain MI, Rabbani MG (2011) Study on the cross compatıbılıty of some lemon genotypes (Citrus limon L.). Bangladesh J Agril Res 36(2):241–246

    Google Scholar 

  • Huang JC, Xiao Y, Zhao CX et al (2003) Induction of superior seedless mutation of C. grandis Osbeck cv. Sshatianyou by irradiation. Acta Agric Nucleatae Sin 17:171–174

    CAS  Google Scholar 

  • Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussein EHA, Abd-Alla SMM, Awad NA, Hussein MS (2003) Genetic analysis in some citrus accessions using microsatellites and AFLP based markers. Arab J Biotech 6(2):203–222

    Google Scholar 

  • Hynniewta M, Malik SM, Rao SR (2014) Genetic diversity and phylogenetic analysis of Citrus (L) from north-east India as revealed by meiosis, and molecular analysis of internal transcribed spacer region of rDNA. Meta Gene 2:237–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarrell DC, Roose ML, Traugh SN, Kupper RS (1992) A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor Appl Genet 84:49–56

    Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. Chapter 3, http://dx.doi.org/10.5772/52583

  • Kahn TL, Krueger RR, Gumpf DJ et al (2001) Citrus genetic resources in California: analysis and recommendations for long-term conservation. Report No. 22. University of California Division of Agriculture and Natural Resources, Genetic Resources Conservation Program, Davis CA, USA

    Google Scholar 

  • Kalendar R, Grob T, Regina M et al (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis THN et al (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Hered 106:520–530

    Article  CAS  Google Scholar 

  • Koç NK, Kayım M, Çınar A, Küsek M (1999) Investigations on the possibility to obtain mal secco (Phoma tracheiphila Kanc. et Ghik.) resistant varieties via protoplast fusion (somatic hybridization) in lemon. Trop J Agricult. Forest 23(1):157–168

    Google Scholar 

  • Kordrostami M, Rahimi M (2015) Molecular markers in plants: concepts and applications, pp 4024–4031. www.g3m.ir. Accessed 02 March 2017

  • Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CAB International, pp 45–140

    Google Scholar 

  • Kumar S, Nair KN, Jena SN (2013) Molecular differentiation in Indian Citrus L. (Rutaceae) inferred from nrDNA ITS sequence analysis. Genet Resour Crop Evol 60:59–75

    Article  CAS  Google Scholar 

  • Latado R, Neto AT, Figueira A (2012) In vivo and in vitro mutation breeding of citrus. Bioremed Biodiver Bioavail 6 (special issue 1):40–45

    Google Scholar 

  • Lee LS (1988) Citrus polyploidy origins and potential for cultivar improvement. Austral J Agr Res 39:735–747

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li X, Xie R, Lu Z, Zhou Z (2010) The origin of cultivated citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. J Amer Soc Hort Sci 135(4):341–350

    Google Scholar 

  • Ling P, Duncan LW, Deng Z et al (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100(7):1010–1017

    Article  CAS  Google Scholar 

  • Liu SR, Li WY, Long D et al (2013) Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis. Plosone 8(10):e75149. https://doi.org/10.1371/journal.pone.0075149

    Article  CAS  Google Scholar 

  • Long JM, Liu Z, Wu XM et al (2016) Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixes. J Exp Bot. https://doi.org/10.1093/jxb/erw338

    Article  PubMed  PubMed Central  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luro F, Gatto J, Costantino G, Pailly O (2011) Analysis of genetic diversity in citrus. Plant Genet Resour: Charact Utiliz 9(2):218–221

    Article  CAS  Google Scholar 

  • Lusser M, Parisi C, Plan D et al (2011) New plant breeding techniques. State-of-the-art and prospects for commercial development. European Commission, http://europa.eu. Accessed 18 March 2017

  • Machado MA, Cristofani-Yaly M, Bastianel M (2011) Breeding, genetic and genomic of citrus for disease resistance. Rev Bras Frutic 33(1):158–172

    Article  Google Scholar 

  • Mendes BMJ, Mourao Filho FAA, Farias PCM, Benedito VA (2001) Citrus hybridization with potential for improved blight and CTV resistance. Vitro Cell Develop Biol Plant 37(4):490–495

    Article  CAS  Google Scholar 

  • Meziane M, Frasheri D, Carra A et al (2016) Attempts to eradicate graft-transmissible infections through somatic embryogenesis in Citrus ssp. and analysis of genetic stability of regenerated plants. Eur J Plant Pathol. https://doi.org/10.1007/s10658-016-1072-x

  • Mondal B, Pramanick S, Saha R, Karmakar M (2015) Application of simple sequence repeat markers for demarcation of Citrus reticulata nucellar and hybrid seedlings. Int J Biosci 6(2):128–133

    Article  CAS  Google Scholar 

  • Montañola MJ, Galaz A, Gambardella M, Mártiz J (2015) New low seeded mandarin (Citrus reticulata) and lemon (C. limon) selections obtained by gamma irradiation. In: Sabater-Muñoz B, Moreno P, Peña L, Navarro L (eds) Proceedings of XIIth international citrus congress, Acta Hort 1065:543–548

    Google Scholar 

  • Moore GA, Rogers KL, Kamps TL et al (2016) Rapid cycling plant breeding in citrus. Citrograph 7(3):80–85

    Google Scholar 

  • Mu Q, Sun X, Zhong GY et al (2012) Employment of a new strategy for identification of lemon (Citrus limon L.) cultivars using RAPD markers. Afr J Agr Res 7(14):2075–2082

    Google Scholar 

  • Murkute AA, Singh IP (2015) Citrus improvement through selection and mutagenesis: constrains and opportunities. Int J Trop Agric 33(3):2361–2366

    Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A et al (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Okou DT, Steinberg KM, Middle C et al (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4(11) https://doi.org/10.1038/nmeth1109

  • Oliveira RP, Cristofani M, Machado MA (2004) Genetic linkage maps of ‘Pêra’ sweet orange and ‘Cravo’ mandarin with RAPD markers. Pesq Agropec Bras 39(2):159–165

    Article  Google Scholar 

  • Ollitrault P, Guo WW, Grosser JW (2007) Somatic hybridization. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. Cabi Publishing: Oxfordshire, UK, pp 235–260

    Google Scholar 

  • Ollitrault P, Terol J, Chen C et al (2012) A reference genetic map of Citrus clementina; Citrus evolution inferences from comparative mapping. BMC Genom 13:593

    Article  CAS  Google Scholar 

  • Omura M, Shimada T (2016) Citrus breeding, genetics and genomics in Japan. Breed Sci 66:3–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Tornero O, Porras I (2008) Assessment of polyembryony in lemon: rescue and in vitro culture of immature embryos. Plant Cell Tiss Org 93(2):173–180

    Article  Google Scholar 

  • Pérez-Tornero O, Córdoba F, Moreno M et al (2010) Classic methods and biotechnical tools in lemon breeding: preliminary results. In: ISHS Acta Hort 928: international symposium on citrus, bananas and other tropical fruits under subtropical conditions. https://doi.org/10.17660/actahortic.2012.928.32

  • Piri I, Babayan M, Tavassoli A, Javaheri M (2011) The use of gamma irradiation in agriculture. Afr J Microbiol Res 5(32):5806–5811

    Google Scholar 

  • Poczai P, Varga I, Laos M et al (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polat I, Turgutoglu E, Kurt S (2015) Determination of genomic diversity within mutant lemon (Citrus limon L.) and mandarin (Citrus reticulata) using molecular markers. Pak J Bot 47(3):1095–1102

    Google Scholar 

  • Pons E, Peris JE, Peña L (2012) Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics. BMC Biotechnol 12:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadugu C, Pfeil BE, Keremane ML et al (2013) A six nuclear gene phylogeny of Citrus (Rutaceae) taking into account hybridization and lineage sorting. Plosone 8(7):e68410. https://doi.org/10.1371/journal.pone.0068410

    Article  CAS  Google Scholar 

  • Reforgiato Recupero G, Russo G, Recupero S (2005) New promising citrus triploid hybrids selected from crosses between monoembryonic diploid female and tetraploid male parents. Hortsci 40(3):516–520

    Google Scholar 

  • Robarts DWH, Wolfe AD (2014) Sequence-related amplified polymorphism (SRAP) markers: a potential resource for studies in plant molecular biology. Appl Plant Sci 2(7):1400017

    Article  Google Scholar 

  • Roose ML, Feng D, Cheng FS et al (2000) Mapping the Citrus Genome. In: ISHS Acta Hort 535: first international citrus biotechnology symposium. https://doi.org/10.17660/actahortic.2000.535.1

  • Şahin-Çevik M, Moore GA (2007) Construction of a genetic linkage map of citrus with random amplified polymorphic DNA (RAPD) markers using a progeny population from a complex intergeneric cross. Turk J Bot 31:79–86

    Google Scholar 

  • Shahsavar AR, Izadpanah K, Tafazoli E, Sayed Tabatabaei BE (2007) Characterization of citrus germplasm including unknown variants by inter-simple sequence repeat (ISSR) markers. Sci Hortic 112:310–314

    Article  CAS  Google Scholar 

  • Shiratake K, Suzuki M (2016) Omics studies of citrus, grape and Rosaceae fruit trees. Breed Sci 66:122–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simsek O, Donmez D, Aka Kacar Y (2017) RNA-Seq analysis in fruit science: a review. Am J Plant Biol 2(5–1):1–7

    Google Scholar 

  • Singh S, Rajam MV (2009) Citrus biotechnology: achievements, limitations and future directions. Physiol Mol Biol Plants 15(1):20

    Google Scholar 

  • Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Wiley-Blackwell, USA

    Google Scholar 

  • Snoussi H, Duval MF, Garcia-Lor A et al (2012) Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm. BMC Genet 13:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soost RK, Roose ML (1996) Citrus. In: Janick J, Moore JN (eds) Fruit breeding, vol I: tree and tropical fruits. Wiley, USA, pp 257–323

    Google Scholar 

  • Spiegel-Roy P, Vardi A, Elhanati A (1985) Seedless induced mutant in lemon (Citrus limon). Mutat Breed Newsl 26:1

    Google Scholar 

  • Spiegel-Roy P, Vardi A, Elhanati A (1990) Seedless induced mutant in highly seeded lemon (Citrus limon). Mutat Breed Newsl 36:11

    Google Scholar 

  • Spiegel-Roy P, Vardi A, Yaniv Y et al (2007) ‘Ayelet’ and ‘Galya’: new seedless lemon cultivars. HortScience 42(7):1723–1724

    Google Scholar 

  • Starrantino A, Russo F, Donini B, Spina P (1988) Lemon mutations obtained by gamma irradiation of the nucellus cultured in vitro. In: 6th International Citrus Congress Proceedings, pp 231–235

    Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker assisted selection and genomics to increase crop yield potential. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Sülü G, Polat İ, Turgutoğlu E et al (2016) Determination of genetic diversity of mutant Yerli Mandarin, Antalya Yerli Yuvarlak Lemon individuals and some lemon and mandarin varieties using SSCP, SSR and ISSR markers. TUBITAK project final report. Project no: 114O881

    Google Scholar 

  • Sutarto I, Agisimanto D, Supriyanto A (2009) Development of promising seedless citrus mutants through gamma irradiation. Induced plant mutations in the genomics era. FAO, Rome, pp 306–308

    Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of citrus and its wild relatives. In: Reuther W, Webber HJ (eds) The citrus industry, vol 1. University of California Press. Berkeley, CA, USA, pp 389–390

    Google Scholar 

  • Talon M, Gmitter FG Jr (2008) Citrus genomics. Int J Plant Genomics. https://doi.org/10.1155/2008/528361

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka T (1977) Fundamental discussion of citrus classification. Stud Citrol 14:1–6

    Google Scholar 

  • Tang XL, Wu ST, Peng CL, Li ZO (1994) Development of seedless citrus cultivars through gamma ray re-irradiation. In: XXIV international horticultural congress. Program and Abstracts Supplement. Japan, pp 646–649

    Google Scholar 

  • Torres AM, Soost RK, Diedenhofen U (1978) Leaf isosymes as genetic markers in citrus. Am J Bot 65:869–881

    Article  Google Scholar 

  • Tozlu I, Guy CL, Moore GA (1999) QTL analysis of Na and Cl accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non saline environments. Genome 42:692–705

    Article  CAS  Google Scholar 

  • Tripolitsiotis C, Nikoloudakis N, Linos A, Hagidimitriou M (2013) Molecular characterization and analysis of the Greek citrus germplasm. Not Bot Horti Agrobo 41(2):463–471

    Article  Google Scholar 

  • Turgutoglu E, Kurt S, Demir G et al (2015) Determination of mutant common mandarin and Antalya Yerli Yuvarlak lemon clones that show no periodisite, seedless and thornless. Bati Akdeniz Agricultural Research Institute, Activity Report-2014 for Research Project, pp 34–48

    Google Scholar 

  • Tusa N, Grosser JW, Gmitter FG (1990) Plant regeneration of ‘Valencia’ sweet orange, ‘Femminello’ lemon, and the interspecific somatic hybrid following protoplasm fusion. J Am Soc Hortic Sci 115(6):1043–1046

    Google Scholar 

  • Tusa N, Grosser JW, Gmitter FG, Louzada ES (1992) Production of tetraploid somatic hybrid breeding parents for use in lemon cultivar improvement. Hortsci 27(5):445–447

    Google Scholar 

  • Tusa N, Abbate L, Ferrante S et al (2002) Identification of zygotic and nucellar seedlings in citrus interploid crosses by means of isozymes, flow cytometry and ISSR-PCR. Cell Mol Biol Lett 7:703–708

    PubMed  CAS  Google Scholar 

  • Tzfira T, Weinthal D, Marton I et al (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechn J 10:373–389

    Article  CAS  Google Scholar 

  • Usman M, Fatima B, Gillani KA et al (2008) Exploitation of potential target tissues to develop polyploids in citrus. Pak J Bot 40(4):1755–1766

    CAS  Google Scholar 

  • Uzun A, Gulsen O, Kafa G, Seday U (2008a) Field performance and molecular diversification of lemon selections. Sci Hortic 120:473–478

    Article  CAS  Google Scholar 

  • Uzun A, Gulsen O, Kafa G, Seday U (2008b) ‘Alata’, ‘Gulsen’, and ‘Uzun’ seedless lemons and ‘Eylul’ early-maturing lemon. Hortsci 43(6):1920–1921

    Google Scholar 

  • Uzun A, Yeşiloğlu T, Aka-Kacar Y et al (2009a) Determination of genetic diversity in rough lemon genotypes by SRAP markers. Alatarım 8(1):8–14

    Google Scholar 

  • Uzun A, Gulsen O, Kafa G, Seday U (2009b) Field performance and molecular diversification of lemon selections. Sci Hortic 120:473–478

    Article  CAS  Google Scholar 

  • Uzun A, Yesiloglu T, Polat I et al (2011) Evaluation of genetic diversity in lemons and some of their relatives based on SRAP and SSR markers. Plant Mol Biol Rep 29:693–701

    Article  CAS  Google Scholar 

  • van Harten AM, Broertjes C (1989) Induced mutations in vegetatively propagated crops. Plant Breed Rev 6:55–91

    Google Scholar 

  • van Nocker S, Gardiner SA (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022. https://doi.org/10.1038/hortres.2014.22

  • Vardi A, Galun E (1989) Isolation and culture of citrus protoplast. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Plant protoplast and genetic engineering I, pp 147–159

    Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in Citrus: from classical techniques to emerging biotechnological approaches. J Amer Soc Hort Sci 133(1):117–126

    Google Scholar 

  • Velázquez K, Agüero J, Vives MC et al (2016) Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: a new tool for genetics and breeding. J Plant Biotech 14:1976–1985

    Article  CAS  Google Scholar 

  • Viloria Z, Grosser JW (2005) Acid citrus fruit improvement via interploid hybridization using allotetraploid somatic hybrid and autotetraploid breeding parents. J Amer Soc Hort Sci 130(3):392–402

    Google Scholar 

  • Williams TE, Roose ML (2010) Tango-a new, very low-seeded, late-season irradiated selection of ‘W. Murcott’ mandarin from the University of California Riverside. Proc Int Soc Citriculture 1:202

    Google Scholar 

  • Workman D (2017) Lemons and limes exporters by country. http://www.worldstopexports.com Accessed 30 Oct 2017

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a crispr-cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Yildiz E, Kaplankiran M, Demirkeser TH et al (2013) Identification of zygotic and nucellar individuals produced from several citrus crosses using SSRs markers. Not Bot Hortic Agrobot 41(2):478–484

    Article  CAS  Google Scholar 

  • Yong-Zhong L, Xiu-Xin D (2007) Citrus breeding and genetics in China. Asian Australas J Plant Sci Biotech 1(1):23–28

    Google Scholar 

  • Zhu SP, Song JK, Hu ZY et al (2009) Ploidy variation and genetic composition of open pollinated triploid citrus progenies. Bot Stud 50:319–324

    Google Scholar 

Download references

Acknowledgements

We thank Ertuğrul Turgutoğlu for his critical reading of this work and for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilknur Polat .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Research Institutes and Online Resources

List of major Institutes engaged in research on lemon ( Citrus limon L. Burm. F.)

  1. 1.

    Citrus Variety Collection . University of California Riverside, 900 University Ave, Riverside, CA 92521, USA. e-mail: academicpersonnel@ucr.edu

  2. 2.

    National Clonal Germplasm Repository for Citrus , USDA, ARS Natl Germplasm Repos, 1060 Martin Luther King Blvd. Riverside, CA 92507, USA. e-mail: marylou.polek@ars.usda.gov

  3. 3.

    Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA

  4. 4.

    University of California Davis, 1 Shields Avenue, 3100 Dutton Hall Davis, CA 95616 USA.

  5. 5.

    Alata Horticultural Research Institute, Alata Bahçe Kül. Araş. Enst. 33740, Erdemli, Mersin, Turkey. e-mail: alata@tarim.gov.tr

  6. 6.

    Batı Akdeniz Agricultural Research Institute (BATEM), Demircikara Mah. Paşa Kavakları Cad. No: 11 Pbox: 35, Muratpaşa, Antalya, Turkey. e-mail: batem@tarim.gov.tr

  7. 7.

    University of Cukurova, Faculty of Agriculture, Ziraat Fakültesi Dekanlığı, Sarıçam, Adana, Turkey. e-mail: bahce@mail.cu.edu.tr

  8. 8.

    Citrus Research Institute (CRI), Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District Beijing P.R.China. e-mail: diccaas@caas.cn

  9. 9.

    Southwest Minzu University, #16, South Section, 1st Ring Road, Chengdu, Sichuan, 610041 China. e-mail: WJ@swun.edu.cn

  10. 10.

    National Citrus Engineering Research Center, Xiema, Beibei, Chongqing, 400712 P.R.China. e-mail: cric@163.com; www.cric.cn

  11. 11.

    Huazhong Agricultural University, Wuhan Hubei 430070, People’s Republic of China.

  12. 12.

    Sylvio Moreira Citrus Center, Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis São Paolo, Brazil. e-mail: https://www.givaudan.com

  13. 13.

    Valencian Institute of Agricultural Research (IVIA), Ctra. Moncada-Náquera, km. 4, 5, 46113, Valencia, Spain. e-mail: www.ivia.es

  14. 14.

    Central Citrus Research Institute (CCRI), Nagpur, Post Box No. 464, Amravati Road, Nagpur—440033, Maharashtra, India. e-mail: director.ccri@icar.gov.in

  15. 15.

    University of Catania, Piazza Università, 2-95131 Catania—Partita IVA 02772010878, Italy. e-mail: protocollo@pec.unict.it

  16. 16.

    Centro di Studio per il Miglioramento Genetico degli Agrumi, Consiglio Nazionale delle Ricerche, Male delle Scienze, Palenno 90128, Sicily, Italy. e-mail: www.cnr.it

  17. 17.

    Centro di Ricerca per l’Agrumicoltura e le Colture Mediterranee, Corso Savoia 190 95024—Acireale, Italy. e-mail: acm@crea.gov.it 

  18. 18.

    University of Palermo, Università degli Studi di Palermo Piazza Marina, 61 90133—Palermo, Italy. e-mail: www.unipa.it

  19. 19.

    Citrus Research International, South Africa. e: www.citrusres.com

  20. 20.

    National Institute for Agricultural Research (INRA), Avenue Lucien Brétignières 78850 Thiverval-Grignon, France. e-mail: www.inra.fr

  21. 21.

    Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel. e-mail: https://tau.ac.il

  22. 22.

    Institute of Horticulture, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel. e-mail: http://www.moag.gov.il

  23. 23.

    Buenos Aires University, Buenos Aires, Argentina. e-mail: http://www.uba.ar

Appendix 2: Genetic Resources

A list of some of cultivars , their important traits and country of release

No.

Variety

Selection and breeding method

Year

Country of release

1

Eureka 22 INTA

Mutation breeding

1987

Argentina

2

Alata

Mutation breeding

2007

Turkey

3

Gülşen

Mutation breeding

2007

Turkey

4

Uzun

Mutation breeding

2007

Turkey

5

Eylul

Mutation breeding

2007

Turkey

6

Galya

Mutation breeding

2007

Israel

7

Ayelet

Mutation breeding

2007

Israel

8

Feminello Siracusano 2KR

Mutation breeding

1990

Italia

9

Lisbon

Clone

1824

Portugal

10

Limoniera 8A Lisbon

Clone

1966

USA

11

Frost Lisbon

Nucellar selection

1950

USA

12

Corona Foothills Lisbon

Nucellar selection

1980

USA

13

Rosenberger Lisbon

Hybridization breeding

1995

USA

14

Limoneiro Fino 49

Clone

 

Spain

15

Eureka

Selection from local variety

1850s

Italy

16

Frost nucellar Eureka

Budwood

 

USA

17

Taylor Eureka

Nucellar selection

1989

Australia

18

Variegated Pink

Bud sport

1931

USA

19

Meyer

Selection from local variety

1908

China

20

Improved Meyer

Clone

1950

USA

21

Santa Teresa

Selection from local variety

 

Italy

22

Ponderosa

Hybridization breeding

1887

USA

23

Yen Ben

Selection from local variety

1930

New Zealand

24

Villafranca

Selection from local variety

1875

Italy

25

Genoa (Genova)—Italian

Selection from local variety

1875

Italy

26

Feminello

Budwood

1966

USA

27

Santa Teresa Feminello

Selection from local variety

1960s

Italy

28

Lamas

Selection from local variety

1990

Turkey

29

Yediveren

Selection from local variety

2014

Turkey

30

Kütdiken

Selection from local variety

1990

Turkey

31

Interdonato

Selection from local variety

1875

Italy

32

BATEM Pınarı

Selection from local variety

2011

Turkey

33

BATEM Sarısı

Selection from local variety

2011

Turkey

34

Italyan Memeli

Selection from local variety

1990

Turkey

35

Karalimon

Selection from local variety

1990

Turkey

36

Kıbrıs Limonu

Selection from local variety

1990

Turkey

37

Lapithkiotiki

Selection from local variety

 

North Cyprus

38

Volkamer

Hybridization breeding

1955

Italy

39

Baboon

Selection from local variety

 

Brazil

40

Cameron Highlands

Selection from local variety

 

Malaysia

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polat, I. (2018). Advanced Innovative Tools in Lemon (Citrus limon L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_12

Download citation

Publish with us

Policies and ethics